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Abstract

The R package ltm has been developed for the analysis of multivariate dichotomous
and polytomous data using latent variable models, under the Item Response Theory ap-
proach. For dichotomous data the Rasch, the Two-Parameter Logistic, and Birnbaum’s
Three-Parameter models have been implemented, whereas for polytomous data Seme-
jima’s Graded Response model is available. Parameter estimates are obtained under
marginal maximum likelihood using the Gauss-Hermite quadrature rule. The capabilities
and features of the package are illustrated using two real data examples.
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1. Introduction

Latent variable models (Bartholomew and Knott 1999; Skrondal and Rabe-Hesketh 2004)
constitute a general class of models suitable for the analysis of multivariate data. In principle,
latent variable models are multivariate regression models that link continuous or categorical
responses to unobserved covariates. The basic assumptions and objectives of latent variable
modeling can be summarized as follows (Bartholomew, Steele, Moustaki, and Galbraith 2002):

• A small set of latent variables is assumed to explain the interrelationships in a set of
observed response variables. This is known as the conditional independence assumption,
which postulates that the response variables are independent given the latent variables.
This simplifies the estimation procedure, since the likelihood contribution of the mul-
tivariate responses is decomposed into a product of independent terms. In addition,
exploring conditional independence may help researchers first in drawing conclusions in
complex situations, and second in summarizing the information from observed variables
in few dimensions (reduction of dimensionality).

http://www.jstatsoft.org/
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• Unobserved variables such as intelligence, mathematical or verbal ability, racial prej-
udice, political attitude, consumer preferences, which cannot be measured by conven-
tional means, can be quantified by assuming latent variables. This is an attractive
feature that has applications in areas such as educational testing, psychology, sociology,
and marketing, in which such constructs play a very important role.

• Latent variable modeling is also used to assign scores to sample units in the latent
dimensions based on their responses. This score (also known as a ‘Factor Score’) is
a numerical value that indicates a person’s relative spacing or standing on a latent
variable. Factor scores may be used either to classify subjects or in the place of the
original variables in a regression analysis, provided that the meaningful variation in the
original data has not been lost.

Item Response Theory (IRT) (Baker and Kim 2004; van der Linden and Hambleton 1997)
considers a class of latent variable models that link mainly dichotomous and polytomous
manifest (i.e., response) variables to a single latent variable. The main applications of IRT can
be found in educational testing in which analysts are interested in measuring examinees’ ability
using a test that consists of several items (i.e., questions). Several models and estimation
procedures have been proposed that deal with various aspects of educational testing.

The aim of this paper is to present the R (R Development Core Team 2006) package ltm,
available from CRAN (http://CRAN.R-project.org/), which can be used to fit a set of latent
variable models under the IRT approach. The main focus of the package is on dichotomous
and polytomous response data. For Gaussian manifest variables the function factanal() of
package stats can be used.

The paper is organized as follows. Section 2 briefly reviews the latent variable models for
dichotomous and polytomous data. In Section 3 the use of the main functions and methods
of ltm is illustrated using two real examples. Finally, in Section 4 we describe some extra
features of ltm and refer to future extensions.

2. Latent variable models formulation

The basic idea of latent variable analysis is to find, for a given set of response variables
x1, . . . , xp, a set of latent variables z1, . . . , zq (with q � p) that contains essentially the
same information about dependence. The latent variable regression models have usually the
following form

E(xi | z) = g(λi0 + λi1z1 + · · ·+ λiqzq) (i = 1, . . . , p), (1)

where g(·) is a link function, λi0, . . . , λiq are the regression coefficients for the ith manifest
variable, and xi is independent of xj , for i 6= j, given z = {z1, . . . , zq}. The common factor
analysis model assumes that the xi’s are continuous random variables following a Normal
distribution with g(·) being the identity link. In this paper we focus on IRT models, and
consider mainly dichotomous and polytomous items, in which E(xi | z) expresses the prob-
ability of endorsing one of the possible response categories. In the IRT framework usually
one latent variable is assumed, but for models on dichotomous responses the inclusion of two
latent variables is briefly discussed in Section 4.

http://CRAN.R-project.org/
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2.1. Models for dichotomous data

The basic ingredient of the IRT modeling for dichotomous data is the model for the probability
of positive (or correct) response in each item given the ability level z. A general model for
this probability for the mth examinee in the ith item is the following

P (xim = 1 | zm) = ci + (1− ci)g{αi(zm − βi)}, (2)

where xim is the dichotomous manifest variable, zm denotes the examinee’s level on the latent
scale, ci is the guessing parameter, αi the discrimination parameter and βi the difficulty
parameter. The guessing parameter expresses the probability that an examinee with very low
ability responds correctly to an item by chance. The discrimination parameter quantifies how
well the item distinguishes between subjects with low/high standing in the latent scale, and
the difficulty parameter expresses the difficulty level of the item.

The one-parameter logistic model, also known as the Rasch model (Rasch 1960), assumes
that there is no guessing parameter, i.e., ci = 0 and that the discrimination parameter equals
one, i.e., αi = 1, ∀i. The two-parameter logistic model allows for different discrimination
parameters per item and assumes that ci = 0. Finally, Birnbaum’s three-parameter model
(Birnbaum 1968) estimates all three parameters per item.

