Discontinuity of multiplication and left traslations in βG

Yevhen Zelenyuk

University of the Witwatersrand South Africa Given a discrete group G, the operation naturally extends to the Stone-Čech compactification βG of G so that for each $a \in G$, the left translation

$$eta G
i x \mapsto ax \in eta G$$

is continuous, and for each $q \in \beta G$, the right translation

$$eta G
i x \mapsto xq \in eta G$$

is continuous.

We take the points of βG to be the ultrafilters on G, the principal ultrafilters being identified with the points of G, and $G^* = \beta G \setminus G$. The topology of βG is generated by taking as a base the subsets

$$\overline{A}=\{p\ineta G:A\in p\}$$

where $A \subseteq G$. For $p, q \in \beta G$, the ultrafilter pq has a base consisting of subsets of the form

$$igcup_{x\in A} xB_x$$

where $A \in p$ and $B_x \in q$.

For every $p \in G^*$,

$$\lambda_p:eta G
i x\mapsto px\ineta G$$

is discontinuous, and moreover,

$$\lambda_p^*:G^*
i x\mapsto px\in G^*$$

is discontinuous [Ruppert 1979, van Douwen 1991, Lau and Pym 1995].

For every $p \in G^*$,

 $\lambda_p:eta G
i x\mapsto px\ineta G$

is discontinuous, and moreover,

$$\lambda_p^*:G^*
i x\mapsto px\in G^*$$

is discontinuous [Ruppert 1979, van Douwen 1991, Lau and Pym 1995].

Question 1. Are there $p, q \in G^*$ such that λ_p (or λ_p^*) is continuous at q?

Recall that a nonprincipal ultrafilter p on ω is a P-point if the intersection of countably many neighborhoods of $p \in \omega^*$ is again a neighborhood of p. MA implies the existence of P-points [Rudin 1956]. However, it is consistent with ZFC that there is no P-point [Shelah 1982]. Recall that a nonprincipal ultrafilter p on ω is a P-point if the intersection of countably many neighborhoods of $p \in \omega^*$ is again a neighborhood of p. MA implies the existence of P-points [Rudin 1956]. However, it is consistent with ZFC that there is no P-point [Shelah 1982].

Example 1. Let G be a countable group and let $q \in G^*$ be a P-point. Then for every $p \in G^*$, λ_p^* is continuous at q, and if G is Abelian, then λ_q is continuous at q. Question 2. Are there $p, q \in G^*$ such that $\mu: \beta G \times \beta G \ni (x, y) \mapsto xy \in \beta G$ is continuous at (p, q)? Question 2. Are there $p, q \in G^*$ such that $\mu: \beta G \times \beta G \ni (x, y) \mapsto xy \in \beta G$ is continuous at (p, q)?

Notice that μ is continuous at (p, q) if and only if

 $\{AB:A\in p,B\in q\}$

is an ultrafilter base.

For every countable Abelian group G with finitely many elements of order 2 (in particular, for $G = \mathbb{Z}$) and for every $p, q \in G^*$, μ is discontinuous at (p, q) [Protasov 1996]. For every countable Abelian group G with finitely many elements of order 2 (in particular, for $G = \mathbb{Z}$) and for every $p, q \in G^*$, μ is discontinuous at (p, q) [Protasov 1996].

Example 2. Assume MA. Let $G = \bigoplus_{\omega} \mathbb{Z}_2$. There is a group topology on G with exactly two nonprincipal ultrafilters p, q on G converging to 0 such that p+p = p and q+q =p+q = q + p = q. It then follows that μ is continuous at (p, q). **Theorem 1.** Let *G* be an Abelian group with finitely many elements of order 2 such that |G| is not Ulam-measurable and let $p, q \in G^*$. Then μ is discontinuous at (p, q).

Theorem 1. Let *G* be an Abelian group with finitely many elements of order 2 such that |G| is not Ulam-measurable and let $p, q \in G^*$. Then μ is discontinuous at (p, q).

Equivalently, for every Abelian group G with finitely many elements of order 2 such that |G| is not Ulam-measurable (in particular, for $G = \mathbb{R}$) and for every nonprincipal ultrafilters p, q on G,

$$\{A+B:A\in p,B\in q\}$$

is not an ultrafilter base.

Theorem 2. Let *G* be an Abelian group such that |G| is not Ulam-measurable and let $p, q \in$ G^* . If λ_p^* is continuous at *q*, then there is $f: G \to \omega$ such that $\overline{f}(q)$ is a *P*-point. **Theorem 2.** Let *G* be an Abelian group such that |G| is not Ulam-measurable and let $p, q \in$ G^* . If λ_p^* is continuous at *q*, then there is $f: G \to \omega$ such that $\overline{f}(q)$ is a *P*-point.

Corollary. It is consistent with ZFC that for every Abelian group *G* and for every $p, q \in G^*$, λ_p^* is discontinuous at *q*.