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A space is completely regular iff its topology is induced by a 

uniformity. 

Using uniformities, CJ Knight (a student of CH Dowker) first 

proved: 

THEOREM. The box product of completely regular spaces is 

completely regular.  

This suggested the Uniform Box Product Topology. 
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A space is completely regular iff its topology is induced by a 

uniformity. 

 

Induces means G⊆X is open iff ∀x∈G, iff ∃∈D with D(x) ⊆G 

 

A completely regular space is induced by a totally bounded 

uniformity - 

one such comes from any Cech-Stone compactification – let F 

be the set of finite open covers R of X.  

∀R∈F, let DR = ∪{R2 : R∈R}.  

Then D = {DR : R∈F} is a uniformity inducing X. 



3 

 

DEFINITION. 

Suppose D⊆X2 is a base for a diagonal uniformity on a space X.  

Let ∏ represent the set product ∏κX. 

 

For D∈D, let D = {<x,y>∈∏2 : ∀α∈κ,  <x(α),y(α)>∈D}. 

D = {D : D∈D} is a uniformity on ∏ inducing the uniform box 

topology on ∏.   

D -balls are D(x) = {y : <x,y>∈D}. 

 

As each D(x) = ∏α∈κD(x(α)),  

Tychonov topology ⊆ uniform box topology ⊆ box topology.  

 

Henceforth, assume ∏κX has the uniform box topology 
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PROPOSITION (SWilliams).  

1. Suppose X is a metrizable space. Then ∏κX is metrizable. 

2. Suppose D is a complete uniformity on a space X. Then D is a 

complete uniformity on ∏κX. 

 

EXAMPLE (S Williams).  Is ∏ωR not connected. 

Sketch. When points are in the same component iff the are 

finitely far apart. 

Henceforth, assume the uniformity on X is totally bounded. 

 

THEOREM1 (S Williams). Suppose (X,D) is a connected space 

X. Then ∏κX is connected. 
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Sketch. For each finite partition P of ∏,  

let ∏P = {x|P is constant : for each P∈P}. 

 ∏P is homeomorphic to the connected finite product ∏|P|X. 

As ∏P∩∏P’ contains the constants, so 

Z = ∪{∏P : P is a finite partition of  I}  is connected. 

D is totally bounded, so Z is dense in ∏κX. So ∏κX is  connected. 

 

As it is in box products, the chief questions we ask in uniform 

box products hover around normality. 
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DEFINITION. 

A space X is pseudo-normal provided closed sets, one of which 

is countable, can be separated by disjoint open sets. 

 

THEOREM (Van Douwen). The box product of compact 

spaces is pseudo-normal. 

 

THEOREM2 (J Bell – S Williams). Suppose X is locally 

compact σ-compact countable closure space. Then ∏ωX is 

pseudo-normal. 

 

DEFINITION. 

A space is countable closure space provided the closure of 

countable sets is countable. (Juhasz and Weiss called these ω-fan spaces.) 
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LEMMA (J Bell – S Williams).  

1. Spaces with at most countably many limit points are 

countable closure spaces. (Ex. Fort Spaces) 

2. Scattered linear ordered spaces. (Ex. Ordinal spaces) 

3. countable closure is hereditary. 

4. countable closure is finitely productive. 

5. A locally compact σ-compact countable closure space is 

scattered and zero-dimensional. 
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I repeat. 

THEOREM2 (J Bell – S Williams). Suppose X is locally 

compact σ-compact countable closure space. Then ∏ωX is 

pseudo-normal. 

Sketch proof of Theorem 2. 

Suppose C = {cn : n∈ω} is closed in ∏ωX, G is open in ∏ωX and C⊆G.  

We construct, by recursion, a cellular family Q of clopen sets in ∏ωX such that 

C⊆∪Q⊆cl(∪Q)⊆G. 

∃ P1∈D such that P1(c1)⊆G.  

Let Q1 = {P1(c) : c∈C and P1(c)⊆G}.  

Let R1 = { P1(c) : both c∈C and P1(c)∩G ≠ Ø holds}.  

As {P1(x) : x∈∏ωX } is a clopen partition, is ∪Q1 clopen and contained in G. 

Do it again for each P1(x)∈R1. 

Let n be smallest integer such that P1(cn)∈R1. Find P2∈D, P2 refines P1 and 

P2(cn)⊆G.  
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Let Q2 = {P2(x) : x∈C, P1(x)∈R1, P2(x)⊆G}.  

