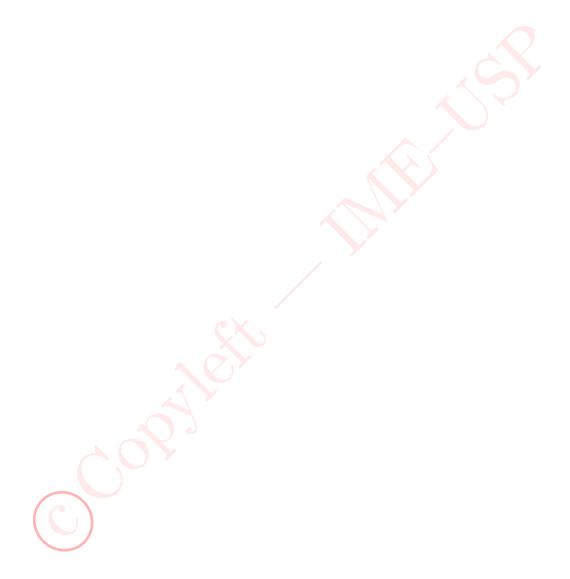
CATALOG

MAT–2454 — Cálculo Diferencial e Integral II — EP–USP ${\sf Segunda\ Prova} = 15/10/2018$

Identificação

Nor	me: NUSP: Turma:
	Instruções
1.	Não é permitido portar celular (mesmo desligado) durante o exame . Sobre a carteira deixe apenas lápis, borracha, caneta e um documento de identificação com foto. Carteiras, mochilas e blusas devem permancer à frente da sala, juntamente com os celulares (não custa repetir) e demais aparelhos eletrônicos, que devem estar desligados .
2.	Preencha à tinta, e de maneira legível, todos os campos acima.
3.	Esta prova tem duração máxima de 2 horas. A entrega da prova e saída da sala só é permitida após 10h40min.
4.	As questões dissertativas podem ser feitas à tinta (azul ou preta) ou à lápis.
5.	Utilize, se necessário, as páginas seguintes (exceto a última) para rascunho. Só será considerado na correção das questões dissertativas o que estiver na folha com seu enunciado.
6.	Mantenha a organização, limpeza e legibilidade na redação das questões dissertativas, justificando todas as suas afirmações .
7.	Preencha, à tinta e completamente, os campos para seu número USP (deixando as primeiras colunas em branco, caso tenha menos de 8 dígitos), número da turma (de matrícula nesta disciplina) e para as alternativas de cada teste. Evite erros nesse momento .
8.	Assinale apenas uma alternativa por questão. Em caso de erro, assinale também a alternativa que julgar correta e indique expressamente qual delas deve ser considerada na própria folha de respostas, ao lado da questão correspondente.
9.	Não haverá tempo adicional para transcrição das alternativas dos testes para a folha de respostas.
10.	Não destaque nenhuma folha de sua prova.
	Assinatura:

BOA PROVA!



Teste 1 [afirms1] Considere as seguintes afirmações

- I. Se f(x,y) é diferenciável em \mathbb{R}^2 e tal que $\frac{\partial f}{\partial x}(1,-3) < 0$ e $\frac{\partial f}{\partial y}(1,-3) < 0$, então $\frac{\partial f}{\partial \vec{u}}(1,-3) < 0$ para todo vetor unitário $\vec{u} \in \mathbb{R}^2$.
- II. Existe uma função diferenciável f(x,y) em \mathbb{R}^2 tal que o plano tangente ao gráfico de f no ponto (1,2,0) é z=x+2y-5
- III. Existe uma função f(x,y) de classe C^2 tal que $\frac{\partial f}{\partial x}(x,y) = x + 3$ e $\frac{\partial f}{\partial y}(x,y) = 5x y$.
- IV. Seja f(x,y) diferenciável em \mathbb{R}^2 e considere os vetores unitários $\vec{u}=\left(\frac{1}{2},\sqrt{3}/2\right)$ e $\vec{v}=\left(-\sqrt{3}/2,\frac{1}{2}\right)$. Então para todo $(x,y)\in\mathbb{R}^2$, $\nabla f(x,y)=\frac{\partial f}{\partial \vec{u}}\vec{u}+\frac{\partial f}{\partial \vec{v}}\vec{v}$.
- V. Se $f: \mathbb{R}^2 \to \mathbb{R}$ tem derivada direcional $\frac{\partial f}{\partial \vec{u}}(0,0)$ para todo vetor uniário $\vec{u} \in \mathbb{R}^2$, então f é diferenciável em (0,0).