The two most common choices for g(·) are the probit and the logit link, which correspond
to the cumulative distribution function (cdf) of the normal and logistic distributions, respec-
tively. The functions included in ltm fit (2) under the logit link. Approximate results under
the probit link for the one- and two-parameter logistic models can be obtained using the
relation

α
(p)
i (zm − β

(p)
i ) ≈ 1.702α

(l)
i (zm − β

(l)
i ), (3)

where α
(p)
i , α

(l)
i are the discrimination parameters under the probit and logit link, respectively,

and β
(p)
i , β

(l)
i are defined analogously. The scaling constant 1.702 is chosen such that the

absolute difference between the normal and logistic cdf is less than 0.01 over the real line.

2.2. Models for polytomous ordinal data

Analysis of polytomous manifest variables is currently handled by ltm using the Graded
Response Model (GRM). The GRM was first introduced by Samejima (1969), and postulates
that the probability of the mth subject to endorse the kth response for the ith item is expressed
as

P (xim = k | zm) = g(ηik)− g(ηi,k+1), (4)

ηik = αi(zm − βik), k = 1, . . . ,Ki,

where xim is the ordinal manifest variable with Ki possible response categories, zm is the
standing of the mth subject in the latent trait continuum, αi denotes the discrimination
parameter, and βik’s are the extremity parameters with βi1 < . . . < βik < . . . < βi,Ki−1 and
βiKi = ∞. The interpretation of αi is essentially the same as in the models for dichotomous
data. However, in GRM the βik’s represent the cut-off points in the cumulative probabilities
scale and thus their interpretation is not direct. ltm fits the GRM under the logit link.
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There have been proposed several alternatives to the GRM for the analysis of polytomously
scored items. Two of them that are frequently applied are the Partial Credit and the Rating
Scale models. The partial credit model is more suitable in cases where the difference between
response options is identical for different items in the attitude scale, whereas the rating scale
model is applicable to a test in which all items have the same number of categories. We refer
to van der Linden and Hambleton (1997) and Zickar (2002) for additional information and
discussion about the polytomous models.

2.3. Implementation in ltm

Estimation of model parameters has received a lot of attention in the IRT literature. Under
Maximum Likelihood there have been developed three major methods, namely conditional,
full, and marginal maximum likelihood. A detailed overview of these methods is presented
in Baker and Kim (2004) and a brief discussion about the relative merits of each method
can be found in Agresti (2002, Section 12.1.5). In addition, parameter and ability estimation
under a Bayesian approach is reviewed in Baker and Kim (2004). Package ltm fits the models
presented in Sections 2.1 and 2.2 using Marginal Maximum Likelihood Estimation (MMLE).
Conditional maximum likelihood estimation has been recently implemented in package eRm
(Mair and Hatzinger 2006) but only for some Rasch type models, and Markov Chain Monte
Carlo for the one and k dimensional latent trait models are available from the MCMCpack
package (Martin and Quinn 2006).

Parameter estimation under MMLE assumes that the respondents represent a random sample
from a population and their ability is distributed according to a distribution function F (z).
The model parameters are estimated by maximizing the observed data log-likelihood obtained
by integrating out the latent variables; the contribution of the mth sample unit is

`m(θ) = log p(xm; θ) = log
∫

p(xm|zm; θ) p(zm) dzm, (5)

where p(·) denotes a probability density function, xm denotes the vector of responses for the
mth sample unit, zm is assumed to follow a standard normal distribution and θ = (αi, βi).
Package ltm contains four model fitting functions, namely rasch(), ltm(), tpm() and grm()
for fitting the Rasch model, the latent trait model, the three-parameter model, and the graded
response model, respectively. The latent trait model is a general latent variable model for
dichotomous data of the form (1), including as a special case the two-parameter logistic model.
The integral in (5) is approximated using the Gauss-Hermite quadrature rule. By default,
in rasch(), tpm() and grm() 21 quadrature points are used, whereas ltm() uses 21 points
when one latent variable is specified and 15 otherwise. It is known (Pinheiro and Bates 1995)
that the number of quadrature points used may influence the parameter estimates, standard
errors and log-likelihood value, especially for the case of two latent variables and nonlinear
terms as described in Section 4. Thus, it is advisable to investigate its effect by fitting the
model with an increasing number of quadrature points. However, for the unidimensional (i.e.,
one latent variable) IRT models considered so far, the default number of points will be, in the
majority of the cases, sufficient.

Maximization of the integrated log-likelihood (5) with respect to θ for rasch(), tpm() and
grm() is achieved using optim()’s BFGS algorithm. For ltm() a hybrid algorithm is adopted,
in which a number of EM iterations is initially used, followed by BFGS iterations until con-
vergence. In addition, for all four functions, the optimization procedure works under an
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additive parameterization as in (1), i.e., λi0 +λi1zm; however, the parameter estimates for the
Rasch, the two-parameter logistic, the three-parameter, and the graded response models are
returned, by default, under parameterizations (2) and (4). This feature is controlled by the
IRT.param argument. Starting values are obtained either by fitting univariate GLMs to the
observed data with random or deterministic z values, or they can be explicitly set using the
start.val argument. The option of random starting values (i.e., use of random z values in the
univariate GLM) might be useful for revealing potential local maxima issues. By default all
functions use deterministic starting values (i.e., use of deterministic z values in the univariate
GLM). Furthermore, all four functions have a control argument that can be used to specify
various control values, such as the optimization method in optim() (for tpm() the nlminb()
optimizer is also available) and the corresponding maximum number of iterations, and the
number of quadrature points, among others. Finally, the four fitting functions return objects
of class named after the corresponding (model fitting) function (i.e., rasch() returns rasch
objects, etc.), for which the following methods are available: print(), coef(), summary(),
plot(), fitted(), vcov(), logLik(), anova(), margins() and factor.scores(); the last
two generic functions are defined in ltm and their use is illustrated in more detail in the
following section.

