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Borel Selectors

N
[∞] collection of infinite subsets of N as a subspace of {0, 1}N.

A collection C ⊆ N
[∞] is cofinal if for all A ∈ N

[∞] there is B ⊆ A

with B ∈ C.

A selector for C is a function Φ : N
[∞] → N

[∞]

Φ(A) ⊆ A & Φ(A) ∈ C.

The problem:

Which cofinal families admit a Borel selector?



Cofinal families on N
[∞]

Example:

C = {A ∈ N
[∞] :

∑

n∈A

1

n + 1
< +∞}

C is a cofinal family with a Borel selector.

a0 = minA

ak+1 = min{n ∈ A : n > ak & 1
n+1 ≤ 1

k2+1
}

∑

k

1
ak+1 ≤

∑

k

1
k2+1

Φ(A) = {ak : k ∈ N}



The classical uniformization problem

Let X and Y be Polish spaces and R ⊆ X × Y a Borel set. Does
there exist a Borel function f : X → Y such that

∀x( x ∈ projX (R) → (x , f (x)) ∈ R)?

f is called an uniformizing function for R .

A selector Φ for a cofinal family C is an uniformizing function for

R = {(A,B) ∈ N
[∞] × N

[∞] : B ⊆ A & B ∈ C}

Theorem: (Jankov, Von Neumann) Every analytic relation
R ⊆ X × Y has a σ(Σ1

1)-measurable uniformizing function.



Known fact: There is a closed B ⊆ N
[∞] × N

[∞] such that

(i) projX (B) = N
[∞].

(ii) B does not admit a Borel uniformization.

Theorem: There is a cofinal C ⊆ N
[∞] without a perfect subset,

therefore without a Borel selector.

Question: Is there a cofinal Borel family on N
[∞] without a Borel

selector?



Convergent sequences in sequentially compact spaces

Let (xn)n be a sequence in a sequentially compact space X .

C(xn)n = {A ∈ N
[∞] : (xn)n∈A is convergent}

C(xn)n is cofinal on N
[∞].

Example: Let (xn)n be any sequence in [0, 1]. Then C(xn)n has a
Borel selector.

Φ(A) selects in a Borel way a Cauchy subsequence of (xn)n∈A.



Compact subsets of the first Baire Class

Let P be a Polish space.

B1(P)= Baire class-1 functions from P into R (i.e. pointwise
limits of continuous functions).

K is a Rosenthal compacta if it is homeomorphic to a compact
subset of B1(P) ⊂ R

P .

Examples: Compact metric spaces.

Helly space= {f : [0, 1] → [0, 1] | f non decreasing}.

Theorem (Rosenthal, 1977) Every Rosenthal compacta is
sequentially compact.



Separable Rosenthal compacta

Let (fn)n be a dense set in a Rosenthal compacta K ⊆ B1(P).

C(fn)n = {A ∈ N
[∞] : (fn)n∈A is pointwise convergent}

Since K is sequentially compact, then C(fn)n is cofinal.

Theorem (G. Debs, 1987) C(fn)n has a Borel selector.

Theorem (P. Dodos, 2006)

(i) C(fn)n is coanalytic. If K is not first countable, then C(fn)n is
non Borel.

(ii) There is a Borel G ⊆ C(fn)n cofinal. G is used for coding K.



Ramsey’s theorem

Ramsey’s theorem: Let A ⊆ N be infinity and ϕ : A[2] → {0, 1}.
There is H ⊆ A infinite such that ϕ is constant on H [2].

H is said to be ϕ-homogeneous.

hom(ϕ) = {H ∈ N
[∞] : H is ϕ-homogeneous}

Theorem: hom(ϕ) admits a Borel selector.

Example: Let (xn)n be a sequence in a compact metric space.
There is ϕ : N

[2] → 2 such that

hom(ϕ) ⊆ {A ∈ N
[∞] : (xn)n∈A is convergent} = C(xn)n

In particular, C(xn)n has a Borel selector.



Cofinal p-ideals

I is a p-ideal, if for all An ∈ I, n ∈ N, there is A ∈ I such that

An ⊆∗ A for all n ∈ N

Theorem: If I is an analytic cofinal (i.e. dense) p-ideal, then there
is ϕ : N

[2] → 2 such that

hom(ϕ) ⊆ I

In particular, I has a Borel selector.

Example:

I = {A ⊆ N :
∑

n∈A

1

n + 1
< +∞}



Galvin’s Lemma

Theorem: (Galvin, 1968) Let O ⊆ N
[∞] be an open set and A ⊆ N

infinite. There exists B ⊆ A infinite such that either

B [ω] ∩ O = ∅ or B [ω] ⊆ O.

Such sets B are called homogeneous for O.

Question: Does hom(O) have a Borel selector for every open O?

For F ⊆ FIN, let

OF =
⋃

s∈F

{A ∈ N
[∞] : s < A}

Theorem: Let B be a front over N. Let F ⊆ B then hom(OF ) has
a Borel selector.

An <-antichain B ⊆ FIN is a front on N, if for all infinite B ⊆ N

there is s ∈ B such that s ⊑ B .


