Functorial constructions in paratopological groups reflecting separation axioms

Mikhail Tkachenko Universidad Autónoma Metropolitana, Mexico City mich@xanum.uam.mx

Brazilian Conference on General Topology and Set Theory São Sebastião, Brazil, 2013 In honor of Ofelia T. Alas

Contents:

- 1. Three known functorial constructions
- 2. Each axiom of separation has its functorial reflection

- 3. 'Internal' description of the groups $T_k(G)$
- 4. Properties of the functors T_k 's
- 5. Products and functors
- 6. Some applications

A semitopological group is an abstract group G with topology τ such that the left and right translations in G are continuous or, equivalently, multiplication in G is separately continuous.

A semitopological group is an abstract group G with topology τ such that the left and right translations in G are continuous or, equivalently, multiplication in G is separately continuous.

A paratopological group is a group G with topology such that multiplication in G is jointly continuous.

A semitopological group is an abstract group G with topology τ such that the left and right translations in G are continuous or, equivalently, multiplication in G is separately continuous.

A paratopological group is a group G with topology such that multiplication in G is jointly continuous.

'topological' \implies 'paratopological' \implies 'semitopological'

A semitopological group is an abstract group G with topology τ such that the left and right translations in G are continuous or, equivalently, multiplication in G is separately continuous.

A paratopological group is a group G with topology such that multiplication in G is jointly continuous.

'topological' \implies 'paratopological' \implies 'semitopological' Let (G, τ) be a paratopological group and

$$\tau^{-1} = \{ U^{-1} : U \in \tau \}$$

be the conjugate topology of G. Then $G' = (G, \tau^{-1})$ is also a paratopological group and the inversion in G is a homeomorphism of (G, τ) onto (G, τ^{-1}) .

A semitopological group is an abstract group G with topology τ such that the left and right translations in G are continuous or, equivalently, multiplication in G is separately continuous.

A paratopological group is a group G with topology such that multiplication in G is jointly continuous.

'topological' \implies 'paratopological' \implies 'semitopological' Let (G, τ) be a paratopological group and

$$\tau^{-1} = \{ U^{-1} : U \in \tau \}$$

be the conjugate topology of G. Then $G' = (G, \tau^{-1})$ is also a paratopological group and the inversion in G is a homeomorphism of (G, τ) onto (G, τ^{-1}) .

Let $\tau^* = \tau \lor \tau^{-1}$ be the least upper bound of τ and τ^{-1} . Then $G^* = (G, \tau^*)$ is a topological group associated to G.

A semitopological group is an abstract group G with topology τ such that the left and right translations in G are continuous or, equivalently, multiplication in G is separately continuous.

A paratopological group is a group G with topology such that multiplication in G is jointly continuous.

'topological' \implies 'paratopological' \implies 'semitopological' Let (G, τ) be a paratopological group and

$$\tau^{-1} = \{ U^{-1} : U \in \tau \}$$

be the conjugate topology of G. Then $G' = (G, \tau^{-1})$ is also a paratopological group and the inversion in G is a homeomorphism of (G, τ) onto (G, τ^{-1}) .

Let $\tau^* = \tau \lor \tau^{-1}$ be the least upper bound of τ and τ^{-1} . Then $G^* = (G, \tau^*)$ is a topological group associated to G.

For the Sorgenfrey line $\mathbb S,$ the topological group $\mathbb S^*$ is discrete.

Theorem 1.1 (Alas–Sanchis, 2007).

Let G be a T_1 paratopological group. Then the diagonal $\Delta = \{(x, x) : x \in G\}$ is a closed subgroup of $G \times G'$ and, when considered with the topology induced from $G \times G'$, the diagonal Δ is a Hausdorff topological group topologically isomorphic to the group G^* associated to G.

Theorem 1.1 (Alas–Sanchis, 2007).

Let G be a T_1 paratopological group. Then the diagonal $\Delta = \{(x, x) : x \in G\}$ is a closed subgroup of $G \times G'$ and, when considered with the topology induced from $G \times G'$, the diagonal Δ is a Hausdorff topological group topologically isomorphic to the group G^* associated to G.

Corollary 1.2.

Let H be a T_1 paratopological group. Then:

Theorem 1.1 (Alas–Sanchis, 2007).