3. Package ltm in use

We shall demonstrate the use of ltm in two data sets; the first one concerns binary data where
rasch(), ltm() and tpm(), and their methods are investigated, while for the second one that
deals with ordinal data, grm() and its methods are illustrated. For both examples the results
are presented under the default number of quadrature points. To investigate sensitivity we
have also fitted the models with 61 points and essentially the same results have been obtained.

3.1. An example with binary data

In this section we consider data from the Law School Admission Test (LSAT) that has been
taken by 1000 individuals responding to five questions. This is a typical example of an
educational test data-set presented also in Bock and Lieberman (1970). LSAT data are
available in ltm as the data.frame LSAT.

At an initial step, descriptive statistics for LSAT are produced using the descript() function:

R> descript(LSAT)

Descriptive statistics for ’LSAT’ data-set

Sample:
5 items and 1000 sample units; 0 missing values

Proportions for each level of response:
Item 1 Item 2 Item 3 Item 4 Item 5

0 0.076 0.291 0.447 0.237 0.130
1 0.924 0.709 0.553 0.763 0.870
logit 2.498 0.891 0.213 1.169 1.901
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Frequencies of total scores:
0 1 2 3 4 5

Freq 3 20 85 237 357 298

Biserial correlation with Total Score:
Item 1 Item 2 Item 3 Item 4 Item 5
0.362 0.566 0.618 0.534 0.435

Pairwise Associations:
Item i Item j p.value

1 1 5 0.565
2 1 4 0.208
3 3 5 0.113
4 2 4 0.059
5 1 2 0.028
6 2 5 0.009
7 1 3 0.003
8 4 5 0.002
9 3 4 7e-04
10 2 3 4e-04

The output of descript() contains among others the χ2 p-values for pairwise associations
between the five items, corresponding to the 2 × 2 contingency tables for all possible pairs.
Inspection of non significant results can be used to reveal ‘problematic’ items1. In addition,
for the LSAT data we observe that item 1 seems to be the easiest one having the highest
proportion of correct responses, while only three pairs of items seem to have low degree of
association.

We initially fit the original form of the Rasch models that assumes known discrimination
parameter fixed at one. The version of the Rasch model fitted by rasch() in ltm assumes
equal discrimination parameters across items but by default estimates its value, i.e., for p
items α1 = . . . = αp = α. In order to impose the constraint α = 1, the constraint argument
is used. This argument accepts a two-column matrix where the first column denotes the
parameter and the second column indicates the value at which the corresponding parameter
should be fixed. Parameters are fixed under the additive parameterization λi0 + λzm; for
instance, for p items the numbers 1, . . . , p, in the first column of constraint, correspond to
parameters λ10, . . . λp0, and the number p + 1 to the discrimination parameter λ.2 Thus, for
the LSAT data-set we fix the discrimination parameter at one by:

R> fit1 <- rasch(LSAT, constraint = cbind(length(LSAT) + 1, 1))

R> summary(fit1)

1Latent variable models assume that the high associations between items can be explained by a set of
latent variables. Thus, for pairs of items that do not reject independence we could say that they violate this
assumption.

2Note that under both parameterizations, the discrimination parameter coincides, i.e., λ ≡ α.
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Call:
rasch(data = LSAT, constraint = cbind(length(LSAT) + 1, 1))

Model Summary:
log.Lik AIC BIC

-2473.054 4956.108 4980.646

Coefficients:
value std.err z.vals

Dffclt.It1 -2.8720 0.1287 -22.3066
Dffclt.It2 -1.0630 0.0821 -12.9458
Dffclt.It3 -0.2576 0.0766 -3.3635
Dffclt.It4 -1.3881 0.0865 -16.0478
Dffclt.It5 -2.2188 0.1048 -21.1660
Dscrmn 1.0000 NA NA

Integration:
method: Gauss-Hermite
quadrature points: 21

Optimization:
Convergence: 0
max(|grad|): 6.3e-05
quasi-Newton: BFGS

The results of the descriptive analysis are also validated by the model fit, where items 3
and 1 are the most difficult and the easiest, respectively. The parameter estimates can be
transformed to probability estimates using the coef() method:

R> coef(fit1, prob = TRUE, order = TRUE)

Dffclt Dscrmn P(x=1|z=0)
Item 1 -2.872 1 0.946
Item 5 -2.219 1 0.902
Item 4 -1.388 1 0.800
Item 2 -1.063 1 0.743
Item 3 -0.258 1 0.564

The column P(x=1|z=0) corresponds to P (xi = 1 | z = 0) under (2), and denotes the
probability of a positive response to the ith item for the average individual. The order
argument can be used to sort the items according to the difficulty estimates.