Assinale a alternativa correta:

- Apenas as afirmações II e IV são verdadeiras.
- B Apenas as afirmações II e III são verdadeiras.
- C Apenas as afirmações I e III são verdadeiras.
- D Apenas as afirmações I e V são falsas.
- E Apenas as afirmações III, IV e V são falsas.

Solução:

- I. *falsa*, pois se \vec{u} é unitário e tem as duas coordenadas negativas então $\frac{\partial f}{\partial \vec{u}}(1,-3) = \langle \nabla f(1,-3), \vec{u} \rangle > 0.$
- II. *verdadeira*, basta tomar f(x, y) = x + 2y 5.
- III. *falsa*, pois nesse caso teríamos $\frac{\partial^2 f}{\partial y \partial x}(x,y) = 0 \neq 5 = \frac{\partial^2 f}{\partial x \partial y}(x,y) = 5$, donde tal f não poderia ser de classe C^2 .
- IV. *verdadeira*, pois $\{\vec{u}, \vec{v}\}$ é uma base ortonormal de \mathbb{R}^2 e ao escrever $\nabla f = \alpha \vec{u} + \beta \vec{v}$ temos $\alpha = \langle \nabla f, \vec{u} \rangle$ e $\beta = \langle \nabla f, \vec{v} \rangle$.
- V. falsa, basta considerar a função do exercício 5.3 da Lista 2.

Teste 2 [afirms2] Considere as seguintes afirmações

- I. Existe uma função diferenciável f(x,y) em \mathbb{R}^2 tal que o plano tangente ao gráfico de f no ponto (1,2,0) é z=x+2y-5
- II. Se f(x,y) é diferenciável em \mathbb{R}^2 e tal que $\frac{\partial f}{\partial x}(1,-3) < 0$ e $\frac{\partial f}{\partial y}(1,-3) < 0$, então $\frac{\partial f}{\partial \vec{u}}(1,-3) < 0$ para todo vetor unitário $\vec{u} \in \mathbb{R}^2$.
- III. Seja f(x,y) diferenciável em \mathbb{R}^2 e considere os vetores unitários $\vec{u}=\left(\frac{1}{2},\sqrt{3}/2\right)$ e $\vec{v}=\left(-\sqrt{3}/2,\frac{1}{2}\right)$. Então para todo $(x,y)\in\mathbb{R}^2$, $\nabla f(x,y)=\frac{\partial f}{\partial \vec{u}}\vec{u}+\frac{\partial f}{\partial \vec{v}}\vec{v}$.
- IV. Existe uma função f(x,y) de classe C^2 tal que $\frac{\partial f}{\partial x}(x,y) = x + 3$ e $\frac{\partial f}{\partial y}(x,y) = 5x y$.
- V. Se $f: \mathbb{R}^2 \to \mathbb{R}$ tem derivada direcional $\frac{\partial f}{\partial \vec{u}}(0,0)$ para todo vetor uniário $\vec{u} \in \mathbb{R}^2$, então f é diferenciável em (0,0).

Assinale a alternativa correta:

- Apenas as afirmações I e III são verdadeiras.
- B Apenas as afirmações II e IV são verdadeiras.
- C Apenas as afirmações II e III são verdadeiras.
- D Apenas as afirmações I e V são falsas.
- E Apenas as afirmações III, IV e V são falsas.

