

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Universidade de São Paulo

MAT-2454 — Cálculo Diferencial e Integral II (Escola Politécnica) Segunda Lista de Exercícios - Professor: Equipe de Professores

BONS ESTUDOS!

1. DERIVADAS PARCIAIS, DIFERENCIABILIDADE E PLANO TANGENTE

EXERCÍCIOS

1.1. Calcule as derivadas parciais de primeira ordem das funções:

a.
$$f(x,y) = \arctan\left(\frac{y}{x}\right);$$
 b. $f(x,y) = \ln\left(1 + \cos^2(xy^3)\right).$

1.2. Dada a função $f(x,y) = x(x^2 + y^2)^{-\frac{3}{2}} e^{\operatorname{sen}(x^2y)}$, ache $\frac{\partial f}{\partial x}(1,0)$.

Dica. Neste caso, usar a definição de derivada parcial é menos trabalhoso do que aplicar as regras de derivação.

1.3. Verifique que a função $u(x,y) = \ln \sqrt{x^2 + y^2}$ é solução da equação de Laplace bidimensional $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} = 0.$

1.4. Seja
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4}, & \text{se } (x,y) \neq (0,0); \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

- **a.** Mostre que as derivadas parciais $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ existem em todos os pontos.
- **b.** *f* é contínua em (0,0)?
- **c.** f é diferenciável em (0,0)?

1.5. Seja
$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0); \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$
a. Mostre que f é contínua em $(0,0)$.
b. Calcule $\frac{\partial f}{\partial x}(0,0)$ e $\frac{\partial f}{\partial y}(0,0)$.

- **c.** f é diferenciável em (0,0)?
- **d.** $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ são contínuas em (0,0)?
- **1.6.** Seja $g(x,y) = \sqrt[3]{3x^4 + 2y^4}$. Mostre que g é de classe C^1 em \mathbb{R}^2 .
- **1.7.** Determine o conjunto de pontos de \mathbb{R}^2 onde f não é diferenciável, sendo:

a.
$$f(x,y) = \sqrt[3]{x^3 + y^3}$$
; **b.** $f(x,y) = x|y|$; **c.** $f(x,y) = e^{\sqrt{x^4 + y^4}}$; **d.** $f(x,y) = \cos(\sqrt{x^2 + y^2})$.

1.8. Ache a equação do plano tangente e a equação da reta normal a cada superfície no ponto

a.
$$z = e^{x^2 + y^2}$$
, no ponto $(0, 0, 1)$; **b.** $z = e^x \ln(\frac{y}{2})$, no ponto $(3, 2, 0)$.

- **1.9.** Mostre que os gráficos das funções $f(x,y) = \sqrt{x^2 + y^2}$ e $g(x,y) = \frac{1}{10}(x^2 + y^2) + \frac{5}{2}$ se intersectam no ponto (3,4,5) e têm o mesmo plano tangente nesse ponto.
- **1.10.** Determine uma equação do plano que passa pelos pontos (0,1,5) e (0,0,6) e é tangente ao gráfico de $g(x,y) = x^3y$. Existe um só plano?

- **1.11.** Determine $k \in \mathbb{R}$ para que o plano tangente ao gráfico de $f(x,y) = \ln(x^2 + ky^2)$ no ponto (2,1,f(2,1)) seja perpendicular ao plano 3x+z=0.
- **1.12.** Seja $f:\mathbb{R} \to \mathbb{R}$ uma função derivável. Mostre que todos os planos tangentes à superfície $z = xf\left(\frac{x}{y}\right)$ passam pela origem.

2. Regra da Cadeia

EXERCÍCIOS

2.1. Calcule $\frac{\partial w}{\partial t}$ e $\frac{\partial w}{\partial u}$ pela regra da cadeia e confira os resultados por meio de substituição se-

- guida de aplicação das regras de derivação parcial. **a.** $w = x^2 + y^2$; $x = t^2 + u^2$, y = 2tu. **b.** $w = \frac{x}{x^2 + y^2}$; $x = t \cos u$, $y = t \sin u$.
- **2.2.** Sejam $f: \mathbb{R}^2 \to \mathbb{R}$, diferenciável em \mathbb{R}^2 , com $\nabla f(-2, -2) = (a, -4)$ e

$$g(t) = f(2t^3 - 4t, t^4 - 3t).$$

Determine a para que a reta tangente ao gráfico de g no ponto de abscissa 1 seja paralela à reta y = 2x + 3.