In order to check the fit of the model to the data, the GoF.rasch() and margins() functions
are used. The GoF.rasch() function performs a parametric Bootstrap goodness-of-fit test
using Pearson’s χ2 statistic. In particular, the null hypothesis states that the observed data
have been generated under the Rasch model with parameter values the maximum likelihood
estimates θ̂. To test this hypothesis B samples are generated under the Rasch model using θ̂,
and the Pearson’s χ2 statistic Tb (b = 1, . . . , B) is computed for each data-set; the p-value is
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then approximated by the number of times Tb ≥ Tobs plus one, divided by B + 1, where Tobs

denotes the value of the statistic in the original data-set. For the LSAT data this procedure
yields:

R> GoF.rasch(fit1, B = 199)

Goodness-of-Fit using Pearson chi-squared

Call: rasch(data = LSAT, constraint = cbind(length(LSAT) + 1, 1))

Tobs: 30.6
# Bootstrap samples: 200
p-value: 0.235

Based on 200 data-sets, the non significant p-value suggests an acceptable fit of the model.
An alternative method to investigate the fit of the model is to examine the two- and three-way
χ2 residuals produced by the margins() method:

R> margins(fit1)

Call:
rasch(data = LSAT, constraint = cbind(length(LSAT) + 1, 1))

Fit on the Two-Way Margins

Response: (0,0)
Item i Item j Obs Exp (O-E)^2/E

1 2 4 81 98.69 3.17
2 1 5 12 18.45 2.25
3 3 5 67 80.04 2.12

Response: (1,0)
Item i Item j Obs Exp (O-E)^2/E

1 3 5 63 51.62 2.51
2 2 4 156 139.78 1.88
3 3 4 108 99.42 0.74

Response: (0,1)
Item i Item j Obs Exp (O-E)^2/E

1 2 4 210 193.47 1.41
2 2 3 135 125.07 0.79
3 1 4 53 47.24 0.70

Response: (1,1)
Item i Item j Obs Exp (O-E)^2/E

1 2 4 553 568.06 0.40
2 3 5 490 501.43 0.26
3 2 3 418 427.98 0.23
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These residuals are calculated by constructing all possible 2 × 2 contingency tables for the
available items and checking the model fit in each cell using the Pearson’s χ2 statistic. The
print() method for class margins returns the pairs or triplets of items with the three (this
number is controlled by the nprint argument) highest residual values for each combinations
of responses (i.e., for each cell of the contingency table). Using as a rule of thumb the value
3.5, we observe that the constrained version of the Rasch model provides a good fit to the
two-way margins. We continue by examining the fit to the three-way margins, which are
constructed analogously:

R> margins(fit1, type = "three-way", nprint = 2)

Call:
rasch(data = LSAT, constraint = cbind(length(LSAT) + 1, 1))

Fit on the Three-Way Margins

Response: (0,0,0)
Item i Item j Item k Obs Exp (O-E)^2/E

1 2 3 4 48 66.07 4.94 ***
2 1 3 5 6 13.58 4.23 ***

Response: (1,0,0)
Item i Item j Item k Obs Exp (O-E)^2/E

1 1 2 4 70 82.01 1.76
2 2 4 5 28 22.75 1.21

Response: (0,1,0)
Item i Item j Item k Obs Exp (O-E)^2/E

1 1 2 5 3 7.73 2.90
2 3 4 5 37 45.58 1.61

Response: (1,1,0)
Item i Item j Item k Obs Exp (O-E)^2/E

1 3 4 5 48 36.91 3.33
2 1 2 4 144 126.35 2.47

Response: (0,0,1)
Item i Item j Item k Obs Exp (O-E)^2/E

1 1 3 5 41 34.58 1.19
2 2 4 5 64 72.26 0.94

Response: (1,0,1)
Item i Item j Item k Obs Exp (O-E)^2/E

1 1 2 4 190 174.87 1.31
2 1 2 3 126 114.66 1.12
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Response: (0,1,1)
Item i Item j Item k Obs Exp (O-E)^2/E

1 1 2 5 42 34.35 1.70
2 1 4 5 46 38.23 1.58

Response: (1,1,1)
Item i Item j Item k Obs Exp (O-E)^2/E

1 3 4 5 397 416.73 0.93
2 2 3 4 343 361.18 0.91

’***’ denotes a chi-squared residual greater than 3.5

The three-way margins suggest a problematic fit for two triplets of items, both containing
item 3.

We shall continue by fitting the unconstrained version of the Rasch model, which can be done
by calling rasch() without specifying the constraint argument:

R> fit2 <- rasch(LSAT)

R> summary(fit2)

Call:
rasch(data = LSAT)

Model Summary:
log.Lik AIC BIC

-2466.938 4945.875 4975.322

Coefficients:
value std.err z.vals

Dffclt.It1 -3.6153 0.3266 -11.0680
Dffclt.It2 -1.3224 0.1422 -9.3009
Dffclt.It3 -0.3176 0.0977 -3.2518
Dffclt.It4 -1.7301 0.1691 -10.2290
Dffclt.It5 -2.7802 0.2510 -11.0743
Dscrmn 0.7551 0.0694 10.8757

Integration:
method: Gauss-Hermite
quadrature points: 21

Optimization:
Convergence: 0
max(|grad|): 2.5e-05
quasi-Newton: BFGS

The output suggests that the discrimination parameter is different from 1. This can be
formally tested via a likelihood ratio test using anova():
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R> anova(fit1, fit2)

Likelihood Ratio Table
AIC BIC log.Lik LRT df p.value

fit1 4956.11 4980.65 -2473.05
fit2 4945.88 4975.32 -2466.94 12.23 1 <0.001

The LRT verifies that the unconstrained version of the Rasch model is more suitable for the
LSAT data. The definitions of AIC and BIC used by the summary() and anova() methods in
ltm are such that “smaller is better”. The same conclusion is also supported by examining the
fit of the unconstrained model to the three-way margins in which all residuals have acceptable
values:

R> margins(fit2, type = "three-way", nprint = 2)

Call:
rasch(data = LSAT)

Fit on the Three-Way Margins

Response: (0,0,0)
Item i Item j Item k Obs Exp (O-E)^2/E

1 1 3 5 6 9.40 1.23
2 3 4 5 30 25.85 0.67

Response: (1,0,0)
Item i Item j Item k Obs Exp (O-E)^2/E

1 2 4 5 28 22.75 1.21
2 2 3 4 81 74.44 0.58

Response: (0,1,0)
Item i Item j Item k Obs Exp (O-E)^2/E

1 1 2 5 3 7.58 2.76
2 1 3 4 5 9.21 1.92

Response: (1,1,0)
Item i Item j Item k Obs Exp (O-E)^2/E

1 2 4 5 51 57.49 0.73
2 3 4 5 48 42.75 0.64

Response: (0,0,1)
Item i Item j Item k Obs Exp (O-E)^2/E

1 1 3 5 41 33.07 1.90
2 2 3 4 108 101.28 0.45
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Response: (1,0,1)
Item i Item j Item k Obs Exp (O-E)^2/E

1 2 3 4 210 218.91 0.36
2 1 2 4 190 185.56 0.11

Response: (0,1,1)
Item i Item j Item k Obs Exp (O-E)^2/E

1 1 3 5 23 28.38 1.02
2 1 4 5 46 42.51 0.29

Response: (1,1,1)
Item i Item j Item k Obs Exp (O-E)^2/E

1 1 2 4 520 526.36 0.08
2 1 2 3 398 393.30 0.06

Finally, we investigate two possible extensions of the unconstrained Rasch model. First, we
test if the two-parameter logistic model, which assumes a different discrimination parameter
per item, provides a better fit than the unconstrained Rasch model. The two-parameter
logistic model can be fitted using ltm(). In particular, ltm() accepts as first argument an
R formula, in which its left-hand side must be the data.frame or matrix of dichotomous
responses and the right-hand side specifies the latent structure. For the latent structure, up
to two latent variables are allowed with code names z1 and z2. The two-parameter logistic
model for the LSAT data can be fitted and compared with the unconstrained Rasch model
as follows:

R> fit3 <- ltm(LSAT ~ z1)

R> anova(fit2, fit3)

Likelihood Ratio Table
AIC BIC log.Lik LRT df p.value

fit2 4945.88 4975.32 -2466.94
fit3 4953.31 5002.38 -2466.65 0.57 4 0.967

Second, we test whether incorporating a guessing parameter to the unconstrained Rasch model
improves the fit. This extension can be fitted using tpm(), which has syntax very similar to
rasch() and allows one to fit either a Rasch model with a guessing parameter or the three-
parameter model as described in Section 2.1. To fit the unconstrained Rasch model with a
guessing parameter the type argument needs to be specified as

R> fit4 <- tpm(LSAT, type = "rasch", max.guessing = 1)

R> anova(fit2, fit4)

Likelihood Ratio Table
AIC BIC log.Lik LRT df p.value

fit2 4945.88 4975.32 -2466.94
fit4 4955.46 5009.45 -2466.73 0.41 5 0.995
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Figure 1: Item Characteristic, Item Information and Test Information Curves for the LSAT
data-set under the unconstrained Rasch model.

The max.guessing argument specifies the upper bound for the guessing parameters. For
both extensions the data clearly suggest that they are not required. The same conclusion
is supported by the AIC and BIC values as well. Adopting the unconstrained Rasch model
as the more appropriate for the LSAT data, we produce the Item Characteristic, the Item
Information and the Test Information Curves, by appropriate calls to the plot() method for
class rasch. All the plots are combined in Figure 1. The R code used to produce this figure can
be found in Appendix A. The utility function information(), used in the figure, computes the
area under the Test or Item Information Curves in a specified interval. According to the Test
Information Curve we observe that the items asked in LSAT mainly provide information for
respondents with low ability. In particular, the amount of test information for ability levels
in the interval (−4, 0) is almost 60%, whereas the item that seems to distinguish between
respondents with higher ability levels is the third one.

Finally, the ability estimates can be obtained using the factor.scores() function (for more
details regarding factor scores estimation see Section 4):

R> factor.scores(fit2)

Call:
rasch(data = LSAT)
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Scoring Method: Empirical Bayes

Factor-Scores for observed response patterns:
Item 1 Item 2 Item 3 Item 4 Item 5 Obs Exp z1 se.z1

1 0 0 0 0 0 3 2.364 -1.910 0.790
2 0 0 0 0 1 6 5.468 -1.439 0.793
3 0 0 0 1 0 2 2.474 -1.439 0.793
4 0 0 0 1 1 11 8.249 -0.959 0.801
5 0 0 1 0 0 1 0.852 -1.439 0.793
6 0 0 1 0 1 1 2.839 -0.959 0.801
7 0 0 1 1 0 3 1.285 -0.959 0.801
8 0 0 1 1 1 4 6.222 -0.466 0.816
9 0 1 0 0 0 1 1.819 -1.439 0.793
10 0 1 0 0 1 8 6.063 -0.959 0.801
11 0 1 0 1 1 16 13.288 -0.466 0.816
12 0 1 1 0 1 3 4.574 -0.466 0.816
13 0 1 1 1 0 2 2.070 -0.466 0.816
14 0 1 1 1 1 15 14.749 0.049 0.836
15 1 0 0 0 0 10 10.273 -1.439 0.793
16 1 0 0 0 1 29 34.249 -0.959 0.801
17 1 0 0 1 0 14 15.498 -0.959 0.801
18 1 0 0 1 1 81 75.060 -0.466 0.816
19 1 0 1 0 0 3 5.334 -0.959 0.801
20 1 0 1 0 1 28 25.834 -0.466 0.816
21 1 0 1 1 0 15 11.690 -0.466 0.816
22 1 0 1 1 1 80 83.310 0.049 0.836
23 1 1 0 0 0 16 11.391 -0.959 0.801
24 1 1 0 0 1 56 55.171 -0.466 0.816
25 1 1 0 1 0 21 24.965 -0.466 0.816
26 1 1 0 1 1 173 177.918 0.049 0.836
27 1 1 1 0 0 11 8.592 -0.466 0.816
28 1 1 1 0 1 61 61.235 0.049 0.836
29 1 1 1 1 0 28 27.709 0.049 0.836
30 1 1 1 1 1 298 295.767 0.593 0.862

