1. Considere todos os triângulos retângulos formados pelos semi-eixos positivos e por uma reta que passa pelo ponto (1,4). Dentre todos esses triângulos, aquele que possui área mínima tem a hipotenusa valendo:

Resp.: d. $\sqrt{68}$;

2. Seja $f(x)=\mathrm{e}^{2x^3+3x^2-12x}$ definida no intervalo fechado [-3,3]. Se a é o valor máximo de f e se b é o valor mínimo de f, então o produto ab é:

Resp.: a. e^{38} ;

 ${\bf 3.}\,$ A derivada da função $f:\mathbb{R}\to\mathbb{R}$ dada por

$$f(x) = (1 + \cos^2(x))^{e^{4x}}$$
 é:

Resp.: b.

(1+cos²(x))^{e^{4x}}
$$\left(4e^{4x}\ln(1+\cos^2(x)) - \frac{2e^{4x}\sin(x)\cos(x)}{1+\cos^2(x)}\right);$$

4. Seja n>1 um número natural. Aplicando o teorema do valor médio para $f(x)=\sqrt{x+1}$ no intervalo [n-1,n], podemos afirmar que:

Resp.: e.
$$\frac{1}{2\sqrt{n+1}} < \sqrt{n+1} - \sqrt{n} < \frac{1}{2\sqrt{n}};$$

5. O valor do limite $\lim_{x\to +\infty} x^{\sin(\frac{1}{3x})}$ é igual a:

Resp.: c. 1;

6. Use o polinômio de Taylor, da função $f(x) = \cos(x)$, em torno de $x_0 = 0$, de menor grau possível, para obter uma aproximação de $\cos(0,2)$ com erro inferior à 10^{-5} . O resultado é:

Resp.: a.
$$1 - \frac{(0,2)^2}{2!} + \frac{(0,2)^4}{4!}$$
;