Solução:

- I. *verdadeira*, basta tomar f(x,y) = x + 2y 5.
- II. *falsa*, pois se \vec{u} é unitário e tem as duas coordenadas negativas então $\frac{\partial f}{\partial \vec{u}}(1,-3) = \langle \nabla f(1,-3), \vec{u} \rangle > 0$.
- III. *verdadeira*, pois $\{\vec{u}, \vec{v}\}$ é uma base ortonormal de \mathbb{R}^2 e ao escrever $\nabla f = \alpha \vec{u} + \beta \vec{v}$ temos $\alpha = \langle \nabla f, \vec{u} \rangle$ e $\beta = \langle \nabla f, \vec{v} \rangle$.
- IV. *falsa*, pois nesse caso teríamos $\frac{\partial^2 f}{\partial y \partial x}(x,y) = 0 \neq 5 = \frac{\partial^2 f}{\partial x \partial y}(x,y) = 5$, donde tal f não poderia ser de classe C^2 .
- V. falsa, basta considerar a função do exercício 5.3 da Lista 2.

Teste 3 [pltg1] Qual das seguintes curvas está contida no plano tangente à superfície $z = \sqrt{1 + 2x^2 + y^2}$ no ponto (1, 1, 2)?

$$\gamma(t) = (t, 2t + 1, 2t)$$

$$\gamma(t) = (2t+1, t+2, -2t)$$

$$\gamma(t) = (3t - 2, 2t - 1, 2t^2)$$

$$\gamma(t) = (3t+1, t+1, 3t+3)$$

Solução: Aqui temos $z_x(1,1)=1$ e $z_y(1,1)=1/2$. A equação do plano tangente é $\pi\colon 2x+y-2z+1=0$. Como nenhuma das curvas está contida nesse plano todas as alternativas serão consideradas corretas.

Teste 4 [pltg2] Qual das seguintes curvas está contida no plano tangente à superfície $z = \sqrt{1 + x^2 + 2y^2}$ no ponto (1, 1, 2)?

$$\gamma(t) = (2t+1, t, 2t)$$

$$\gamma(t) = (t+2,2t+1,-2t)$$

$$\gamma(t) = (t+1,3t+1,3t+3)$$

Solução: Aqui temos $z_x(1,1) = 1/2$ e $z_y(1,1) = 1$. A equação do plano tangente é π : x + 2y - 2z + 1 = 0. Como nenhuma das curvas está contida nesse plano todas as alternativas serão consideradas corretas.

Teste 5 [pltg3] Qual das seguintes curvas está contida no plano tangente à superfície $z = \sqrt{1 + 2x^2 + y^2}$ no ponto (1, -1, 2)?

$$\gamma(t) = (2t - 1, t - 2, 2t)$$

$$\gamma(t) = (3t - 2, 1 - 2t, 2t^2)$$

$$\gamma(t) = (3t+1, 2t+1, 2t+2)$$

Solução: Aqui temos $z_x(1,-1)=1$ e $z_y(1,-1)=-1/2$. A equação do plano tangente é $\pi\colon 2x-y-2z+1=0$. É fácil ver que a curva $\gamma(t)=(3t,2t+1,2t)$ é a única cujas coordenadas satisfazem a equação de π . Como em outras versões desta questão nenhuma das curvas está contida no plano correto, todas as alternativas serão consideradas corretas.

Teste 6 [pltg4] Qual das seguintes curvas está contida no plano tangente à superfície $z = \sqrt{1 + x^2 + 2y^2}$ no ponto (1, -1, 2)?

$$\gamma(t) = (2t+1,3t,2-2t)$$

$$\gamma(t) = (2t - 1, t - 2, 2t)$$

$$\gamma(t) = (3t - 2, 1 - 2t, 2t^2)$$

$$\gamma(t) = (2t+1, 3t+1, -3t-1)$$

Solução: Aqui temos $z_x(1,-1)=1$ e $z_y(1,-1)=-1/2$. A equação do plano tangente é π : x-2y-2z+1=0. É fácil ver que a curva $\gamma(t)=(2t+1,3t,2-2t)$ é a única cujas coordenadas satisfazem a equação de π . Como em outras versões desta questão nenhuma das curvas está contida no plano correto, todas as alternativas serão consideradas corretas.

Teste 7 [edp1] Seja $f(x,y) = y^{-3/2}e^{\frac{x^2}{\alpha y}}$, onde y > 0. O valor da constante α , para que f satisfaça a equação

$$\frac{\partial f}{\partial y} = \frac{1}{x^2} \frac{\partial}{\partial x} \left(x^2 \frac{\partial f}{\partial x} \right), \ x \neq 0,$$

é:

$$\alpha = -4$$
. B $\alpha = 4$. C $\alpha = -2$. D $\alpha = 2$. E inexistente.

