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1 Introduction

In a substantial number of applications symmetric (elliptical) models, in par-
ticular the normal model, have been found to be restrictive and more realistic
models are needed. The main focus in the present work is when the random
quantities exhibits skewness. Recently, new alternative models have been de-
veloped with the goal of preserving the good properties of the elliptical models
and also to be more flexible to model more realistically a data set. These more
general models allow us to control the skewness and the kurtosis of the dis-
tribution and it includes the normal case as a special one. However, these
more flexible models increase the mathematical complexity. Computational
techniques can solve partially the problem, even though, some mathematical
calculation needs to be done in order to obtain accurate results.

The idea proposed by Azzalini (1985) in the context of the normal distribution,
introduce skewness in a symmetric distribution in the following way. If f and
g are symmetric probability density function (pdf) around zero and G is a
continuous cumulative distribution function (cdf) associated with g, then
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(1)

is a skew pdf for any λ ∈ R. Where µ ∈ R is a location parameter, σ > 0
is a scale parameter and λ is a skewness parameter. When λ = 0 we obtain
the symmetric location-scale pdf, 1

σ
f
(

x−µ
σ

)
. Different choices of the f and G

functions give us important special cases. For example, if f = φ and G = Φ,
the pdf and cdf of normal distribution respectively, we have the skew-normal
distribution which is denoted by SN(λ, µ, σ).

The elliptical model given by Kelker (1970) is another well known general-
ization of the normal model. This model has been studied, for example, by
Cambanis et al. (1981), Fang et al. (1990) and Arellano-Valle (1994). The el-
liptical model includes a vast variety of important distributions (the Student-t
distribution, double exponential, Pearson type II) and also has good proper-
ties, for example they are closed under marginalization and conditioning. The
symmetry of the normal model is preserved, but different kurtosis coefficient
are allowed.

Extension of the normal model connecting the two ideas, skewness and heavy
tails, have been studied by Branco and Dey (2001) and Genton and Loperfido
(2001). An interesting special case is the skew-t distribution, which could be
represented by a mixture of skew normal models.

In this paper we approach the problem of model comparison within skew-
elliptical families. In Section 2, we measure the sensitivity of the skewness
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parameter using the L1-distance between the symmetric and asymmetric mod-
els. Computation of the Bayes factor to examine asymmetry is presented in
Section 3. Also, in Section 4 we present simulation results for the skew-normal
and skew-t distributions. An application in Chilean’s stock markets is also
considered.

2 Sensitivity Analysis for the Skewness Parameter

In this section, we analyze the sensitivity of the skewness parameter on the
model given by (1), by measuring this sensitivity using the L1 distance between
the following models

M0 :
1

σ
f
(

x− µ

σ

)
(2)

M1 :
2

σ
f
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σ

)
G
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λ

x− µ

σ

)
,

where the factor 2G
(
λx−µ

σ

)
can be interpreted as the asymmetry degree.

Interesting questions are, for example: 1.How much different are M0 and M1?
2.Is it possible to obtain an expression as function of λ?

In Figure 1, we plot the skew normal pdf for three different values of λ.

x

λ = −2 λ = 5

λ = 0

Fig. 1. Skew-normal densities for λ = −2, λ = 0 and λ = 5.

3



Although, there are many ways to measure the distance between two pdf’s, we
use here the L1 distance because it has an easy and nice interpretation (see, for
example, Peng and Dey (1995), Weiss (1996) and Arellano-Valle et al. (2000)).
The L1 distance between two densities f1 and f2 is given by

L1 (f1, f2) =
1

2

∫
|f1 (x)− f2 (x)| dx = sup

A∈B
|P (A |f1 )− P (A |f2 )| ,

where B are the Borel’s sets and P (· |f ) denotes the probability measure
defined by the density f . Thus, L1 (f1, f2) is an upper bound on the differences
|P (A |f1 )− P (A |f2 )| for any set A. Also, the L1 distance is bounded and
takes values in [0, 1], where L1 (f1, f2) = 0 implies that f1 (x) = f2 (x) for all
x values, and L1 (f1, f2) = 1 indicates that the supports of the two densities
are disjoint, indicating maximal discrepancy. Generally, it is difficult to obtain
explicit expressions for the L1 distance, even in simple cases. However, in our
case, the following proposition provides an useful expression to compute and
understand this distance.

Proposition 1 For any µ and σ fixed, the L1 distance between M0 and M1,
specified in (2), is

L1(M0, M1) = Ef∗ [G (|λ|Z)]− 1

2
, (3)

where f ∗ (z) = 2f (z) I[0,+∞) (z) (f left truncated of zero).

PROOF. From (2) and by letting z = x−µ
σ

, we have

L1(M0, M1) =
∫

R

∣∣∣∣12 −G (λz)
∣∣∣∣ f (z) dz

=
∫ 0

−∞

∣∣∣∣12 −G (λz)
∣∣∣∣ f (z) dz +

∫ ∞

0

∣∣∣∣12 −G (λz)
∣∣∣∣ f (z) dz.

Now, by the symmetry of g, we notice that if z > 0 and λ > 0 or if z < 0 and
λ < 0, then

1

2
−G (λz) = −

∫ λz

0
g (u) du and

∣∣∣∣12 −G (λz)
∣∣∣∣ = ∫ λz

0
g (u) du.

On the other hand, if z < 0 and λ > 0 or if z > 0 and λ < 0, then

1

2
−G (λz) =

∫ 0

λz
g (u) du =

∫ −λz

0
g (u) du > 0.

Thus, if λ > 0, then
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L1(M0, M1) =
∫ 0

−∞

∫ −λz

0
g (u) duf (z) dz +

∫ ∞

0

∫ λz

0
g (u) duf (z) dz

= 2
∫ ∞

0

∫ λz

0
g (u) duf (z) dz = Ef∗ [G (λZ)]− 1

2
.

Similarly, if λ < 0, then

L1(M0, M1) = 2
∫ ∞

0

∫ −λz

0
g (u) duf (z) dz = Ef∗ [G (|λ|Z)]− 1

2
.

2

Note that L1 (M0, M1) = L1 (λ) does not depend on µ and σ.