By default factor.scores() produces ability estimates for the observed response patterns;
if ability estimates are required for non observed or specific response patterns, these could be
specified using the resp.patterns argument, for instance:

R> factor.scores(fit2, resp.patterns = rbind(c(0,1,1,0,0), c(0,1,0,1,0)))

Call:
rasch(data = LSAT)

Scoring Method: Empirical Bayes
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Factor-Scores for specified response patterns:
Item 1 Item 2 Item 3 Item 4 Item 5 Obs Exp z1 se.z1

1 0 1 1 0 0 0 0.944 -0.959 0.801
2 0 1 0 1 0 0 2.744 -0.959 0.801

3.2. An example with ordinal data

The data we consider here come from the Environment section of the 1990 British Social
Attitudes Survey (Brook, Taylor, and Prior 1991; Bartholomew et al. 2002). The data frame
Environment available in ltm contains the responses of 291 individuals asked about their
opinion on six environmental issues. The response options were “very concerned”, “slightly
concerned” and “not very concerned,” thus giving rise to six ordinal items.

As for the LSAT data, the descript() function can be used to produce descriptive statistics
for the Environment data-set (output not shown). We can observe that for all six items
the first response level has the highest frequency, followed by the second and third levels.
The p-values for the pairwise associations indicate significant associations between all items.
An alternative method to explore the degree of association between pairs of items is the
computation of a nonparametric correlation coefficient. The rcor.test() function provides
this option:

R> rcor.test(Environment, method = "kendall")

LeadPetrol RiverSea RadioWaste AirPollution Chemicals Nuclear
LeadPetrol **** 0.385 0.260 0.457 0.305 0.279
RiverSea < 0.001 **** 0.399 0.548 0.403 0.320
RadioWaste < 0.001 < 0.001 **** 0.506 0.623 0.484
AirPollution < 0.001 < 0.001 < 0.001 **** 0.504 0.382
Chemicals < 0.001 < 0.001 < 0.001 < 0.001 **** 0.463
Nuclear < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 ****

upper diagonal part contains correlation coefficient estimates
lower diagonal part contains corresponding p-values

The implementation of rcor.test() is based on the cor() function of package stats and
thus it provides two options for nonparametric correlation coefficients, namely Kendall’s tau
and Spearman’s rho, controlled by the method argument. The print() method for class
rcor.test returns a square matrix in which the upper diagonal part contains the estimates
of the correlation coefficients, and the lower diagonal part contains the corresponding p-values.

Initially, we fit the constrained version of the GRM that assumes equal discrimination pa-
rameters across items (i.e., αi = α for all i in (4)). This model could be considered as the
equivalent of the Rasch model for ordinal data. The constrained GRM is fitted by grm() as
follows:

R> fit1 <- grm(Environment, constrained = TRUE)

R> fit1
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Call:
grm(data = Environment, constrained = TRUE)

Coefficients:
Extrmt1 Extrmt2 Dscrmn

LeadPetrol 0.388 1.966 2.233
RiverSea 1.047 2.533 2.233
RadioWaste 0.820 1.975 2.233
AirPollution 0.475 2.420 2.233
Chemicals 0.844 2.025 2.233
Nuclear 0.056 1.251 2.233

Log.Lik: -1106.334

A more detailed output can be produced using the summary() method. This contains the AIC
and BIC values, and extra information for the optimization procedure, as in the summary()
method for rasch objects. If standard errors for the parameter estimates are required, these
could be obtained by specifying Hessian = TRUE in the call to grm().

The fit of the model can be checked using the margins() method for class grm. The two-way
margins are obtained by:

R> margins(fit1)

Call:
grm(data = Environment, constrained = TRUE)

Fit on the Two-Way Margins

LeadPetrol RiverSea RadioWaste AirPollution Chemicals Nuclear
LeadPetrol - 9.82 10.12 5.05 7.84 17.10
RiverSea - 5.03 16.51 2.55 7.17
RadioWaste - 6.50 20.37 11.74
AirPollution - 4.35 4.58
Chemicals - 3.68
Nuclear -

The output includes a square matrix in which the upper diagonal part contains the residuals,
and the lower diagonal part indicates the pairs for which the residuals exceed the threshold
value. Analogously, the three-way margins are produced by:

R> margins(fit1, type = "three")

Call:
grm(data = Environment, constrained = TRUE)