Solução: Derivando diretamente temos que

$$f_y = -e^{\frac{x^2}{\alpha y}} \frac{(2x^2 + 3\alpha y)}{2\alpha y^{7/2}} \quad e \quad \frac{1}{x^2} \left(x^2 f_x\right)_x = 2e^{\frac{x^2}{\alpha y}} \frac{(2x^2 + 3\alpha y)}{\alpha^2 y^{7/2}},$$

donde a equação proposta verifica-se se e somente se $-\frac{1}{2\alpha}=\frac{2}{\alpha^2}$, ou seja, $\alpha=-4$.

Teste 8 [edp2] Seja $f(x,y) = y^{-3/2}e^{\frac{x^2}{\alpha y}}$, onde y > 0. O valor da constante α , para que f satisfaça a equação

$$\frac{\partial f}{\partial y} = -\frac{1}{x^2} \frac{\partial}{\partial x} \left(x^2 \frac{\partial f}{\partial x} \right), \, x \neq 0,$$

é:

$$\alpha \neq 4$$
. $B \quad \alpha = -4$. $C \quad \alpha = -2$. $D \quad \alpha = 2$. $E \quad \text{inexistente.}$

Solução: Derivando diretamente temos que

$$f_y = -e^{\frac{x^2}{\alpha y}} \frac{(2x^2 + 3\alpha y)}{2\alpha y^{7/2}} \quad e \quad \frac{1}{x^2} \left(x^2 f_x\right)_x = 2e^{\frac{x^2}{\alpha y}} \frac{(2x^2 + 3\alpha y)}{\alpha^2 y^{7/2}},$$

donde a equação proposta verifica-se se e somente se $-\frac{1}{2\alpha}=-\frac{2}{\alpha^2}$, ou seja, $\alpha=4$.

Teste 9 [edp3] Seja $f(x,y)=y^{-3/2}e^{\frac{x^2}{\alpha y}}$, onde y>0. O valor da constante α , para que f satisfaça a equação

$$2\frac{\partial f}{\partial y} = \frac{1}{x^2} \frac{\partial}{\partial x} \left(x^2 \frac{\partial f}{\partial x} \right), \, x \neq 0$$

é:

 $\alpha = -2$. $B \quad \alpha = 2$. $C \quad \alpha = -4$. $D \quad \alpha = 4$. $E \quad \text{inexistente.}$

Solução: Derivando diretamente temos que

$$f_y = -e^{\frac{x^2}{\alpha y}} \frac{(2x^2 + 3\alpha y)}{2\alpha y^{7/2}} \quad e \quad \frac{1}{x^2} \left(x^2 f_x\right)_x = 2e^{\frac{x^2}{\alpha y}} \frac{(2x^2 + 3\alpha y)}{\alpha^2 y^{7/2}},$$

donde a equação proposta verifica-se se e somente se $-\frac{1}{\alpha} = \frac{2}{\alpha^2}$, ou seja, $\alpha = -2$.

Teste 10 [edp4] Seja $f(x,y) = y^{-3/2}e^{\frac{x^2}{\alpha y}}$, onde y > 0. O valor da constante α , para que f satisfaça a equação

$$-2\frac{\partial f}{\partial y} = \frac{1}{x^2} \frac{\partial}{\partial x} \left(x^2 \frac{\partial f}{\partial x} \right), x \neq 0$$

é:

 $\alpha = 2$. $\beta = \alpha = -2$. $\alpha = -4$. $\beta = \alpha = 4$. $\beta = \alpha = 4$. $\beta = \alpha = 4$.

Solução: Derivando diretamente temos que

$$f_y = -e^{\frac{x^2}{\alpha y}} \frac{(2x^2 + 3\alpha y)}{2\alpha y^{7/2}} \quad e \quad \frac{1}{x^2} \left(x^2 f_x\right)_x = 2e^{\frac{x^2}{\alpha y}} \frac{(2x^2 + 3\alpha y)}{\alpha^2 y^{7/2}},$$

donde a equação proposta verifica-se se e somente se $\frac{1}{\alpha} = \frac{2}{\alpha^2}$, ou seja, $\alpha = 2$.