2.3. Seja $f: \mathbb{R}^2 \to \mathbb{R}$, f com derivadas parciais contínuas em \mathbb{R}^2 e tal que 2x + y + z = 7 é o plano tangente ao gráfico de f no ponto (0,2,f(0,2)). Seja

$$g(u,v) = uf(\text{sen}(u^2 - v^3), 2u^2v).$$

Determine $a \in \mathbb{R}$ para que o plano tangente ao gráfico de g no ponto (1,1,g(1,1)) seja paralelo ao vetor (4, 2, a).

- 2.4. Neste exercício vamos explicitar as soluções da equação da onda unidimensional, ou seja, determinar funções $u: A \subseteq \mathbb{R}^2 \to \mathbb{R}$ tais que $u_{tt} = c^2 u_{xx}$, $c \in \mathbb{R}$. Este método foi descrito por Jean le Rond d'Alembert em torno de 1750.
 - **a.** Mostre que a mudança de coordenadas $\xi = x ct$ e $\eta = x + ct$ permite escrever a equação da onda na forma $u_{\xi\eta} = 0$.
 - **b.** Determine todas as soluções de $u_{\xi\eta}=0$, concluindo que as soluções da equação original são da forma u(x,t) = f(x-ct) + g(x+ct), onde f e g são funções reais duas vezes deriváveis.

Observação 2.1. A forma da solução nos diz que ela é a composição de duas ondas arbitrárias viajando em sentidos opostos com velocidade c. Veja uma animação clicando aqui.

2.5. Sejam $f,g:\mathbb{R}\to\mathbb{R}$, deriváveis até $2^{\underline{a}}$ ordem. Mostre que u(x,y)=xf(x+y)+yg(x+y) é solução da equação

$$\frac{\partial^2 u}{\partial x^2} - 2\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0.$$

2.6. Seja u=u(x,y) função de classe \mathcal{C}^2 em \mathbb{R}^2 e defina $v(r,\theta)=u(r\cos\theta,r\sin\theta)$. Verifique que

$$\frac{\partial^2 v}{\partial r^2}(r,\theta) + \frac{1}{r} \frac{\partial v}{\partial r}(r,\theta) + \frac{1}{r^2} \frac{\partial^2 v}{\partial \theta^2}(r,\theta) = \Delta u(r\cos\theta, r\sin\theta),$$

sendo Δu , por definição, dado por $\Delta u = u_{xx} + u_{yy}$

2.7. Seja $f:A\subseteq\mathbb{R}^2\to\mathbb{R}$ uma função harmônica no aberto A, ou seja, $f_{uu}+f_{vv}=0$, para todo $(u,v) \in A$. Sejam ainda $g,h:B\subseteq \mathbb{R}^2 \to \mathbb{R}$ funções de classe \mathcal{C}^2 no aberto B tais que $(g(x,y),h(x,y)) \in A$ para todo $(x,y) \in B$ e satisfaçam $g_x = h_y$ e $h_x = -g_y$.

a. Mostre que $g_{xx} + g_{yy} = h_{xx} + h_{yy} = 0$. **b.** Mostre que $\frac{\partial^2}{\partial x^2} f(g(x,y),h(x,y)) + \frac{\partial^2}{\partial y^2} f(g(x,y),h(x,y)) = 0$.

2.8. Seja f = f(x, y) função de classe C^2 em \mathbb{R}^2 . Se $u(s, t) = f(e^s \cos t, e^s \sin t)$, mostre que

$$\left[\frac{\partial f}{\partial x}(e^s \cos t, e^s \sin t)\right]^2 + \left[\frac{\partial f}{\partial y}(e^s \cos t, e^s \sin t)\right]^2 = e^{-2s} \left[\left(\frac{\partial u}{\partial s}(s, t)\right)^2 + \left(\frac{\partial u}{\partial t}(s, t)\right)^2\right]$$

e que

$$\frac{\partial^2 f}{\partial x^2}(e^s \cos t, e^s \sin t) + \frac{\partial^2 f}{\partial y^2}(e^s \cos t, e^s \sin t) = e^{-2s} \left[\frac{\partial^2 u}{\partial s^2}(s, t) + \frac{\partial^2 u}{\partial t^2}(s, t) \right].$$

2.9. Seja f=f(x,y) uma função de classe \mathcal{C}^2 e seja $g:\mathbb{R}^2 \to \mathbb{R}$ dada por

$$g(u,v) = u f(u^2 - v, u + 2v).$$

Sabendo que 3x + 5y = z + 26 é uma equação do plano tangente ao gráfico de f no ponto $(1,4,f(1,4)), \frac{\partial^2 f}{\partial x \partial y}(1,4) = \frac{\partial^2 f}{\partial x^2}(1,4) = 1$ e $\frac{\partial^2 f}{\partial y^2}(1,4) = -1$, calcule $\frac{\partial^2 g}{\partial u \partial v}(-2,3)$.