Let R2 = {P2(x) : x∈C, P1(x)∈R1, P2(x)∩G ≠ Ø}.  

As {P2(x) : x∈∏ωX} is a clopen partition, ∪(Q1∪Q2) is clopen and contained in 

G. 

So we continue in this fashion building a tree  

(∪{Qn :  n∈ω})∪(∪{Rn : n∈ω}) 

Let H = ∪{∪Qn : n∈ω}. Clearly, C = {cn : n∈ω}⊆H.  

We claim H is closed.  

Suppose y is a limit point of H not in H. 

Then ∀n∈ω, ∃sn∈C, Pn(sn)∈Rn. 

Let tn∈Pn(sn)\G. 

As Pn is a partition of ∏ωX, y∈Pn(bn). 

Therefore, y∈∩n∈ωPn(bn). 

Now we apply … 
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LEMMA. Suppose <an : n∈ω> is a sequence in ∏ωX and  

{Dn : n∈ω}⊆D are such that 

1. an+1∈Dn(an). 

2. Dn+1 refines Dn. 

Then either ∩n∈ωDn(an) = Ø or  

the sequence <an : n∈ω> converges to z∈∩n∈ωDn(an). 

 

COROLLARY (J Bell – S Williams). Suppose X is an ordinal 

space. Then ∏ωX is pseudo-normal. 

 

COROLLARY (J Bell – S Williams). ∏ω(ω1+1) is pseudo-

normal. 

 

OPEN PROBLEM. (S Williams-2001) Is ∏ω(ω1+1) normal? 
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THEOREM (K Kunen). [CH] The box product of compact 

spaces scattered spaces is paracompact. 

 

THEOREM3 (J Bell). Suppose P is the Tychonov product of 

countably many Fort spaces. Then ∏ωP is a proximal space, 

(and hence is collectionwise-normal and countably 

paracompact). 

We consider the proximal game (J Bell) played on a uniform 

space. (I present the simpler zero-dimensional version. For the full version 

Player 1 has 2Dn⊆Dn+1 and Player 2 has x(n+1)∈4Dn-1(x(n))) 

Suppose (X,D) is a uniform space. 

Round1. Player A chooses D1∈D. 

Player B chooses x(1)∈X. 

Round(n+1). Player A chooses Dn⊆Dn-1. 

Player B chooses x(n+1)∈Dn-1(x(n)) 
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Player A wins if the sequence <x(n) : n∈ω> converges; 
otherwise Player B wins. 
 

DEFINITION. Uniform space (X,D).  

D is a proximal (or X is a proximal space) provided player A 

always has a winning strategy. 

 

PROPOSITION. 

1. (J Bell) A metric space is proximal (in its canonincal 

uniformity) iff it is complete. 

2. (J Bell) A Fort space (the one point compactification of a 

discrete space) is proximal. 

3. (S Williams) The Long Line is proximal (use the totally 

bounded uniformity from its 1-point compactification). 

4. (J Bell) ω1+1 is not proximal. 
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LEMMA (J Bell). 

1. Proximal is closed hereditary. 

2. Proximal is preserved by countable Tychonov products and 

∑-products. 

3. Proximal spaces are Gruenhage W-spaces (and so Frechet). 

4. Proximal spaces are countably paracompact, and 

collectionwise normal. 

 

Sketch proof of LEMMA (3). 

Here we assume the uniformity base D for X is symmetric and open. F(X) denotes 

finite sequences of X, k∈N. We view proximal strategy as a function w: F(X) → D 

where  xn+1∈kw(x1,x2, …, xn-1)[xn] is where x1,x2, …, xn are the first n choices 

of player B. σ denotes the W-space game. 

Fix the point x. 

Round 1. 

(proximal) Player A chooses w(Ø) = X2. 
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(proximal) Player B chooses x. 

(W-space) Player 1 choose σ(Ø) = w(x)[x] = X.  

(W-space) Player 2 choose some y1∈σ(Ø). 

Round 2.  

(proximal) Player A gets w(x,y1).  

(proximal) Player B also chooses, y1.  

The pair <x,y1>∈w(x) so symmetricity finds x∈w(x)[y1]. So now Player B can 

choose x legally. 

Player A gets w(x,y1,x) from the winning strategy. 

(W-space) Player 1 chooses σ(x) = w(x,y1,x)[x].  

(W-space) Player 2 choose some y2∈w(x,y1,x)[x]. 

General rounds.  

