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ALL SPACES ARE HAUSDORFF.

Definitions
A space (X , τ) is said to be discretely generated (or DG) if for each
A ⊆ X and x ∈ cl(A), there is a discrete set D ⊆ A such that
x ∈ cl(D).

A space (X , τ) is said to be weakly discretely generated (or WDG)
if for each A ⊆ X which is not closed, there is a discrete subset
D ⊆ A such that cl(D) \ A 6= ∅.

These are obvious generalizations of the properties of being
Fréchet and sequential in the class of Hausdorff spaces.
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The following results are obvious or have very easy proofs:

(1) Every discretely generated space is weakly discretely
generated;
(2) If X is Fréchet–Urysohn then it is discretely generated;
(3) If X is sequential then it is weakly discretely generated;
(4) If X is scattered then it is discretely generated;
(5) Discrete generability is hereditary;
(6) Weak discrete generability is closed-hereditary;
(7) A space is discretely generated iff it is hereditarily weakly
discretely generated.
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Some classes of (weakly) discretely generated spaces are:

1. Each space with a nested local base at each point is
discretely generated.
2. Each monotonically normal topological space is discretely
generated and hence so is each LOTS and any subspace of a
LOTS.
3. Each Hausdorff sequential space is discretely generated.

Bella and Simon generalized 1 by showing that
4. Each radial space is discretely generated, and
5. Each pseudoradial space is weakly discretely generated.
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Most importantly,

Theorem
Each compact Hausdorff space is weakly discretely generated.

Proof.
Let X be a compact Hausdorff space. If A ⊆ X and A 6= cl(A)
then A is not compact. Apply the following theorem of Tkachuk:
If the closure of every discrete subset of a space is compact
then the whole space is compact. There is a discrete D ⊆ A
such that clA(D) is not compact. Since clX (D) is compact we
have clX (D) \ A 6= ∅.
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Theorem
A compact space X of countable tightness is discretely
generated.

Proof.
Let A ⊆ X and define A = A0, and

Aα+1 =
⋃
{cl(D) : D ⊆ Aα,D discrete} and Aβ =

⋃
{Aα : α < β}

if β is a limit ordinal. Since X is WDG, there is some ordinal κ
such that Aκ = cl(A). However, if x ∈ A2, then there is a
countable discrete set D = {xn : n ∈ ω} ⊆ A1 such that
x ∈ cl(D). The points of D can be separated by a family
{Un : n ∈ ω} of open sets and each point of D lies in the closure
of a discrete set Dn ⊆ Un ∩ A. D =

⋃
{Dn : n ∈ ω} is discrete

and x ∈ cl(D) implying that x ∈ A1.
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Although all compact spaces are WDG and hence every
Tychonoff space is densely embeddable in a WDG space, not
all compact spaces are DG, nor are all Tychonoff spaces WDG.

Example

{0,1}ω1 is not discretely generated. In fact, a dyadic compact
space is DG if and only if it is metrizable. (This result depends
on the existence of an L-space in ZFC.)

Example
van Douwen’s maximal space is not WDG, since each discrete
subset is closed. Furthermore, no crowded submaximal space
is weakly discretely generated.
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Lemma
Suppose that (X , τ) is a Hausdorff space, A ⊆ X and p ∈ cl(A).
If ψ(p,A ∪ {p}) = χ(p,A ∪ {p}), then there is a discrete subset
D ⊆ A such that p ∈ cl(D).

Theorem
If X is countably compact regular space X and χ(X ) ≤ ω1 then
X is WDG.

Proof.
Suppose A ⊆ X is non-closed but cl(D) ⊆ A for all discrete
D ⊆ A. A is countably compact. Take any p ∈ cl(A) \ A. For any
Gδ-set G and p ∈ G, we have G ∩ A 6= ∅ for otherwise there is a
decreasing sequence of closed non-empty subsets of A with
empty intersection which contradicts countable compactness of
A. Hence ψ(p, {p} ∪ A) > ω. Apply the lemma.