Corollary 2 Given L1 as in (3), then

sup
λ

L1 (λ) =
1

2
.

PROOF. Since G is a cdf, follows that G (|λ| z) → 1 when |λ| → ∞. On
the other hand, Ef∗ [G (|λ|Z)] exist because 0 < G (x) < 1 for all x ∈ R.
Therefore

lim
|λ|→∞

Ef∗ [G (|λ|Z)] = Ef∗

[
lim
|λ|→∞

G (|λ|Z)

]
= 1.

2

The result in Corollary 2 implies that the biggest difference between the prob-
abilities from M0 and M1, assigned to any set A, is at most 1

2
. The next

examples show us some special cases where L1 distance can be obtained in a
closed form. In these examples we assume, without loss of generality, µ = 0
and σ = 1.

2.1 Some Examples

Example 3 (Uniform) Let f (x) = 1
2
I[−1,1] (x) and G (x) = x+1

2
I[−1,1] (x) +

I(1,+∞) (x), the pdf and the cdf of the uniform distribution U[−1,1], respectively.
Then, f ∗ (x) = I[0,1] (x), and for any λ > 0,

G (λx) =
λx + 1

2
I[−1,1] (λx) + I(1,+∞) (λx)

=
λx + 1

2
I[− 1

λ
, 1
λ ] (x) + I( 1

λ
,+∞) (x) .
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Therefore, after some computations we obtain

L1 (λ) =


1
2
− 1

4|λ| if |λ| > 1

|λ|
4

if |λ| ≤ 1.

The solid line in Figure 2 shows this function.

Example 4 (Double Exponential) Let f (x) = 1
2
e−|x|IR (x) and G (x) =

ex

2
I(−∞,0) (x) +

(
1− e−x

2

)
I[0,+∞) (x), the pdf and the cdf of the double expo-

nential distribution, respectively. Then, f ∗ (x) = e−xI[0,+∞) (x) and, for each
λ > 0 and x > 0 it follows that

G (λx) = 1− 1

2
e−λx.

Then,

L1 (λ) =
∫ ∞

0

(
1− 1

2
e−|λ|x

)
e−xdx− 1

2
=

|λ|
2 (|λ|+ 1)

.

The dashed line in the Figure 2 shows the function given above.

λ

L1(λ)

Fig. 2. L1-distance: solid line for the uniform and skew-uniform densities, and dashed
line for double exponential and skew-double-exponential densities.

Hereafter we will denote by φk (x− µ |Σ) and Φk (x− µ |Σ) the pdf and the
cdf of the Nk (µ,Σ) distribution, respectively. Moreover, when µ = 0 and
Σ = Ik we will denote these functions as φk (x) and Φk (x) , respectively.
Also, 11n will denote a vector with n ones.
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Example 5 (Normal) The L1 distance between the normal and skew-normal
distributions can be also computed. In fact, using (3) we have after some al-
gebraic manipulations that

Eφ∗ [φ(|λ|X)] = 2Φ2 (0 |Ω) , where Ω =

 1 |λ|

|λ| 1 + λ2


and φ∗ (x) = 2φ (x) I[0,+∞) (x) . Thus, using the well known result

Φ2 (0 |Ω) =
1

4
+

1

2π
arcsin

(
|λ|√

1 + λ2

)

(see Fang et al. (1990)), we have that

L1(λ) =
1

π
arcsin

(
|λ|√

1 + λ2

)
.

Also, since arcsin θ + arccos θ = π
2
, this L1 distance can be written as

L1(λ) =
1

2
− 1

π
arccos

(
|λ|√

1 + λ2

)
.

Extensions of the skew normal model are the skew elliptical models. An inter-
esting subclass of this family is given by representable skew elliptical distri-
butions, which are defined below, where the notation x⊥⊥ y means that x and
y are independent.

Definition 6 The random variable X|λ, µ, σ has a representable skew ellip-
tical distribution if its pdf can be written as

fX|λ,µ,σ (x) =
∫ ∞

0

2

σ
√

ω
φ

(
x− µ

σ
√

ω

)
Φ

(
λ

x− µ

σ
√

ω

)
dH (ω) ,

where H is the cdf of a non-negative random variable ω such that ω⊥⊥ (λ, µ, σ).

An equivalent definition is the following: X|λ, µ, σ is a representable skew
elliptical random variable if and only if there exists a non-negative random
variable random variable ω ∼ H, with ω⊥⊥ (λ, µ, σ) , such that X|λ, µ, σ, ω ∼
SN (λ, µ, σ

√
ω). Properties and examples of this distribution can be found in

Branco and Dey (2001). Now, using representable skew elliptical distributions,
(2) can be rewritten as
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M0 :
∫ ∞

0

1

σ
√

ω
φ

(
x− µ

σ
√

ω

)
dH (ω) (4)

M1 :
∫ ∞

0

2

σ
√

ω
φ

(
x− µ

σ
√

ω

)
Φ

(
λ

x− µ

σ
√

ω

)
dH (ω) .

In the next proposition we prove that the L1 distance between the models M0

and M1 considered in (4) is equal to the L1 distance between the normal and
skew-normal distributions (see Example 5).

Proposition 7 The L1 distance between the models M0 and M1 specified in
(4) is

L1(λ) =
1

π
arcsin

(
|λ|√

1 + λ2

)
.

PROOF. By letting z = x−µ
σ

, and making some calculations,

L1(M0, M1) = h1 (λ) + h2 (λ) ,

where

h1 (λ) =
∫ 0

−∞

∣∣∣∣∣
∫ ∞

0

[
1

2
− Φ

(
λ

z√
ω

)]
1√
ω

φ

(
z√
ω

)
dH (ω)

∣∣∣∣∣ dz

and

h2 (λ) =
∫ ∞

0

∣∣∣∣∣
∫ ∞

0

[
1

2
− Φ

(
λ

z√
ω

)]
1√
ω

φ

(
z√
ω

)
dH (ω)

∣∣∣∣∣ dz.

Now, If λ > 0 and z < 0 we have

1

2
− Φ

(
λ

z√
ω

)
= Φ

(
−λ

z√
ω

)
− 1

2
> 0.