Teste 11 [cadeia1] Seja G(x, y) uma função diferenciável em \mathbb{R}^2 tal que

$$G(t^3 - (t-1)\cos(t^2 - 1), 1 - t^2) = t^3 - t^2 - t$$
, para todo $t \in \mathbb{R}$.

Assinale a alternativa da direção e sentido de maior variação da função *G* no ponto (1,0).

$$(1,1). \qquad (-1/2,1). \qquad (1,-1/2). \qquad (1/2,-1).$$

Solução: A direção e sentido procurados são as dadas por $\nabla G(1,0)$. Para descobrir este vetor, derivamos a expressão acima em relação a t, usando a regra da cadeia:

$$G_x\left(t^3 - (t-1)\cos(t^2 - 1), 1 - t^2\right)\left(3t^2 - \cos(t^2 - 1) + (t-1)2t\sin(t^2 - 1)\right) +$$

$$G_y\left(t^3 - (t-1)\cos(t^2 - 1), 1 - t^2\right)(-2t) = 3t^2 - 2t - 1.$$

O ponto (1,0) é atingido quanto $t=\pm 1$:

- $t = 1: 2G_x(1,0) 2G_y(1,0) = 0;$
- t = -1: $2G_x(1,0) + 2G_y(1,0) = 4$.

Destas duas equações temos $\nabla G(1,0)=(1,1)$. Como em uma das versões desta questão nenhuma das alternativas contém a resposta correta todas as alternativas serão consideradas adequadas.

Teste 12 [cadeia2] Seja G(x,y) uma função diferenciável em \mathbb{R}^2 tal que

$$G(1-t^2, t^3-(t-1)\cos(t^2-1)) = -t^3+t^2+t$$
, para todo $t \in \mathbb{R}$.

Assinale a alternativa da direção e sentido de maior variação da função G no ponto (0,1).

$$(-1,-1)$$
. $(1,1)$. $(1,-1/2)$. $(1/2,-1)$.

Solução: A direção e sentido procurados são as dadas por $\nabla G(0,1)$. Para descobrir este vetor, derivamos a expressão acima em relação a t, usando a regra da cadeia:

$$G_x \left(1 - t^2, t^3 - (t - 1)\cos(t^2 - 1)\right) (-2t) + G_y \left(1 - t^2, t^3 - (t - 1)\cos(t^2 - 1)\right) \left(3t^2 - \cos(t^2 - 1) + (t - 1)2t\sin(t^2 - 1)\right) = -3t^2 + 2t + 1.$$

O ponto (0,1) é atingido quanto $t=\pm 1$:

•
$$t = 1$$
: $-2G_x(0,1) + 2G_y(0,1) = 0$;
• $t = -1$: $2G_x(0,1) + 2G_y(0,1) = -4$.

Destas duas equações temos $\nabla G(1,0)=(-1,-1)$. Como em uma das versões desta questão nenhuma das alternativas contém a resposta correta todas as alternativas serão consideradas adequadas.

Teste 13 [cadeia3] Seja G(x,y) uma função diferenciável em \mathbb{R}^2 tal que

$$G(t^3 - (t-1)\cos(t^2 - 1), 1 - 2t^2) = t^3 - t^2 - t$$
, para todo $t \in \mathbb{R}$.

Assinale a alternativa da direção e sentido de maior variação da função G no ponto (1, -1).

$$(1,1/2). (1/2,-1). (1,-1/2). (1/2,1).$$

Solução: A direção e sentido procurados são as dadas por $\nabla G(1,-1)$. Para descobrir este vetor, derivamos a expressão acima em relação a t, usando a regra da cadeia:

$$G_x\left(t^3 - (t-1)\cos(t^2 - 1), 1 - 2t^2\right)\left(3t^2 - \cos(t^2 - 1) + (t-1)2t\sin(t^2 - 1)\right) + G_y\left(t^3 - (t-1)\cos(t^2 - 1), 1 - 2t^2\right)(-4t) = 3t^2 - 2t - 1.$$

O ponto (1, -1) é atingido quanto $t = \pm 1$:

- $t = 1: 2G_x(1, -1) 4G_y(1, -1) = 0;$
- t = -1: $2G_x(1, -1) + 4G_y(1, -1) = 4$.