Topologies determined by discrete subsets
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One more result of this type is due to Bella and Simon:

Theorem (Bella and Simon, 2004)
If X is a countably compact regular space of countable
tightness, then X is weakly discretely generated.

Regularity in the last two theorems is essential. Consistently,
countably compact Hausdorff spaces of character ω1 need not
be WDG: Let V be van Douwen’s maximal space and modify
the topology of βV by declaring V to be open. The result is a
countably compact Urysohn space of character c which is not
WDG. A more complicated modification gives a countably
compact space of countable tightness which is not WDG.
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As we have seen, the class of weakly discretely generated
spaces is quite large; it includes for example, all compact, all
sequential, all scattered and all monotonically normal spaces.
Further, the construction of non weakly discretely generated
(Tychonoff) spaces is not entirely trivial. Thus one might expect
that this class behaves well under the taking of products and
quotients. However the results in this area are few and far
between.
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Theorem
The product of a regular discretely generated space and a first
countable regular space is discretely generated.

Say that a space is l-nested if there is a nested local base at
each point.

Theorem
A finite product of l-nested spaces is discretely generated.

Theorem
If X is WDG and κ is an ordinal, then X × κ is WDG.

Topologies determined by discrete subsets
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Theorem
Let {Xn : n ∈ ω} be a countable family of regular discretely
generated spaces. If each finite product Π{Xk : 0 ≤ k ≤ m} is
discretely generated, then Π{Xk : k ∈ ω} is discretely
generated.

An uncountable product of non-trivial spaces contains a copy of
{0,1}ω1 and hence cannot be discretely generated.

Corollary
A countable product of regular scattered spaces is DG.

Corollary
A countable product of regular l-nested spaces is DG

Topologies determined by discrete subsets
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Rather unexpectedly it turns out that discrete generability
behaves better with respect to box products.

Theorem
Any box product of monotonically normal spaces is DG.

Corollary
Any box product of LOTS is discretely generated.

What about negative results? Only one!

Example (Ivanov and Osipov)

Under CH there is a compact DG space X such that X 2 is not
DG.
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Definition
A space is a P-space if every Gδ is open.

Note that if a P-space X has character ℵ1, then
ψ(p,A ∪ {p}) = χ(p,A ∪ {p}) for all A ⊆ X .
Mimicking the result that each compact space is WDG, in their
2004 article, Bella and Simon conjectured that every Lindelöf
P-space is WDG. The following partal results are known.

Theorem
A P-space of of character ℵ1 is DG.

The next theorem was first proved by Bella and Simon
assuming P1 + 2ℵ1 > ℵ2, but it is a ZFC result.

Theorem
A regular P-space of countable extent and character at most ℵ2
is WDG.

Topologies determined by discrete subsets
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The next two theorems are the best (known) partial solutions in
ZFC to Bella and Simon’s conjecture.

Theorem
Let X be a Lindelöf P-space; if
(a) ψ(x ,X ) < ℵω for each x ∈ X, or
(b) χ(X ) ≤ ℵω,
then X is weakly discretely generated.

Theorem
A Lindelöf P-space in which every linearly Lindelöf subspace is
Lindelöf is WDG.
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Assuming iω = ℵω we get the following result:

Theorem
Every Lindelöf P-space of tightness at most ℵω is weakly
discretely generated.

Without the Lindelöf property or limitation on the extent, the
only other result is:

Theorem
If X is a regular P-space which is weakly discretely generated
and t(X ) = ℵ1, then X is discretely generated.
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Let A ⊆ X and define A = A0, and

Aα+1 =
⋃
{cl(D) : D ⊆ Aα,D discrete} and Aβ =

⋃
{Aα : α < β}

if β is a limit ordinal.
If a space is weakly discretely generated, there is some ordinal
κ such that Aκ = cl(A). How large (or small) is κ?