Considering the following change of variable z = −
√

ωy, we have

h1 (λ) =
∫ ∞

0

[∫ ∞

0
Φ (λy) φ (y) dy − 1

4

]
dH (ω) .

For z > 0, 1
2
−Φ

(
λ z√

ω

)
< 0 and considering the change of variable z =

√
ωy,

we have

h2 (λ) =
∫ ∞

0

[∫ ∞

0
Φ (λy) φ (y) dy − 1

4

]
dH (ω) .

Therefore, for λ > 0, we have

L1(M0, M1) = Eφ∗ [Φ (λY )]− 1

2
,
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where φ∗ (x) = 2φ (x) I[0,+∞) (x).

Similarly, for λ < 0, we can show that

L1(M0, M1) = 2
∫ ∞

0

[∫ ∞

0
Φ (−λy) φ (y) dy − 1

4

]
dH (ω) = Eφ∗ [Φ (|λ|Y )]− 1

2
.

The proof follows from Example 5. 2

Although we obtained closed expressions for the L1 distance in a variety of
interesting cases, in other cases numerical methods are necessary to calculate
this distance. The following one is an example of this situation.

Example 8 (Student-t) Let f (x) = t1 (x− µ |σ, ν ), the pdf of the univari-
ate Student-t distribution with location parameter µ, scale parameter σ and ν
degree of freedom, and G (x) = T1 (x− µ |σ, ν ), the corresponding cdf. Assum-
ing that µ = 0 and σ = 1, then f ∗ (x) = 2t1 (x |ν ) I[0,+∞) (x). Using Equation
(3), we have

L1(λ) = Ef∗ [T1 ( |λ|X| ν)]− 1

2
= 2

∫ ∞

0
T1 ( |λ|x| ν) t1 (x |ν ) dx− 1

2
.

Note that in this case the skew-t pdf 2
σ
t1 (x− µ |σ, ν ) T1 (x− µ |σ, ν ) is not

representable according to Definition 6.

Figure 3 presents curves of L1(λ) for two groups of models. The solid line shows
the distance between N(0, 1) and SN(λ) densities. The dashed line shows the
L1 distance between the Cauchy distribution and 2t1 (x |ν ) T1 (λx |ν ) with
ν = 1. We calculated L1(λ), given in Example 8, using the S-PLUS integra-
tion function, which implements adaptive 15-point Gauss-Kronrod quadrature
based on the Fortran function dqage and dqagie from QUADPACK (Piessens
et al. (1983)) in NETLIB (Dongarra and Grosse (1987)).

In the next section we study the influence of λ on the posterior distribution
for the location-scale parameters.

2.2 L1-distance for Posterior Distribution of (µ, σ) under Skew-normal Model.

An important way to measure the sensitivity of the λ parameter is to con-
sider its effect on the posterior distribution of (µ, σ). With this objective in
mind, we give the following results to compute the posterior distributions by
adopting a normal-inverse-gamma prior distribution for (µ, σ2). Let denote
by π(µ, σ|λ = 0,x) the associated posterior distribution to the corresponding
symmetric model with λ = 0.
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λ

L1(λ)

Fig. 3. L1-distance: solid line for the normal and skew-normal densities, and dashed
line for Cauchy and skew-Cauchy densities.

Proposition 9 If X |λ, µ, σ ∼ SN(λ, µ, σ) then, under the prior assumptions

λ⊥⊥(µ, σ), µ|σ ∼ N
(
m, σ2

v

)
and σ−2 ∼ Ga (a, b), it follows that

π (µ, σ|λ,x) = k (µ, σ, λ,x)× π (µ, σ|λ = 0,x) ,

where

k (µ, σ, λ,x) =
Φn

(
λx−µ11n

σ

)
Tn

(
λ
√

n + 2ax−µ̂11n

r

∣∣∣Σ, n + 2a
) ,

with µ̂ = nx̄+mv
n+v

, r2 = ns2 + nv
n+v

(m− x̄)2 + 2b, s2 = n−1∑n
i=1 (xi − x̄)2 and

Tn(·|Σ, ν) is the cdf of the multivariate tn (0,Σ, ν) distribution with Σ =
In + λ2

v+n
11n11t

n and ν = n + 2a.

PROOF. See Appendix A. 2

In the following the notations µ and µ̂ will be used to indicate µ11n and µ̂11n,
respectively.

Corollary 10 Under conditions of Proposition 9 we have

π (µ|λ,x) = k1 (µ, λ,x)× π (µ|λ = 0,x)

π (σ|λ,x) = k2 (σ, λ,x)× π (σ|λ = 0,x) ,
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where

k1 (µ, λ,x) =
Tn

(
λ
√

n+2a+1√
r2+(n+v)(µ−µ̂)2

(x− µ)
∣∣∣∣ In, n + 2a + 1

)
Tn

(
λ
√

n + 2ax−µ̂
r

∣∣∣∣Σ, n + 2a
)

and

k2 (σ, λ,x) =
Φn

(
λx−µ̂

σ

∣∣∣∣Σ)
Tn

(
λ
√

n + 2ax−µ̂
r

∣∣∣∣Σ, n + 2a
) ,

with µ̂ and r2 defined as in Proposition 9.

The terms k (µ, σ, λ,x), k1 (µ, λ,x) and k2 (σ, λ,x) are the perturbation func-
tions, introduced by Kass et al. (1989) and Weiss (1996). These terms can
be interpreted as sensitivity factors because the sensitivity of the skewness
parameter depends only on them.

Note that these factors tend to one when n increases. In other words, for large
values of the sample size n, the two posterior distributions are similar. Also,
the previous proposition allows us to calculate the two conditional posterior
distributions, π (µ|σ, λ,x) and π (σ|µ, λ,x) which are necessary, for example,
in Gibbs sampler-type algorithms.

Proposition 9 enables us to calculate the L1 distance between the posterior
distributions π (µ, σ|λ = 0,x) and π (µ, σ|λ,x) , which is given by

L1(λ) =
1

2

∫ ∞

−∞

∫ ∞

0
|π (µ, σ|λ = 0,x)− π (µ, σ|λ,x)| dµdσ

=
1

2

∫ ∞

−∞

∫ ∞

0
|1− k (µ, σ, λ,x)|π (µ, σ|λ = 0,x) dµdσ

=
1

2
E [|1− k (M, S, λ,x)|] ,

where the expectation is taken under (M, S2), which has the normal-inverse-
gamma posterior distribution.