Destas duas equações temos $\nabla G(1,-1)=(1,1/2)$. Como em uma das versões desta questão nenhuma das alternativas contém a resposta correta todas as alternativas serão consideradas adequadas.

Teste 14 [cadeia4] Seja G(x,y) uma função diferenciável em \mathbb{R}^2 tal que

$$G(1-2t^2, t^3-(t-1)\cos(t^2-1))=-t^3+t^2+t$$
, para todo $t \in \mathbb{R}$.

Assinale a alternativa da direção e sentido de maior variação da função G no ponto (-1,1).

$$(-1,-1/2). \qquad (1/2,-1). \qquad (1,-1/2). \qquad (1/2,1).$$

Solução: A direção e sentido procurados são as dadas por $\nabla G(-1,1)$. Para descobrir este vetor, derivamos a expressão acima em relação a t, usando a regra da cadeia:

$$G_x \left(1 - 2t^2, t^3 - (t - 1)\cos(t^2 - 1) \right) (-4t) + G_y \left(1 - 2t^2, t^3 - (t - 1)\cos(t^2 - 1) \right) \left(3t^2 - \cos(t^2 - 1) + (t - 1)2t\sin(t^2 - 1) \right) = -3t^2 + 2t + 1.$$

O ponto (-1,1) é atingido quanto $t = \pm 1$:

•
$$t = 1: -4G_x(-1,1) + 2G_y(-1,1) = 0;$$

•
$$t = -1$$
: $4G_x(1, -1) + 2G_y(1, -1) = -4$.

Destas duas equações temos $\nabla G(-1,1) = (-1/2,-1)$. Como nesta versão da questão nenhuma das alternativas contém a resposta correta todas as alternativas serão consideradas adequadas.

Teste 15 [temp1] Admita que $T(x,y)=16-2x^2-y^2$ represente uma distribuição de temperatura no plano xy. Determine uma parametrização $\gamma(t)$ para a trajetória descrita por um ponto P que se desloca, a partir do ponto (1,1), sempre na direção e sentido de máximo crescimento da temperatura.

$$\gamma(t) = (e^{-4t}, e^{-2t}), t \ge 0$$

B
$$\gamma(t) = (e^{-2t}, e^{-4t}), t \ge 0$$

$$C \gamma(t) = (e^{4t}, e^{2t}), t \ge 0$$

$$\boxed{\mathbf{D}} \ \gamma(t) = (e^{2t}, e^{4t}), \ t \geq 0$$

$$\boxed{\mathbf{E}} \ \gamma(t) = (1 + e^{-4t}, 1 + e^{-2t}), \, t \geq 0$$

Solução: A trajetória procurada é aquela cujo vetor tangente é paralelo ao gradiente de T em cada ponto, ou seja, $\left\{\gamma'(t), \nabla T(\gamma(t))\right\}$ é linearmente dependente. Como $\nabla T(x,y) = (-4x, -2y)$, a curva $\gamma(t) = (x(t), y(t))$ deve satisfazer, para todo $t \geq 0$,

$$\begin{cases} x'(t) &= -4x(t) \\ y'(t) &= -2y(t), \end{cases}$$

com
$$x(0) = y(0) = 1$$
, donde $x(t) = e^{-4t}$ e $y(t) = e^{-2t}$, $t \ge 0$.

Teste 16 [temp2] Admita que $T(x,y) = 16 - x^2 - 2y^2$ represente uma distribuição de temperatura no plano xy. Determine uma parametrização $\gamma(t)$ para a trajetória descrita por um ponto P que se desloca, a partir do ponto (1,1), sempre na direção e sentido de máximo crescimento da temperatura.