Journal of Statistical Software 17

Fit on the Three-Way Margins

Item i Item j Item k (O-E)^2/E
1 1 2 3 28.34
2 1 2 4 33.36
3 1 2 5 29.59
4 1 2 6 42.48
5 1 3 4 32.46
6 1 3 5 66.27
7 1 3 6 64.81
8 1 4 5 25.10
9 1 4 6 34.45
10 1 5 6 39.31
11 2 3 4 28.79
12 2 3 5 37.33
13 2 3 6 32.07
14 2 4 5 26.28
15 2 4 6 36.16
16 2 5 6 19.22
17 3 4 5 38.63
18 3 4 6 26.33
19 3 5 6 39.08
20 4 5 6 22.00

Both the two- and three-way residuals show a good fit of the constrained model to the data.
However, checking the fit of the model in the margins does not correspond to an overall
goodness-of-fit test, thus the unconstrained GRM will be fitted as well:

R> fit2 <- grm(Environment)

R> fit2

Call:
grm(data = Environment)

Coefficients:
Extrmt1 Extrmt2 Dscrmn

LeadPetrol 0.463 2.535 1.393
RiverSea 1.017 2.421 2.440
RadioWaste 0.755 1.747 3.157
AirPollution 0.440 2.131 3.141
Chemicals 0.788 1.835 2.900
Nuclear 0.054 1.378 1.811

Log.Lik: -1091.232

In order to check if the unconstrained GRM provides a better fit than the constrained GRM,
a likelihood ratio test is used:
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Figure 2: Item Characteristic Curves for the first 4 items, for the Environment data-set under
the unconstrained GRM model.

R> anova(fit1, fit2)

Likelihood Ratio Table
AIC BIC log.Lik LRT df p.value

fit1 2238.67 2286.42 -1106.33
fit2 2218.46 2284.58 -1091.23 30.21 5 <0.001

The LRT indicates that the unconstrained GRM is preferable for the Environment data.

The fitted unconstrained GRM is illustrated in Figures 2 and 3. The R code used to produce
these figures can be found in Appendix A. >From the Item Response Category Characteristic
Curves we observe that there is low probability of endorsing the first option, “very concerned”,
for relatively high latent trait levels. This indicates that the questions asked are not considered
as major environmental issues by the subjects interviewed. The same conclusion is also
reached by the Test Information Curve from which we can observe that the set of six questions
provides 89% of the total information for high latent trait levels. Finally, the Item Information
Curves indicate that items LeadPetrol and Nuclear provide little information in the whole
latent trait continuum. In order to check this numerically the information() function is
used:

R> information(fit2, c(-4, 4))
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Figure 3: Item Characteristic for the last 2 items, Item Information and Test Information
Curves for the Environment data-set under the unconstrained GRM model.

Call:
grm(data = Environment)

Total Information = 26.91
Information in (-4, 4) = 26.66 (99.08%)
Based on all the items

R> information(fit2, c(-4, 4), items = c(1, 6))

Call:
grm(data = Environment)

Total Information = 5.48
Information in (-4, 4) = 5.3 (96.72%)
Based on items 1, 6

We observe that these two items provide only the 20.36% (i.e., 100 × 5.48/26.91) of the
total information, and thus they could probably be excluded from a similar future study.
Finally, a useful comparison between items can be achieved by plotting the ICCs for each
category separately. For the Environment data this comparison is depicted in Figure 4;
the required commands can be found in Appendix A. An interesting feature of Figure 4
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Figure 4: Item Characteristic Curves for each category separately for the Environment data-
set under the unconstrained GRM model.

is that items RadioWaste and Chemicals have nearly identical characteristic curves for all
categories, indicating that these two items are probably regarded to have the same effect on
the environment.

4. Extra features of ltm and future development plans

The R package ltm provides a flexible framework for basic IRT analyses that covers some of
the most common models for dichotomous and polytomous data. The main functions of the
package have already been presented, but there are some additional features that we discuss
here. These features mainly concern the function ltm(); in particular, ltm() fits latent
trait models with one or two latent variables, allowing also for the incorporation of nonlinear
terms between them as discussed in Rizopoulos and Moustaki (2006). This latter feature
might prove useful in situations in which correlation between the latent variables is plausible.
An example, that we briefly present here and for which such relationships provide reasonable
interpretations, is the data taken from a section of the 1990 Workplace Industrial Relation
Survey (WIRS) that deals with management/worker consultation in firms. The object WIRS
in ltm provides a subset of these data that consists of 1005 firms and concerns non-manual
workers. The aim of the survey was to investigate two types of consultation, namely formal
and informal, and thus the use of two latent variables seems well justified. However, the fit of
the two-factor model to the three-way margins is not successful, with some triplets of items
having high residual values. Here we extend the simple two-factor model and allow for an
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interaction between the two latent variables. The two-factor and the interaction models are
fitted by ltm() using the following commands:

R> fit1 <- ltm(WIRS ~ z1 + z2)

R> fit2 <- ltm(WIRS ~ z1 * z2)

R> anova(fit1, fit2)

Likelihood Ratio Table
AIC BIC log.Lik LRT df p.value

fit1 6719.08 6807.51 -3341.54
fit2 6634.42 6752.33 -3293.21 96.66 6 <0.001

The significant p-value suggests that this extension provides a better fit to the data than
the two-factor model. This is also supported by the fit to the three-way margins in which
all residuals have acceptable values. However, the inclusion of the interaction term not only
improves the fit but also has an intuitive interpretation. In particular, the parameter estimates
under the interaction model are

R> fit2

Call:
ltm(formula = WIRS ~ z1 * z2)