Now, using the results in Corollary 10, we have that the L1 distance between
π (µ|λ = 0,x) and π (µ|λ,x) is

L1(λ) =
1

2
E [|1− k1 (M, λ,x)|] ,
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where the expectation is taken under M ∼ t1
(
µ̂, r2

(n+v)(n+2a)
, n + 2a

)
. Simi-

larly, the L1 distance between π (σ|λ = 0,x) and π (σ|λ,x) is

L1(λ) =
1

2
E
[∣∣∣1− k2

(
S−1, λ,x

)∣∣∣] ,
where the expected value is taken assuming S2 ∼ Ga

(
n
2

+ a, r2

2

)
.

The results of Proposition 9 and Corollary 10 depend on the sensitivity factors
k (µ, σ, λ,x), k1 (µ, λ,x) and k2 (σ, λ,x). Therefore, these sensitivity factors
can be used to study the influence of the skewness parameter λ over the joint
and marginal posterior distributions of µ and σ. For example, Figures 4 and
5 show log

[
k̄2 (σ, λ,x)

]
, where k̄2 (σ, λ,x) is the average of k2 (σ, λ,x1) , . . .,

k2 (σ, λ,x50), and x1, . . . ,x50 are data sets with sample size 100 drawn from
the N (0, 1) distribution. The k2 (σ, λ,xj), j = 1, . . . , 50, were computed for λ
from 0 to 5 and σ from 0 to 10, both with step 0.25. Figure 4 shows the great
influence of the λ parameter.

lo
g
[ k̄

2
(σ

,λ
,x

)]

λσ

Fig. 4. Surface of log
[
k̄2 (σ, λ,x)

]
for generated data.

Note also that there are values of λ and σ for which the posterior distribution
of σ equals to π (σ|λ = 0,x). They arise for the k2 (σ, λ,x) = 1 contour line,
or equivalently, log [k2 (σ, λ,x)] = 0. Figure 5 shows several contour lines from

log
[
k̄2 (σ, λ,x)

]
.

3 Bayes Factor

In this section we consider the Bayes factor to perform model comparison.
Information about the Bayes factor can be found in Kass and Raftery (1995),
Lavine and Schervish (1999) and Berger and Pericchi (2001)). Liseo and Lop-
erfido (2002) used the Bayes factor by adopting reference priors to compare
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λ

σ

�
�

�
�

�
�

�
�

�/

log
[

k̄2 (σ, λ, x)
]

= 0

Fig. 5. Contour lines of log
[
k̄2 (σ, λ,x)

]
for generated data.

normal versus skew normal models. Here we study the Bayes factor using an
specific informative prior for the skewness parameter. In Section 3.1 we study
the Bayes factor under representable skew elliptical distribution.

We assume that the data set x = (x1, . . . , xn) comes from i.i.d. random sam-
ples given by the models M0 or M1 in (2). Then, the Bayes factor to compare
these models, in favor of the M0 (the symmetric model), is given by

BF =

∫
σ−n

[∏n
i=1 f

(
xi−µ

σ

)]
π (µ, σ) dµdσ

2n
∫

σ−n
[∏n

i=1 f
(

xi−µ
σ

)
G
(
λxi−µ

σ

)]
π (µ, σ, λ) dµdσdλ

, (5)

where π is the prior distribution adopted for the respective parameter. As we
may note from expression (5), a closed form of Bayes factor is not possible
to obtain in general. Also its numeric calculation is complex to implement.
However, when µ and σ are known, the Bayes factor have the following simple
expression

BFµ,σ =
1

2n
∫ [∏n

i=1 G
(
λxi−µ

σ

)]
π (λ) dλ

. (6)

Note that the integral associated to (6) can be computed as

∫ [
n∏

i=1

G
(
λ

xi − µ

σ

)]
π (λ) dλ = P

(
Z− Λ

x− µ

σ
≤ 0

)
, (7)

where Z = (Z1, . . . , Zn)⊥⊥Λ, with Z1, . . . , Zn
iid∼ G and Λ has prior pdf π (λ) .

Thus, for the particular case where G = Φ and π (λ) = φ (λ−m |v2 ) , we have
that

Z− Λ
x− µ

σ
∼ Nn

[
m

x− µ

σ
, In + (v/σ)2 (x− µ) (x− µ)t

]
,
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so that (6) reduces to

BFµ,σ =
[
2nΦn

(
−m

x− µ

σ

∣∣∣In + (v/σ)2 (x− µ) (x− µ)t
)]−1

.

From a practical point of view it is natural to consider the sign of the λ
parameter known, i.e., we know the direction of the skewness. In this case,
the comparison to be considered is an unilateral test for the parameter λ. For
example, if G = Φ and λ > 0 with λ2 ∼ Ga (a, b), we have, from (7) that

P
(
Z− Λ

x− µ

σ
≤ 0

)
=
∫ ∞

0
P
(
Z ≤ Λ

x− µ

σ

∣∣∣∣Λ = λ
)

π (λ) dλ

=
∫ ∞

0
Φn

(
λ
x− µ

σ

)
g
(
λ2 |a, b

)
dλ2

=
∫ ∞

0
Φn

(
x− µ

σ

∣∣∣∣λ−2In

)
g
(
λ2 |a, b

)
dλ2

=Tn

(
x− µ

σ

√
a

b

∣∣∣∣ In, 2a
)

,

where g (· |a, b) denotes the pdf of the Ga (a, b) distribution. Thus, (6) can be
written as

BFµ,σ =
1

2nTn

(
x−µ

σ

√
a
b

∣∣∣ In, 2a
) . (8)

A similar expression is obtained when λ < 0 and λ2 ∼ Ga (a, b).