2.10. Seja $F(r,s)=G(\mathrm{e}^{rs},r^3\cos(s))$, onde G=G(x,y) é uma função de classe \mathcal{C}^2 em \mathbb{R}^2 . Determine $\frac{\partial^2 F}{\partial r^2}(1,0)$ sabendo que $\frac{\partial G}{\partial y}(t^2+1,t+1)=t^2-2t+3$.

3. VETOR GRADIENTE E SUAS APLICAÇÕES

EXERCÍCIOS

- **3.1.** Se $f(x,y) = x^2 + 4y^2$, ache o vetor gradiente $\nabla f(2,1)$ e use-o para achar a reta tangente à curva de nível 8 de f no ponto (2,1). Esboce a curva de nível, a reta tangente e o vetor gradiente.
- **3.2.** Seja r a reta tangente à curva $x^3 + 3xy + y^3 + 3x = 18$ no ponto (1,2). Determine as retas que são tangentes à curva $x^2 + xy + y^2 = 7$ e paralelas à reta r.
- **3.3.** Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função diferenciável em \mathbb{R}^2 . Fixado um certo $P = (x_0, y_0) \in \mathbb{R}^2$, sabe-se que o plano tangente ao gráfico de f no ponto $(x_0, y_0, f(x_0, y_0))$ tem equação -2x + 2y z + 3 = 0. Determine, entre as curvas abaixo, uma que **não pode** ser a curva de nível de f que contém o ponto P:

a. $\gamma(t) = \left(-\frac{1}{t}, t\right);$ **b.** $\gamma(t) = \left(\frac{t^5}{5}, -\frac{2t^3}{3} + 3t\right);$ **c.** $\gamma(t) = (t^2, t^3 + t).$

- **3.4.** Considere uma função $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 . Suponha que:
 - (i) a imagem da curva plana $\gamma(t) = (\cot g(t), \sec^2(t))$, para $t \in]0, \pi/2[$, esteja contida numa curva de nível de f.
 - (ii) a imagem da curva no espaço $\sigma(u) = \left(\sqrt[3]{u}, u^2 + 1, \frac{u^3}{2} \frac{\sqrt[3]{u}}{2} + 1\right)$, com u > 0, esteja contida no gráfico de f.
 - **a.** Determine $\nabla f(1,2)$.
 - **b.** Calcule $\frac{\partial f}{\partial \vec{v}}(1,2)$, onde $\vec{v} = (\frac{1}{2}, \frac{\sqrt{3}}{2})$.
 - c. Determine uma equação do plano tangente ao gráfico de f no ponto (1,2,f(1,2)).
- **3.5.** O gradiente de $f(x,y) = x^2 + y^4$ é tangente à imagem da curva $\gamma(t) = (t^2,t)$ em um ponto $P = \gamma(t_0)$ com $t_0 > 0$. Considere a curva de nível de f que contém P. Encontre a equação da reta tangente a essa curva no ponto P.
- **3.6.** Sejam $f: \mathbb{R}^2 \to \mathbb{R}$ uma função diferenciável e $\gamma(t) = (t, 2t^2, t^2)$, $t \in \mathbb{R}$, uma curva cuja imagem está contida no gráfico de f. Seja r a reta tangente à curva de nível 4 de f no ponto (2,8). Sabendo que a reta r contém o ponto (1,-4), determine o vetor gradiente de f no ponto (2,8) e a equação do plano tangente ao gráfico de f no ponto (2,8,f(2,8)).