Let G be a T_1 paratopological group. Then the diagonal $\Delta = \{(x, x) : x \in G\}$ is a closed subgroup of $G \times G'$ and, when considered with the topology induced from $G \times G'$, the diagonal Δ is a Hausdorff topological group topologically isomorphic to the group G^* associated to G.

Corollary 1.2.

Let H be a T_1 paratopological group. Then: a) H is σ -compact $\iff H^*$ is σ -compact.

Theorem 1.1 (Alas–Sanchis, 2007).

Let G be a T_1 paratopological group. Then the diagonal $\Delta = \{(x, x) : x \in G\}$ is a closed subgroup of $G \times G'$ and, when considered with the topology induced from $G \times G'$, the diagonal Δ is a Hausdorff topological group topologically isomorphic to the group G^* associated to G.

Corollary 1.2.

Let H be a T_1 paratopological group. Then:

- a) *H* is σ -compact \iff *H*^{*} is σ -compact.
- b) H has a countable network \iff H^{*} has a countable network.

Theorem 1.1 (Alas–Sanchis, 2007).

Let G be a T_1 paratopological group. Then the diagonal $\Delta = \{(x, x) : x \in G\}$ is a closed subgroup of $G \times G'$ and, when considered with the topology induced from $G \times G'$, the diagonal Δ is a Hausdorff topological group topologically isomorphic to the group G^* associated to G.

Corollary 1.2.

Let H be a T_1 paratopological group. Then:

- a) *H* is σ -compact \iff *H*^{*} is σ -compact.
- b) H has a countable network \iff H^{*} has a countable network.

c) If H is second countable, so is H^* .

Theorem 1.1 (Alas–Sanchis, 2007).

Let G be a T_1 paratopological group. Then the diagonal $\Delta = \{(x, x) : x \in G\}$ is a closed subgroup of $G \times G'$ and, when considered with the topology induced from $G \times G'$, the diagonal Δ is a Hausdorff topological group topologically isomorphic to the group G^* associated to G.

Corollary 1.2.

Let H be a T_1 paratopological group. Then:

- a) *H* is σ -compact \iff *H*^{*} is σ -compact.
- b) H has a countable network \iff H^{*} has a countable network.

- c) If H is second countable, so is H^* .
- d) If H is first countable, so is H^* .

Theorem 1.1 (Alas–Sanchis, 2007).

Let G be a T_1 paratopological group. Then the diagonal $\Delta = \{(x, x) : x \in G\}$ is a closed subgroup of $G \times G'$ and, when considered with the topology induced from $G \times G'$, the diagonal Δ is a Hausdorff topological group topologically isomorphic to the group G^* associated to G.

Corollary 1.2.

Let H be a T_1 paratopological group. Then:

- a) *H* is σ -compact \iff *H*^{*} is σ -compact.
- b) H has a countable network \iff H^{*} has a countable network.
- c) If H is second countable, so is H^* .
- d) If H is first countable, so is H^* .

Corollary 1.3 (Reznichenko, 2005).

Every σ -compact Hausdorff (even T_1) paratopological group has countable cellularity.

Theorem 1.4 (Banakh–Ravsky, 2004).

For every paratopological group (G, τ) , there exists the finest topological group topology τ_* on G with $\tau_* \subseteq \tau$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem 1.4 (Banakh–Ravsky, 2004).

For every paratopological group (G, τ) , there exists the finest topological group topology τ_* on G with $\tau_* \subseteq \tau$.

We will call $G_* = (G, \tau_*)$ the group reflection of G. The group G_* can fail to be Hausdorff even if (G, τ) is Tychonoff.

Theorem 1.4 (Banakh–Ravsky, 2004).

For every paratopological group (G, τ) , there exists the finest topological group topology τ_* on G with $\tau_* \subseteq \tau$.

We will call $G_* = (G, \tau_*)$ the group reflection of G. The group G_* can fail to be Hausdorff even if (G, τ) is Tychonoff.

A semitopological group G is said to be precompact if for every neighborhood U of the identity in G, there exists a finite set $F \subset G$ such that FU = G = UF.

Theorem 1.4 (Banakh–Ravsky, 2004).

For every paratopological group (G, τ) , there exists the finest topological group topology τ_* on G with $\tau_* \subseteq \tau$.