In order to obtain numerical computation of (8) we can use the fact that the
Student-t distribution can be specified as a mixture of the normal distribution,
so that we can rewrite (8) as{∫ ∞

0

n∏
i=1

[
2Φ

(
xi − µ

σ

√
ωa

b

)]
g (ω |a, a) dω

}−1

. (9)

From expressions (6) and (8) we can note that the symmetric pdf σ−1f
(

xi−µ
σ

)
is not necessary.

3.1 Bayes Factor for Representable Skew Elliptical Distributions

In the later section we discussed the difficulties to obtain a general form for
the Bayes factor. Therefore, it is important to consider restrictions in the
functions f and G to make the calculations of (5) simpler and also to keep the
class of the asymmetric distributions general. The class of representable skew
elliptical distributions fulfills these requirements.
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Proposition 11 Let x = (x1, . . . , xn) be a random sample from a repre-

sentable skew elliptical distribution. If a priori µ|σ ∼ N
(
m, σ2

v

)
and σ−2 ∼

Ga (a, b), then the Bayes factor (5) is given by

BF (x) =

∫
···
∫

r−n−2a [(η + v)
∏n

i=1 ωi]
− 1

2 dH (ω1) · · · dH (ωn)

2
n
2
∫
···
∫

r−n−2a [(η + v)
∏n

i=1 ωi]
− 1

2 g (ω) dH (ω1) · · · dH (ωn)
.

where

g (ω) =
∫

Tn

(√
n + 2a

x− µ̂11n

r

∣∣∣∣∣0,Σ, n + 2a

)
π (λ) dλ,

Σ = 1
λ2D (ω) + 1

v+η
11n11t

n, D (ω) = diag (ω1, . . . , ωn), η =
∑n

i=1 ω−1
i , µ̂ =

η
η+v

(
∑n

i=1 νixi + vm), r2 = ηS2
ω+ ηv

η+v
(m−∑n

i=1 νixi)
2+2b, S2

ω =
∑n

i=1 νi

(
xi −

∑n
j=1 νjxj

)2

and νi = ωi

η
for each i = 1, . . . , n.

PROOF. See Appendix B. 2

Note that g is a mixture of Student-t distributions. In the special case where
ω1 = ω2 = · · · = ωn = 1, the result of Proposition 11 agrees with Liseo and
Loperfido (2002) result.

4 Simulation Results

In this section we perform a simulation study to describe the behavior of the
Bayes factor given by (6). In Subsection 4.1, we calculate the integral given
in (9) using the MATLAB integration function (quad) based on the recursive
adaptive Simpson quadrature method.

4.1 Normal Versus Skew-Normal Models

For each value of λ, λ = 0.0, 0.1, . . . , 0.5, we generated 1000 independent data
sets, y1, . . . , yn, from the pdf 2φ (y) Φ (λy) with n = 10, 50, 100. Then, for each
data set we calculated (8) by considering µ = 0, σ = 1 and λ > 0 with
λ2 ∼ Ga (1, b), where b = 0.1, 1, 5. Figure 6 shows the curves corresponding to
the three prior distributions for λ considered in this simulation study.

When λ2 ∼ Ga(a, b), the prior pdf for λ is given by

f (λ |a, b) =
2ba

Γ (a)

(
λ2
)a− 1

2 exp
(
−bλ2

)
,
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λ

π(λ)

Fig. 6. Prior distributions for λ: solid line for b = 0.1, dotted line for b = 1 and
dashed for b = 5.

with mean and variance given, respectively, by

E (λ) = sgn(λ)
Γ
(
a + 1

2

)
√

bΓ (a)
and V (λ) =

a

b
−

Γ2
(
a + 1

2

)
bΓ2 (a)

,

where sgn(λ) denote the sign assigned to the parameter λ. We note that the
prior variance of λ is always smaller than a

b
. Thus, if we want to have a big

prior variance, then we have to consider a much bigger than b. Therefore,
in this case the prior mean will be big also. The values for E (λ) and V (λ)
considered in this simulation study are presented in the Table 1.

Table 1
Mean and variance for prior distributions in simulation study.

b E (λ) V (λ) a
b

0.1 2.8 2.15 10

1 0.89 0.21 1

5 0.4 0.04 0.2

We computed the Bayes factor for each sample size n and values of λ specified
above. Here, we considered, as strong evidence in favor of the asymmetric
model if B̂F < 0.5, and in favor of the symmetric model if B̂F > 2. Table
2 displays, in Column 4 and 5, the percentage of the samples that presented
evidence in favor of the asymmetric and symmetric models, respectively; from
Column 6 to 8, the 25th percentile, median and 75th percentile of the Bayes
factor values, respectively.
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Table 2
Simulation results for Normal versus Skew-normal comparison.

b n λ B̂F < 0.5 B̂F > 2 25th p. Median 75th p.
0 4.4 89.4 8.4193 28.4309 66.0642

10 0.1 5.1 86.9 6.9357 21.2874 52.7914
0.3 14.0 72.3 1.6913 7.3060 24.1999
0.5 24.3 58.9 0.5541 3.5752 12.0782
0 0.5 98.4 60.5811 158.1004 319.9009

0.1 50 0.1 1.7 95.2 21.4082 67.7103 169.2791
0.3 12.4 72.4 1.6805 8.4769 38.5235
0.5 47.1 33.3 0.0636 0.6080 3.7100
0 0.2 99.3 121.7138 310.8615 643.1082

100 0.1 2.3 95.2 27.9092 103.7148 261.5884
0.3 25.8 56.9 0.4623 3.3920 18.7598
0.5 81.9 9.1 0.0016 0.0240 0.2455
0 10.4 68.5 1.4078 3.7729 7.8112

10 0.1 12.4 63.3 1.2134 2.9230 6.3771
0.3 28.1 37.5 0.4165 1.2357 3.2828
0.5 42.4 23.8 0.2186 0.7602 1.8649
0 2.1 91.5 6.9877 17.8707 36.4650

1 50 0.1 8.7 76.6 2.2403 7.7218 19.0447
0.3 38.5 36.8 0.2347 1.0252 3.6563
0.5 73.6 8.6 0.0130 0.1075 0.5436
0 1.1 96.5 13.2021 34.0111 76.7385

100 0.1 7.2 81.6 3.1714 9.8879 25.5317
0.3 53.5 27.1 0.0539 0.3897 2.3266
0.5 93.8 2 0.0002 0.0035 0.0342
0 11.8 38.0 0.8493 1.5772 2.5897