Theorem (Ivanov and Osipov, 2010)
If X is a compact space of character ωα, then κ ≤ α + 1.

This can be generalized as follows:

Theorem

If X is a Čech complete space of character ωα, then κ ≤ α + 1.
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Example
The space βR contains remote points, that is to say, points
which are not in the closure of any nowhere dense subset of R.
However, under CH, only two iterations of the “discrete closure"
are needed to obtain the closure. It is not clear what happens if
CH is not assumed.

We have only one more result on this topic:

Theorem
If X is a regular P-space of countable extent and character at
most ℵ2, then at most two iterations are needed.
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The main question here is the following:
If X is discretely generated, then which compactifications of X
are discretely generated? (Of course, all are WDG.)

Example
The space of reals R is discretely generated (it is first
countable), its one-point compactification (indeed any first
countable compactification) is DG, but as we saw before, βR is
not DG.

Example
The space N of positive integers is discretely generated (of
course), its one-point compactification (indeed any scattered
compactification) is DG, but βN is not DG (it maps onto [0,1]c

and hence contains a copy of van Douwen’s maximal space).

Topologies determined by discrete subsets
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If X is locally compact, then the one-point compactification αX
of X is its smallest compactification and hence the “most likely"
to be discretely generated - only one point to check! So:

Question
If X is locally compact and DG, is αX discretely generated?

First some positive results.

Theorem
If βX is DG, then X is pseudocompact.

Proof.
If X is not pseudocompact, then it contains a C∗-embedded
copy of N and hence βX contains a copy of βN.
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If X is locally compact, then the one-point compactification αX
of X is its smallest compactification and hence the “most likely"
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Definition
A space is isocompact if every closed countably compact
subspace is compact.

Theorem
If X is a DG space which is both locally compact and
isocompact, then αX is discretely generated.

If we assume metacompact (which implies isocompact) and
Fréchet, we get a slightly stronger result.

Theorem
If X is a locally compact, metacompact Fréchet space, then αX
is Fréchet.

There are however consistent examples of locally compact DG
spaces whose one-point compactification is not DG.
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Example
Let K denote the Cantor space less one point. K is locally
compact, zero-dimensional but not compact and it then follows
from a result of Plank that under CH, there is a point p ∈ βK \K
which is both a P-point of βK \ K and a remote point of βK .
We can construct, a compactification γX of X and a map
q : βK → γK in a standard way so that γK \ K is
(homeomorphic to) ω1 + 1, q−1[{ω1}] = {p} and q|K is a
homeomorphism. It follows that the trace of the neighbourhood
filter of ω1 on K in γK is identical to that of the trace of the
neighbourhood filter of p on K in βK . Thus in the space γK , the
point ω1 does not lie in the closure of any discrete subset of K .
Furthermore, γK \ {ω1} is first countable and hence is
discretely generated. It now only remains to note that
X = γK \ {ω1} is a discretely generated space whose one-point
compactification αX is not discretely generated.
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There are other solutions to this problem.

1. L. F. Aurichi (2009) has (incidentally) given an example
assuming the existence of a Souslin line.
2. R. Hernández-Gutiérrez (2013) has given an example
assuming that p =cof(nwd(ω × 2ω)).

[cof(nwd(X )) is the smallest cardinal κ such that there is a
family G of size κ of nowhere dense sets in X which is cofinal in
the family of all nowhere dense sets (ordered by inclusion).]
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Problem
Is every countable product of Hausdorff scattered spaces
discretely generated?

Problem
Is a box product of first countable spaces discretely generated?

Problem
Is the product of two WDG spaces WDG?

Problem
Is there a ZFC example of a compact DG space whose square
is not DG?
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If X is Fréchet, is X 2 (weakly) discretely generated?

Problem
Is there in ZFC a locally compact DG space whose one-point
compactification is not DG?

Problem
Is the continuous image of a compact DG space discretely
generated? Is the perfect image of a DG (WDG) space DG
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Muito obrigado por sua atenção.
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