σ(x, y1, y2,…, yn) = w(x,y1,x, y2,x, y3, …,x, yn,x)[x]. Because of thewinning 

strategy x,y1,x, y2,x, y3, …,x, yn,x, … converges, obviously to x. So to yn x. Thus, 

X is a W-space. 

 

Sketch proof of normal in zero-dimensional LEMMA (4). 

So we can assume the members of the uniformity are squares of members of 

clopen partitions. 
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Let C0 and C1 be disjoint open sets. Choose xi∈Ci. 

Choose D1 so that xi∈Ci and D1(xi)∩C1-i = Ø. 

Let H1 ={D1(x) : x∈C0∪C1}.  

Let Q1 = {D1(x) : i∈2, x∈Ci, D1(x) ∩C1-i = Ø}. 

Let R1 = H1\ Q1. Remember {D1(x) : x∈X}. 

For R∈R1, choose xi∈Ci such that D1(xi) = D1(x1-i). 

Choose D2,R⊆D1 so that xi∈Ci and D2,R(xi)∩C1-i = Ø. 

Let H2 = Q1∪{D2,R(x) : R∈R1, x∈R∩(C0∪C1)}. 

Let Q2 = Q1∪{D2,R(x) : i∈2, x∈Ci, R∈R1, D2,R(x) ∩C1-i = Ø}. 

Let R2 = H2\ Q2. 

Continue in this fashion. 

Let H = ∪n∈ωHn. Then H is the union of pairwise-disjoint clopen sets. 

Let Gi = {H∈H : H∩Ci ≠ Ø}. Then G0∩G1 = Ø. 

Suppose z∈Ci\Gi. Then ∃∀n∈ω, Dn(yn)∈Rn and yn∈C1-i such that 

z∈∩n∈ωDn(yn).  

Define the sequence <zn : n∈ω>, by z2n = z and z2n+1 = y2n+1. 

As X is proximal, <zn : n∈ω> converges to some point. As both are C0 and C1 



17 

closed. Its limit point belongs to C0∩C1 -  a contradiction. Therefore, C0⊆G0 and 

C1⊆G1. 

 

 

Applications to Uniform Box Products 

 

THEOREM3 (J Bell). Suppose X is the Tychonov product of 

countably many Fort spaces. Then ∏ωX is a proximal space. 

 

 COROLLARY (J Bell - to appear in the Proc. AMS). Suppose X is 

the Fort spaces. Then ∏ωX is collectionwise Hausdorff, 

countably paracompact, normal).
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Applications to Uniform Box Products3 

 

THEOREM4 (S Williams). Suppose L is the long line. Then 

∏ωL is proximal. 

 

Sketch proof of THEOREM4. 

For simplicity we observe L is proximal. 

Given a finite non-decreasing sequence P = <α1,α2, … αn> in [0, ω1), we consider 

finite open coverings R of L of the form  

R = [0, α1.2-n),(α1, α1.2.2-n), … , (α1.(2-n -1).2-n, (α1+1).2-n), ((α1+1), α2.2-n),  

         (α2, α2.2.2-n), …, (αn,ω1). 

DR = ∪{R2 : R∈R }. The set of all such DR form a base for a uniformity on L. 

The strategy for Player A is as follows: 

If Player B chooses the point α.r P, then we add α to that sequence in the “right 

place” to get an (n+1)-term sequence (repeating is okay). So if the terms Player B 

chooses increase, then the sequence converges to the sup. If they don’t then the 
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tems will be stuck inside some [αi, αi+2] where the sequence will proved to be 

Cauchy. As it must have a cluster point it converges 

This is essentially the tool in proving ∏ωL is a proximal space. 

 

Suppose in Round k, Player A has chosen the non-decreasing n-sequence  

P = <α1,α2, … αn> in [0, ω1), on L, DR and on ∏ωL, DR.  

Now Player B chooses some point x∈∏ωL.  

Say x(n) =  α(n).r(n). 

If we are at Round k+1, we add to the sequence P, the first m α(n)’s of the first m 

choices of x. Now this forces B’s choices to converge coordinate-wise in a copy of 

the connected ∏ω [0,1] (see Theorem 1). 

 

COROLLARY4.  (P Nyikos). ∏ωω1 is collectionwise-normal. 
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EXAMPLE (J. Hankins). Suppose X is the Fort space of 

cardinality ω1. Then ∏ωX is not paracompact.  

 

PROBLEM1. (Williams-2001) Is ∏ω(ω1+1) normal? 

PROBLEM2. (Williams-2001) Suppose X is compact first 

countable is ∏ωX normal? 

 

 

~ THE END ~ 