10 0.1 13.8 30.0 0.7558 1.3369 2.2663
0.3 33.2 12.5 0.4136 0.7660 1.4244
0.5 42.9 5.1 0.2952 0.5855 1.0312
0 7.2 73.0 1.8322 4.1703 7.7046

5 50 0.1 16.7 50.3 0.7710 2.0095 4.3708
0.3 56.5 14.9 0.1107 0.3736 1.2628
0.5 87.7 1.5 0.0110 0.0523 0.2118
0 4.3 83.0 3.0349 7.2055 14.2496

100 0.1 17.7 57.4 0.8089 2.6087 6.1743
0.3 72.4 7.0 0.0232 0.1234 0.5619
0.5 98.4 0.0 0.0002 0.0019 0.0136

Note that for each sample size, the B̂F decreases when the value of λ increases
and for λ = 0 tends to be quite big. This desired behavior is appreciated
better for higher sample sizes. In general, the calculated Bayes factors show
correct evidence when λ = 0 and when λ ≥ 0.4, and while the sample size
increases, this evidence improves. For λ ≥ 1, the Bayes factor values are almost
zero. As we have expected, we can see the strong dependence of the values of
Bayes factor from prior specification for small sample sizes. Similar results are
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obtained for negatives values of λ.

4.2 Student-t Versus Skew-Student-t Models

For each λ = 0.0, 0.1, . . . , 0.5, we generated 1000 independent data sets,
y1, . . . , yn, with n = 10, 50, 100, from the pdf 2t1 (y |ν ) T1 (λy |ν ). We consid-
ered ν = 1, 10, 20 and calculated (6) by considering λ > 0 with λ2 ∼ Ga (1, 1).
Thus, Equation (6) becomes in

BFµ,σ =
1

2n+1
∫

[
∏n

i=1 T1 (λyi |ν )] λ exp (−λ2) dλ
.

Table 3 exhibits the results of the performed simulations for each different
values of ν. Similar results to the normal case were obtained, highlighting
those better results obtained for small values of ν, as we have expected from
Figure 3. We note that, in this case as well as in the normal case, the BF has
a nice behavior for small values of λ.

5 An Application

In this section we use the result (8) in a real data set. The data set becomes
from the Chilean’s stock markets and it consists in the monthly rentability of
five Chilean companies measured between March, 1990 and April, 1999. The
sample size is n = 110 for each company. Table 4 presents some descriptive
statistics, including the skewness and the kurtosis. These descriptive statistics
were calculated using S-Plus software.

The Bayes factor under prior distribution λ2 ∼ Ga (1, 1) is presented for each
company in Table 5. We consider the λ sign known, λ > 0. It could be justified
because in this period the Chilean companies presented an affluent economy.

From Table 5, we can see the only data set in favor of the symmetry assumption
is the data from Iansa company. Also, the positive asymmetry is more evident
in the company Chilquinta following by company Cervezas.

6 Final Remarks

In this work we evaluate the sensitivity of the skewness parameter using the
L1-distance between the symmetric and asymmetric models. We also compute
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Table 3
Simulation results for Student versus Skew-student comparison.

ν n λ B̂F < 0.5 B̂F > 2 25th p. Median 75th p.
0 11.7 71.7 1.5312 6.0873 24.8469

10 0.1 26.0 48.0 0.4909 1.7623 5.1188
0.3 42.7 23.2 0.2176 0.6198 1.7899
0.5 60.8 14.5 0.1032 0.3198 0.9775
0 1.4 95.6 29.7884 133.4624 594.1999

1 50 0.1 29.4 49.9 0.3438 1.9686 8.9924
0.3 79.7 8.4 0.0049 0.0427 0.3417
0.5 93.4 2.4 0.0004 0.0041 0.0370
0 0.3 98.7 148.4 608.8 2737.9

100 0.1 41.9 38.2 0.1 0.8 6.2
0.3 94.9 2.8 0.0 0.0 0.0
0.5 99.6 0.0 0.0 0.0 0.0
0 10.3 69.3 1.5578 4.3809 9.2094

10 0.1 14.7 56.4 0.9371 2.5278 6.4705
0.3 29.2 38.7 0.4043 1.2866 3.3779
0.5 46.7 21.1 0.1758 0.5682 1.6956
0 2.6 91.2 7.0075 19.2956 43.3332

10 50 0.1 25.5 45.6 0.4844 1.6349 4.6176
0.3 41.5 33.0 0.1552 0.7937 3.2732
0.5 78.3 6.5 0.0078 0.0593 0.3789
0 2.1 94.7 15.2573 38.3028 87.9117

100 0.1 7.5 81.7 3.4485 11.4648 32.0435
0.3 58.3 19.0 0.0294 0.2585 1.3151
0.5 95.6 1.1 0.0002 0.0022 0.0241
0 9.2 67.2 1.3782 3.6613 8.6506

10 0.1 15.0 58.0 0.8423 2.6160 6.5973
0.3 27.4 36.1 0.4471 1.2501 3.1800
0.5 45.2 23.2 0.1925 0.6397 1.8215
0 2.3 92.1 6.7759 17.6408 37.4567

20 50 0.1 8.9 77.3 2.2818 7.9469 19.0925
0.3 39.3 36.8 0.1860 0.9700 3.3768
0.5 79.2 7.6 0.0079 0.0624 0.3695
0 0.8 95.3 14.8925 35.9162 76.7650

100 0.1 6.9 79.6 2.6278 10.5830 28.1940
0.3 53.9 24.1 0.0466 0.3766 1.9179
0.5 95.0 1.3 0.0002 0.0027 0.0332

the Bayes factor to test skewness and present simulation results for the skew-
normal and the skew-t distributions obtaining expected results.

In Section 2, we present two expressions for the L1 distance between poste-
rior distributions of µ and σ. In order to determine the sensitivity of the λ
parameter concerning these posterior distributions, the numeric calculation
would be most useful. Also, we showed that the L1 distance between repre-
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Table 4
Some descriptive statistics for the monthly rentability of five Chilean companies.