MAT–2454 (2018)

- **3.7.** Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função diferenciável e seja π o plano tangente ao gráfico de f no ponto $(x_0,y_0,f(x_0,y_0))$ e seja $\gamma(t)=(1+\frac{1}{t},t), t\neq 0$ uma parametrização para a curva de nível 1 de f. Suponha que $\gamma(t_0)=(x_0,y_0)$ para algum t_0 . Determine uma equação para o plano π sabendo que ele contém os pontos $\left(1,1,\frac{1}{2}\right)$ e (4,1,2).
- **3.8.** Mostre que $f(x,y) = \sqrt[3]{x^2y}$ é contínua em (0,0) e tem todas as derivadas direcionais em (0,0). A função f é diferenciável em (0,0)?
- **3.9.** Ache a derivada direcional máxima de f no ponto dado e dê a direção em que ela ocorre. **a.** $f(x,y) = xe^{-y} + 3y$ em (1,0); **b.** $f(x,y) = \ln(x^2 + y^2)$ em (1,2).
- **3.10.** Determine todos os pontos de \mathbb{R}^2 nos quais a direção de maior variação da função $f(x,y) = x^2 + y^2 2x 4y$ é a do vetor (1,1).
- **3.11.** Seja f uma função diferenciável em \mathbb{R}^2 tal que $\gamma(t)=(t+1,-t^2)$, para todo $t\in\mathbb{R}$ é uma curva de nível de f. Sabendo que $\frac{\partial f}{\partial x}(-1,-4)=2$, determine a derivada direcional de f no ponto (-1,-4) e na direção e sentido do vetor $\vec{u}=\left(\frac{3}{5},\frac{4}{5}\right)$.
- **3.12.** Sabe-se que $f: \mathbb{R}^2 \to \mathbb{R}$ é diferenciável em \mathbb{R}^2 e que o gráfico de f contém as imagens de ambas curvas $\gamma(t) = \left(-\frac{t}{2}, \frac{t}{2}, \frac{t}{2}\right)$ e $\xi(u) = \left(u+1, u, u+2+\frac{1}{u}\right)$, $u \neq 0$. Determine $\frac{\partial f}{\partial \vec{u}}\left(\frac{1}{2}, -\frac{1}{2}\right)$, onde $\vec{u} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.

4. POLINÔMIO DE TAYLOR

EXERCÍCIOS

4.1. Seja $f(x,y) = \ln(x+y)$. Determine o polinômio de Taylor de ordem 1 de f em volta do ponto $(\frac{1}{2},\frac{1}{2})$. Mostre que para todo (x,y) com x+y>1,

$$|\ln(x+y) - (x+y-1)| < \frac{1}{2}(x+y-1)^2.$$

4.2. Sejam $f(x,y)=x^3+y^3-x^2+4y$ e $P_1(x,y)$ o polinômio de Taylor de ordem 1 de f em volta do ponto (1,1). Mostre que para todo $(x,y)\in\mathbb{R}^2$, com |x-1|<1 e |y-1|<1,

$$|f(x,y) - P_1(x,y)| < 5(x-1)^2 + 6(y-1)^2.$$

Usando $P_1(x,y)$, calcule um valor aproximado para f(1.001,0.99) e estime o erro cometido com essa aproximação.

- **4.3.** Seja a função $f(x,y) = x^3 + y^3 3xy + 8$.
 - **a.** Determine o polinômio de Taylor $P_1(x, y)$ de ordem 1 de f, em torno do ponto (1, 1).
 - **b.** Escreva a Fórmula de Taylor para o resto $E_1(x,y) = f(x,y) P_1(x,y)$.
 - **c.** Usando o item (b), mostre que, para todo $(x,y) \in \mathbb{R}^2$, com x > 1/2 e y > 1/2, vale que $E_1(x,y) \ge \frac{3}{2}(x-y)^2$.

5. Mais Alguns Exemplos

Exercícios

- **5.1.** Considere $f(x,y) = \begin{cases} \frac{x^2y^2}{x^2 + y^4}, & \text{se } (x,y) \neq (0,0); \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$
 - **a.** Mostre que f é diferenciável em (0,0).
 - **b.** As derivadas parciais $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ são contínuas em (0,0)?

5.2. Seja
$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2}, \text{ se } (x,y) \neq (0,0); \\ 0, \text{ se } (x,y) = (0,0). \end{cases}$$

a. Verifique que $\frac{\partial f}{\partial x}(0,y) = y$ para todo y, e que $\frac{\partial f}{\partial y}(x,0) = 0$, para todo x.

b. Verifique que
$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = 0$$
 e que $\frac{\partial^2 f}{\partial y \partial x}(0,0) = 1$.