Coefficients:
(Intercept) z1 z2 z1:z2

Item 1 -1.097 0.271 -3.317 -1.160
Item 2 0.944 1.091 2.173 2.955
Item 3 -1.458 1.811 -0.314 0.543
Item 4 -1.465 1.116 0.556 0.269
Item 5 -1.083 2.133 -0.466 1.147
Item 6 -2.753 1.698 -0.935 1.072

Log.Lik: -3293.212

First, we should note that these estimates are under the additive parameterization (1). Sec-
ond, if we change the signs for both the second factor z2 and the interaction term z1:z2,
which is the same solution but rotated, we observe that the first factor has high factor loadings
for items three to six, which correspond to formal types of consultation, whereas the second
factor has high loading for the first item which corresponds to the mains type of informal
consultation. Item two has relatively high loadings for both factors implying that this item
is probably regarded as a general type of consultation. The interaction term estimates have,
for the majority of the items, a negative sign indicating that the more a firm uses one type
of consultation, the smaller the probability of using the other type is. Finally, we should
mention that latent trait models with nonlinear terms may lead to likelihood surfaces with
local maxima. Thus, it is is advisable to investigate sensitivity to starting values using the
"random" option in the start.val argument of ltm().



22 ltm: Latent Variable Modeling and Item Response Theory Analyses in R

A final feature that we will discuss here concerns the estimation of factor scores. Factor scores
are usually calculated as the mode of the posterior distribution for each sample unit

ẑm = arg max
z
{p(xm|zm; θ)p(zm)}. (6)

Function factor.scores() calculates these modes using optim(). Note that in (6) we typi-
cally replace the true parameter values θ by their maximum likelihood estimate θ̂. Thus, in
small samples we ignore the variability of plugging-in estimates instead of the true parameter
values. To take this into account, the factor.scores() function offers the option to compute
factor scores using a multiple imputation like approach (i.e., specified by the method argu-
ment), in which the uncertainty about the true parameter values is explicitly acknowledged;
more details can be found in Rizopoulos and Moustaki (2006). Moreover, factor.scores()
provides also the option, for ltm objects, to compute Component Scores as described in
Bartholomew et al. (2002, Section 7.5).

Package ltm is still under active development. Future plans include extra functions to fit IRT
models for ordinal (i.e., the partial credit and the rating scale models) and nominal manifest
variables.
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A. R code

All R code used in this paper is also available in a source code file v17i05.R together with
the paper. Additionally, the R commands used to produce the figures are provided in the
following. Figure 1 can be obtained via:

R> par(mfrow = c(2, 2))

R> plot(fit2, legend = TRUE, cx = "bottomright", lwd = 3,

+ cex.main = 1.5, cex.lab = 1.3, cex = 1.1)

R> plot(fit2, type = "IIC", annot = FALSE, lwd = 3, cex.main = 1.5,

+ cex.lab = 1.3)

R> plot(fit2, type = "IIC", items = 0, lwd = 3, cex.main = 1.5,

+ cex.lab = 1.3)

R> plot(0:1, 0:1, type = "n", ann = FALSE, axes = FALSE)

R> info1 <- information(fit2, c(-4, 0))

R> info2 <- information(fit2, c(0, 4))

R> text(0.5, 0.5, labels = paste("Total Information:", round(info1$InfoTotal, 3),

+ "\n\nInformation in (-4, 0):", round(info1$InfoRange, 3),

+ paste("(", round(100 * info1$PropRange, 2), "%)", sep = ""),

+ "\n\nInformation in (0, 4):", round(info2$InfoRange, 3),

+ paste("(", round(100 * info2$PropRange, 2), "%)", sep = "")), cex = 1.5)

The R commands used to produce Figures 2 and 3 are the following:

R> par(mfrow = c(2, 2))

R> plot(fit2, lwd = 2, cex = 1.2, legend = TRUE, cx = "left",

+ xlab = "Latent Trait", cex.main = 1.5, cex.lab = 1.3, cex.axis = 1.1)

R> plot(fit2, type = "IIC", lwd = 2, cex = 1.2, legend = TRUE, cx = "topleft",

+ xlab = "Latent Trait", cex.main = 1.5, cex.lab = 1.3, cex.axis = 1.1)

R> plot(fit2, type = "IIC", items = 0, lwd = 2, xlab = "Latent Trait",

+ cex.main = 1.5, cex.lab = 1.3, cex.axis = 1.1)

R> info1 <- information(fit2, c(-4, 0))

R> info2 <- information(fit2, c(0, 4))

R> text(-1.9, 8, labels = paste("Information in (-4, 0):",

+ paste(round(100 * info1$PropRange, 1), "%", sep = ""),

+ "\n\nInformation in (0, 4):",

+ paste(round(100 * info2$PropRange, 1), "%", sep = "")), cex = 1.2)

The R commands used to produce Figure 4 are the following:
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R> par(mfrow = c(2, 2))

R> plot(fit2, category = 1, lwd = 2, cex = 1.2, legend = TRUE, cx = -4.5,

+ cy = 0.85, xlab = "Latent Trait", cex.main = 1.5, cex.lab = 1.3,

+ cex.axis = 1.1)

R> for (ctg in 2:3) {

+ plot(fit2, category = ctg, lwd = 2, cex = 1.2, annot = FALSE,

+ xlab = "Latent Trait", cex.main = 1.5, cex.lab = 1.3,

+ cex.axis = 1.1)

+ }
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