$$\gamma(t) = (e^{-2t}, e^{-4t}), t \ge 0$$

B
$$\gamma(t) = (e^{-4t}, e^{-2t}), t \ge 0$$

$$D \gamma(t) = (e^{2t}, e^{4t}), t \ge 0$$

$$\mathbb{E} \ \gamma(t) = (1 + e^{-4t}, 1 + e^{-2t}), t \ge 0$$

Solução: A trajetória procurada é aquela cujo vetor tangente é paralelo ao gradiente de T em cada ponto, ou seja, $\left\{\gamma'(t), \nabla T(\gamma(t))\right\}$ é linearmente dependente. Como $\nabla T(x,y) = (-2x, -4y)$, a curva $\gamma(t) = (x(t), y(t))$ deve satisfazer, para todo $t \geq 0$,

$$\begin{cases} x'(t) &= -2x(t) \\ y'(t) &= -4y(t), \end{cases}$$

$$com x(0) = y(0) = 1$$
, donde $x(t) = e^{-2t} e y(t) = e^{-4t}$, $t \ge 0$.

Questão 1. Considere uma função $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 . Suponha que:

- (i) a imagem da curva plana $\gamma(t) = (\sec^2(t), \lg(t))$, para $t \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, esteja contida numa curva de nível de f.
- (ii) a imagem da curva no espaço $\sigma(u) = \left(\sqrt{u}, \frac{u^2 4u 4}{u}, \sqrt[4]{4u} \sqrt[3]{2u} + \sqrt{u}\right)$, com u > 0, esteja contida no gráfico de f.

Determine uma equação do plano tangente ao gráfico de f no ponto (2, -1, f(2, -1)).

Solução: Para determinar o plano tangente em questão, devemos determinar $\nabla f(2,-1)$. Para tanto observamos que (i) nos diz que $(f \circ \gamma)(t)$ é constante. Derivando com a regra da cadeia temos que $\langle \nabla f(\gamma(t)), \gamma'(t) \rangle = 0$. Para $t = 3\pi/4$ temos

$$-4f_x(2,-1) + 2f_y(2,-1) = 0. (1)$$

Por outro lado, (ii) nos diz que $f\left(\sqrt{u}, \frac{u^2 - 4u - 4}{u}\right) = \sqrt[4]{4u} - \sqrt[3]{2u} + \sqrt{u}$. Fazendo u = 4 temos f(2, -1) = 2 e, derivando no ponto u = 4, obtemos

$$\frac{1}{4}f_x(2,-1) + \frac{5}{4}f_y(2,-1) = \frac{5}{24}.$$
 (2)

Com isso, $\nabla f(2,-1) = (5/66,10/66)$ e portanto o plano procurado é

$$\pi: \frac{5}{66}(x-2) + \frac{10}{66}(y+1) - z + 2 = 0$$
 ou $\frac{5}{66}x + \frac{10}{66}y - z + 2 = 0$.

Questão 2. Considere uma função $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 . Suponha que:

- (i) a imagem da curva plana $\gamma(t) = (\operatorname{cossec}^2(t), \operatorname{cotg}(t))$, para $t \in]0, \pi[$, esteja contida numa curva de nível de f.
- (ii) a imagem da curva no espaço $\sigma(u) = \left(\sqrt{u}, \frac{u^2 4u 4}{u}, \sqrt[4]{4u} \sqrt[3]{2u} + \sqrt{u}\right)$, com u > 0, esteja contida no gráfico de f.

Determine uma equação do plano tangente ao gráfico de f no ponto (2, -1, f(2, -1)).

Solução: Para determinar o plano tangente em questão, devemos determinar $\nabla f(2,-1)$. Para tanto observamos que (i) nos diz que $(f\circ\gamma)(t)$ é constante. Derivando com a regra da cadeia temos que $\langle \nabla f(\gamma(t)), \gamma'(t) \rangle = 0$. Para $t = 3\pi/4$ temos

$$4f_x(2,-1) - 2f_y(2,-1) = 0. (3)$$

Por outro lado, (ii) nos diz que $f\left(\sqrt{u}, \frac{u^2 - 4u - 4}{u}\right) = \sqrt[4]{4u} - \sqrt[3]{2u} + \sqrt{u}$. Fazendo u = 4 temos f(2, -1) = 2 e, derivando no ponto u = 4, obtemos

$$\frac{1}{4}f_x(2,-1) + \frac{5}{4}f_y(2,-1) = \frac{5}{24}.$$
 (4)

Com isso, $\nabla f(2,-1) = (5/66,10/66)$ e portanto o plano procurado é

$$\pi: \frac{5}{66}(x-2) + \frac{10}{66}(y+1) - z + 2 = 0$$
 ou $\frac{5}{66}x + \frac{10}{66}y - z + 2 = 0$.