5.3. Seja
$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0); \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

a. Calcule o gradiente de f no ponto (0,0).

b. Mostre que
$$\frac{d}{dt}f(\gamma(t)) \neq \nabla f(\gamma(t)) \cdot \gamma'(t)$$
 em $t = 0$, onde $\gamma(t) = (-t, -t)$.

c. Seja $\vec{u} = (m, n)$ um vetor unitário. Calcule $\frac{\partial f}{\partial \vec{u}}(0, 0)$.

d. f é diferenciável em (0,0)? Justifique.

5.4. Seja
$$f(x,y) = \begin{cases} \frac{x^3y}{x^4 + y^2}, & \text{se } (x,y) \neq (0,0); \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

Mostre que existem as derivadas direcionais de f em todas as direções no ponto (0,0) e que $\frac{\partial f}{\partial \vec{u}}(0,0) = \langle \nabla f(0,0), \vec{u} \rangle$ para todo vetor unitário \vec{u} . A função f é diferenciável em (0,0)?

RESPOSTAS

1.1 a.
$$f_x(x,y) = \frac{-y}{x^2 + y^2} \operatorname{e} f_y(x,y) = \frac{x}{x^2 + y^2}$$

b. $f_x(x,y) = \frac{-y^3 \operatorname{sen}(2xy^3)}{1 + \cos^2(xy^3)} \operatorname{e} f_y(x,y) = \frac{-3xy^2 \operatorname{sen}(2xy^3)}{1 + \cos^2(xy^3)}.$

1.2 −2.

1.4 Não é contínua nem diferenciável em (0,0).

1.5 $\frac{\partial f}{\partial x}(0,0) = 1$ e $\frac{\partial f}{\partial y}(0,0) = 0$; não é diferenciável em (0,0); nenhumas das derivadas parciais é contínua em (0,0).

1.7 a. *f* não é diferenciável em nenhum ponto da reta y = -x.

b. *f* não é diferenciável nos pontos da forma (a, 0) com $a \neq 0$.

c., d. f é diferenciável em \mathbb{R}^2 pois é de classe C^1 em \mathbb{R}^2 .

1.8 a. z = 1 e r : X = (0,0,1) + $\lambda(0,0,1), \lambda \in \mathbb{R}$.

b. $e^3y - 2z - 2e^3 = 0$ e r : X = $(3,2,0) + \lambda(0,e^3,-2), \lambda \in \mathbb{R}.$

1.10 6x - y - z + 6 = 0 (sim, só um).

1.11 k = 8.

2.2 a = 3.

2.3 a = -4.

2.10 $F_{rr} = s^2 e^{2rs} G_{xx} + 6r^2 e^{rs} s \cos s G_{xy} + 9r^4 \cos^2 s G_{yy} + s^2 e^{rs} G_x + 6r \cos s G_y;$

3.1 $\nabla f(2,1) = (4,8)$; a reta é r: x+2y-4=0. **3.2** 4(x-1)+5(y-2)=0 e 4(x+1)+5(y+2)=0.

3.3 c.

3.4 a. $\nabla f(1,2) = (1,\frac{1}{2})$; **b.** $\frac{2+\sqrt{3}}{4}$; **c.** 2x + y - 2z - 2 = 0.

3.5 $X = (\frac{1}{4}, \frac{1}{2}) + \lambda(-1, 1), \lambda \in \mathbb{R}.$ **3.6** $\nabla f(2, 8) = (12, -1) \text{ e } 12x - y - z =$

3.7 x + y - 2z = 1.

3.8 f não é diferenciável em (0,0).

3.9 a. $\sqrt{5}$ e (1,2); **b.** $\frac{2}{\sqrt{5}}$ e $(\frac{1}{5}, \frac{2}{5})$. **3.10** nos pontos da reta x - y + 1 = 0.

3.11 $\frac{4}{5}$.

3.12 $-\frac{3\sqrt{2}}{2}$. 4.2 $P_1(x,y) = 3x + 7y - 5$; $f(1.001, 0.99) \approx 4,931$; o erro é de ordem 10^{-3} .

4.3 a. $P_1(x,y) = 7$; **b.** $E_1(x,y) =$ $3(c(x-1)^2-(x-1)(y-1)+d(y-1)^2),$ para algum ponto (c,d) interno ao segmento que une (x, y) a (1, 1).

5.1 f_x : não; f_y : sim.

5.3 $\nabla f(0,0) = (1,0); \frac{\partial f}{\partial u}(0,0) = m^2;$

5.4 f não é diferenciável em (0,0).

MAT–2454 (2018) 6 de 6