Company Mean s.d. Skewness Kurtosis
Cementos 0.01347727 0.13283164 1.33268186 3.31334209
Cervezas 0.02022545 0.11423326 0.51903086 0.66034736

Chilquinta 0.02778182 0.13638980 0.68802875 2.21338495
Copec 0.01201909 0.10339547 0.71021655 0.98810570
Iansa 0.0006200 0.1131153 0.3621623 0.2541416

Table 5
Bayes factors by company.

λ2 ∼ Ga (1, 1)
Company
Cementos
Cervezas

Chilquinta
Copec
Iansa

B̂F λ>0

0.6297
0.3033
0.1936
0.5601
1.3841

sentable skew elliptical distribution and representable elliptical distribution is
equal to the L1 distance between normal and skew normal distribution. On
the other hand, in Section 3, different prior conditions were assumed obtaining
different Bayes Factor expressions. Similar results could be obtained for other
prior conditions, for instance, we could assume that |λ| ∼ Ga (a, b) or λ ∼
Half-Normal.

In other directions we could study the computation of default Bayes factors for
testing skewness, for example by considering noninformative prior distribution
π (λ) in (6). A simple computation shows that if we consider an improper prior
distribution π (λ) ∝ 1, then

∫∞
−∞ [

∏n
i=1 G (λyi)]

b dλ diverge with 0 < b ≤ 1.
Therefore, the Intrinsic Bayes factor and Fractional Bayes factor can not be
calculated.

A Proof of Proposition 9

Since

π (µ, σ|λ,x)∝ 1

σn

n∏
i=1

φ
(

xi − µ

σ

)
Φ
(
λ

xi − µ

σ

)
π (µ|σ) π (σ)

∝ 1

σn+2(a+1)
φn

(
λ
x− µ11n

σ

)
Φn

(
λ
x− µ11n

σ

)
× exp

{
− 1

2σ2

[
v (µ−m)2 + 2b

]}
,
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we have, after some simple algebraic manipulations, that

π (µ, σ|λ,x) ∝ 1

σn+2(a+1)
exp

{
− r2

2σ2

}
φ

(√
n + v

µ− µ̂

σ

)
Φn

(
λ
x− µ11n

σ

)
,

where µ̂ = nx̄+mv
n+v

, r2 = ns2 + nv
n+v

(m− x̄)2 + 2b and s2 = n−1∑n
i=1 (xi − x̄)2.

The normalizing constant is

m (x) =
∫ ∞

0

1

σn+2a+1
exp

{
− r2

2σ2

}
h (σ) dσ,

where

h (σ) =
∫ ∞

−∞

1

σ
φ

(√
n + v

µ− µ̂

σ

)
Φn

(
λ
x− µ11n

σ

)
dµ.

The change of variable y =
√

n + v µ−µ̂
σ

implies

h (σ) =
1√

n + v

∫ ∞

−∞
φ(y)Φn

(
λ

(
x− µ̂11n

σ
− y11n√

n + v

))
dy

=
1√

n + v

∫ ∞

−∞
φ(y)P

(
U ≤ λ

(
x− µ̂11n

σ
− Y 11n√

n + v

)∣∣∣∣∣Y = y

)
dy

=
1√

n + v
P
(
U + λ

Y 11n√
n + v

≤ λ
x− µ̂11n

σ

)

where U ∼ Nn(0, In) and Y ∼ N(0, 1) are independent random quantities.
Since U + λ Y 11n√

n+v
∼ Nn (0,Σ) , where Σ = In + λ2

n+v
11n11t

n, then

h (σ) =
1√

n + v
Φn

(
λ
x− µ̂11n

σ

∣∣∣∣∣Σ
)

,

and so

m (x) =
1√

v + n

∫ ∞

0

1

σn+2a+1
exp

{
− r2

2σ2

}
Φn

(
λ
x− µ̂11n

σ

∣∣∣∣∣Σ
)

dσ.

Making now the change of variable s = r2

σ2 , we obtain
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m (x) =
1

2rn+2a
√

v + n

∫ ∞

0
s

n+2a
2
−1 exp

{
−s

2

}
Φn

(
λ
√

s
x− µ̂11n

r

∣∣∣∣∣Σ
)

ds

=
2

n+2a
2
−1Γ

(
n+2a

2

)
rn+2a

√
v + n

∫ ∞

0
g
(
s
∣∣∣∣n + 2a

2
,
1

2

)
P
(

1√
S

U ≤ λ
x− µ̂11n

r

∣∣∣∣∣S = s

)
ds

=
2

n+2a
2
−1Γ

(
n+2a

2

)
rn+2a

√
v + n

P

√n + 2a

S
U ≤ λ

√
n + 2a

x− µ̂11n

r


=

2
n+2a

2
−1Γ

(
n+2a

2

)
rn+2a

√
v + n

Tn

(
λ
√

n + 2a
x− µ̂11n

r

∣∣∣∣∣Σ, n + 2a

)

where g
(
s| n+2a

2
, 1

2

)
denotes the pdf of S ∼ Ga

(
n+2a

2
, 1

2

)
and is independent of

U ∼ Nn (0,Σ) , which implies that
√

n+2a
S

U ∼ Tn (0,Σ, n + 2a) . Therefore,

π (µ, σ|λ,x) =
rn+2a

√
v + n

2
n+2a

2
−1Γ

(
n+2a

2

) 1

σn+2(a+1)
exp

{
− r2

2σ2

}
φ

(√
n + v

µ− µ̂

σ

)

×
Φn

(
λx−µ11n

σ

)
Tn

(
λ
√

n + 2ax−µ̂11n

r

∣∣∣Σ, n + 2a
) .

But, for λ = 0 (the normal model), it is well know that

π (µ, σ|λ = 0,x) =
rn+2a

√
v + n

2
n+2a

2
−1Γ

(
n+2a

2

) 1

σn+2(a+1)
exp

{
− r2

2σ2

}
φ

(√
n + v

µ− µ̂

σ

)
,

which concludes the proof.