Questão 3. Seja

$$f(x,y) = \begin{cases} xy^2 \operatorname{sen}\left(\frac{x}{y^2}\right), & \operatorname{se} y \neq 0\\ 0, & \operatorname{se} y = 0. \end{cases}$$

- **a.** Determinar as funções $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$, explicitando os domínios.
- **b.** $\frac{\partial f}{\partial y}$ é contínua em (1,0)? Justifique
- **c.** f é diferenciável em (1,0)? Justifique.
- **d.** f é diferenciável em (x, y) para $y \neq 0$? Justifique.

Solução:

a. Se y = 0, então

$$f_x(x,0) = \lim_{h \to 0} \frac{f(x+h,0) - f(x,0)}{h} = 0 e$$

$$f_y(x,0) = \lim_{k \to 0} \frac{f(x,0+k) - f(x,0)}{k} = \lim_{k \to 0} xk \sin(x/k^2) = 0.$$

Se $y \neq 0$, então

$$f_x(x,y) = y^2 \sin(x/y^2) + x \cos(x/y^2)$$

$$f_y(x,y) = 2xy \sin(x/y^2) - 2\frac{x^2}{y} \cos(x/y^2).$$

- **b.** Não, pois $\lim_{(x,y)\to(1,0)} f_y(x,y)$ não existe, já que a primeira parcela tende a zero e a segunda não tem limite.
- c. Devemos estudar o limite

$$\lim_{(h,k)\to(0,0)} \frac{f(1+h,0+k) - f(1,0) - f_x(1,0)h - f_y(1,0)k}{\sqrt{h^2 + k^2}}$$

$$= \lim_{(h,k)\to(0,0)} (1+h)k \sin((1+h)/k^2) \frac{k}{\sqrt{h^2 + k^2}}$$

$$= 0,$$

donde f é diferenciável em (1,0).

d. Sim, pois nesses pontos f_x e f_y são funções contínuas, ou seja, f é de classe C^1 .

Questão 4. Seja

$$f(x,y) = \begin{cases} yx^2 \operatorname{sen}\left(\frac{y}{x^2}\right), & \operatorname{se} x \neq 0\\ 0, & \operatorname{se} x = 0. \end{cases}$$

- **a.** Determinar as funções $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$, explicitando os domínios.
- **b.** $\frac{\partial f}{\partial x}$ é contínua em (0,1)? Justifique
- **c.** f é diferenciável em (0,1)? Justifique.
- **d.** f é diferenciável em (x, y) para $x \neq 0$? Justifique.

Solução:

a. Se x = 0, então

$$f_x(0,y) = \lim_{h \to 0} \frac{f(0+h,y) - f(0,y)}{h} = \lim_{h \to 0} hy \sin(y/h^2) = 0 e$$

$$f_y(0,y) = \lim_{k \to 0} \frac{f(0,y+k) - f(0,y)}{k} = 0.$$

Se $x \neq 0$, então

$$f_x(x,y) = x^2 \sin(y/x^2) + y \cos(y/x^2)$$

$$f_y(x,y) = 2xy \sin(y/x^2) - 2\frac{y^2}{x} \cos(y/x^2).$$

- **b.** Não, pois $\lim_{(x,y)\to(0,1)} f_x(x,y)$ não existe, já que a primeira parcela tende a zero e a segunda não tem limite.
- c. Devemos estudar o limite

$$\lim_{(h,k)\to(0,0)} \frac{f(h,1+k) - f(0,1) - f_x(0,1)h - f_y(0,1)k}{\sqrt{h^2 + k^2}}$$

$$= \lim_{(h,k)\to(0,0)} (1+k)h \sin((1+k)/h^2) \frac{h}{\sqrt{h^2 + k^2}}$$

$$= 0,$$

donde f é diferenciável em (0,1).

d. Sim, pois nesses pontos f_x e f_y são funções contínuas, ou seja, f é de classe C^1 .