B Proof of Proposition 11

After some algebraic manipulations, the likelihood of M1 model is

f (x|λ, µ, σ, ω1, . . . , ωn) =
n∏

i=1

2

σ
√

ωi

φ

(
xi − µ

σ
√

ωi

)
Φ

(
λ

xi − µ

σ
√

ωi

)

=
(

2

πσ2

)n
2

|D (ω)|−
1
2 exp

(
− η

2σ2
S2

ω

)

exp

− η

2σ2

(
µ−

n∑
i=1

νixi

)2
Φn

(
λ

σ
[D (ω)]−

1
2 (x− µ11n)

)
,

where D (ω) = diag (ω1, . . . , ωn), η =
∑n

i=1 ω−1
i , S2

ω =
∑n

i=1 νix
2
i−(

∑n
i=1 νixi)

2 =∑n
i=1 νi

(
xi −

∑n
j=1 νjxj

)2
and νi = ωi

η
for each i = 1, . . . , n.
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Now, considering µ |σ ∼ N
(
m, σ2

v

)
, we obtain

f (x|λ, σ, ω) =
∫ ∞

−∞
f (x|λ, µ, σ,ω) φ

(
µ−m

∣∣∣∣∣σ2

v

)
dµ

=

√
2nv

(πσ2)n |D (ω)|−
1
2 h (λ, σ,ω)

exp

− η

2σ2

S2
ω +

v

η + v

(
m−

n∑
i=1

νixi

)2
 (B.1)

where

µ̂ =
η
∑n

i=1 νixi + vm

η + v

and

h (λ, σ, ω) =
∫ ∞

−∞

1

σ
φ

(
√

η + v
(µ− µ̂)

σ

)
Φn

(
λ

σ
[D (ω)]−

1
2 (x− µ11n)

)
dµ.

Making the change of variable y =
√

η + v (µ−µ̂)
σ

, we obtain

h (λ, σ,ω) =
1√

η + v

∫ ∞

−∞
Φn

(
λ [D (ω)]−

1
2

(
x− µ̂11n

σ
− y11n√

η + v

))
φ (y) dy

=
1√

η + v

∫ ∞

−∞
P
(

U ≤ λ [D (ω)]−
1
2

(
x− µ̂11n

σ
− Y 11n√

η + v

)∣∣∣∣∣Y = y

)
φ (y) dy

=
1√

η + v
P
(

1

λ
[D (ω)]

1
2 U+

Y 11n√
η + v

≤ x− µ̂11n

σ

)
,

where U ∼ Nn (0, In) and Y ∼ N (0, 1) are independent random quantities.

Since 1
λ

[D (ω)]
1
2 U+ Y 11n√

η+v
∼ Nn (0,Σ), where Σ =λ−2D (ω) + 1

v+η
11n11t

n, then

h (λ, σ, ω) =
1√

η + v
Φn

(
x− µ̂11n

σ

∣∣∣∣∣0,Σ

)
.

Replacing h (λ, σ,ω) in (B.1) we obtain

f (x|λ, σ, ω) =

√√√√ 2nv |D (ω)|−1

(η + v) (πσ2)nΦn

(
x− µ̂11n

σ

∣∣∣∣∣0,Σ

)

exp

− η

2σ2

S2
ω +

v

η + v

(
m−

n∑
i=1

νixi

)2
 .
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Then, since σ−2 ∼ Ga (a, b), one obtains

f (x|λ, ω) =
2ba

Γ (a)

√√√√2nv |D (ω)|−1

πn (v + η)∫ ∞

0
σ−n−1−2a exp

(
− r2

2σ2

)
Φn

(
x− µ̂11n

σ

∣∣∣∣∣0,Σ

)
dσ,

where r2 = ηS2
ω + ηv

η+v
(m−∑n

i=1 νixi)
2 + 2b.

A change of variable s = r2/σ2, allows us to write

f (x|λ, ω) =
ba

rn+2aΓ (a)

√√√√2nv |D (ω)|−1

πn (v + η)∫ ∞

0
s

n
2
+a−1 exp

(
−s

2

)
Φn

(√
s (x− µ̂11n)

r

∣∣∣∣∣0,Σ

)
ds

=
2n+abaΓ

(
n
2

+ a
)

rn+2aΓ (a)

√√√√v |D (ω)|−1

πn (v + η)∫ ∞

0
P
(

1√
S

U ≤ x− µ̂11n

r

∣∣∣∣∣S = s

)
g
(
s
∣∣∣∣n2 + a,

1

2

)
ds

=
2n+abaΓ

(
n
2

+ a
)

rn+2aΓ (a)

√√√√v |D (ω)|−1

πn (v + η)

P

√n + 2a

S
U ≤

√
n + 2a

x− µ̂11n

r

∣∣∣∣∣S = s


=

2n+abaΓ
(

n
2

+ a
)

rn+2aΓ (a)

√√√√v |D (ω)|−1

πn (v + η)

Tn

(√
n + 2a

x− µ̂11n

r

∣∣∣∣∣0,Σ, n + 2a

)
,

where g
(
s
∣∣∣n
2

+ a, 1
2

)
denotes the pdf of S ∼ Ga

(
n
2

+ a, 1
2

)
and is independent

of U ∼ Nn (0,Σ), which implies that
√

n+2a
S

U ∼ Tn (0,Σ, n + 2a).

In a similar way, for the M0 model we obtain

f (x|ω) =
2

n
2
+abaΓ

(
n
2

+ a
)

rn+2aΓ (a)

√√√√v |D (ω)|−1

πn (v + η)
.

Therefore, the Bayes factor is
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BF (x) =

∫
···
∫

f (x|ω) dH (ω1) · · · dH (ωn)∫
[
∫
···
∫

f (x|λ, ω) dH (ω1) · · · dH (ωn)] π (λ) dλ

=

∫
···
∫

r−n−2a [(η + v)
∏n

i=1 ωi]
− 1

2 dH (ω1) · · · dH (ωn)

2
n
2
∫
···
∫

r−n−2a [(η + v)
∏n

i=1 ωi]
− 1

2 g (ω) dH (ω1) · · · dH (ωn)
,

where

g (ω) =
∫

Tn

(√
n + 2a

x− µ̂11n

r

∣∣∣∣∣0,Σ, n + 2a

)
π (λ) dλ.
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