We will call $G_* = (G, \tau_*)$ the group reflection of G. The group G_* can fail to be Hausdorff even if (G, τ) is Tychonoff.

A semitopological group G is said to be precompact if for every neighborhood U of the identity in G, there exists a finite set $F \subset G$ such that FU = G = UF.

Theorem 1.5 (Banakh–Ravsky, 2008).

Every precompact paratopological group has countable cellularity. Furthermore, every regular cardinal $\kappa > \omega$ is a precaliber for G.

Theorem 1.4 (Banakh–Ravsky, 2004).

For every paratopological group (G, τ) , there exists the finest topological group topology τ_* on G with $\tau_* \subseteq \tau$.

We will call $G_* = (G, \tau_*)$ the group reflection of G. The group G_* can fail to be Hausdorff even if (G, τ) is Tychonoff.

A semitopological group G is said to be precompact if for every neighborhood U of the identity in G, there exists a finite set $F \subset G$ such that FU = G = UF.

Theorem 1.5 (Banakh–Ravsky, 2008).

Every precompact paratopological group has countable cellularity. Furthermore, every regular cardinal $\kappa > \omega$ is a precaliber for G.

Idea of the proof: If G is a precompact paratopological group, then the non-empty open sets in G_* form a π -base for G.

Given a space X, let X_{sr} be the underlying set X endowed with the topology whose base is formed by the regular open sets in X:

 $\{Int_X\overline{U}: U \text{ is open in } X\}.$

Given a space X, let X_{sr} be the underlying set X endowed with the topology whose base is formed by the regular open sets in X:

 $\{Int_X \overline{U} : U \text{ is open in } X\}.$

We say that X_{sr} is the semiregularization of X (Stone, Katetov).

Given a space X, let X_{sr} be the underlying set X endowed with the topology whose base is formed by the regular open sets in X:

 $\{Int_X\overline{U}: U \text{ is open in } X\}.$

We say that X_{sr} is the semiregularization of X (Stone, Katetov). The identity mapping $i: X \to X_{sr}$ is always continuous and is a homeomorphism iff X is semiregular (regular open sets form a base of X).

Given a space X, let X_{sr} be the underlying set X endowed with the topology whose base is formed by the regular open sets in X:

 $\{Int_X\overline{U}: U \text{ is open in } X\}.$

We say that X_{sr} is the semiregularization of X (Stone, Katetov). The identity mapping $i: X \to X_{sr}$ is always continuous and is a homeomorphism iff X is semiregular (regular open sets form a base of X).

Theorem 1.6 (Ravsky, 2003).

For any paratopological group G, the semiregularization G_{sr} of G is a T_3 paratopological group. Hence the semiregularization of a Hausdorff paratopological group is a regular paratopological group.

Given a space X, let X_{sr} be the underlying set X endowed with the topology whose base is formed by the regular open sets in X:

 $\{Int_X\overline{U}: U \text{ is open in } X\}.$

We say that X_{sr} is the semiregularization of X (Stone, Katetov). The identity mapping $i: X \to X_{sr}$ is always continuous and is a homeomorphism iff X is semiregular (regular open sets form a base of X).

Theorem 1.6 (Ravsky, 2003).

For any paratopological group G, the semiregularization G_{sr} of G is a T_3 paratopological group. Hence the semiregularization of a Hausdorff paratopological group is a regular paratopological group.

The group G_{sr} will be called the regularization of G and denoted by G_r .

Definition 1.7.

A space X is called feebly compact if every locally finite family of open sets in X is finite.

Definition 1.7.

A space X is called feebly compact if every locally finite family of open sets in X is finite.

In Tych. spaces: feeble compactness \iff pseudocompactness.

Definition 1.7.

A space X is called feebly compact if every locally finite family of open sets in X is finite.

In Tych. spaces: feeble compactness \iff pseudocompactness.

An extention of the Comfort–Ross theorem about products:

Definition 1.7.

A space X is called feebly compact if every locally finite family of open sets in X is finite.

In Tych. spaces: feeble compactness \iff pseudocompactness.

An extention of the Comfort–Ross theorem about products:

Theorem 1.8 (Ravsky, 2010).

The topological product of an arbitrary family of feebly compact paratopological groups is feebly compact.

Definition 1.7.

A space X is called feebly compact if every locally finite family of open sets in X is finite.

In Tych. spaces: feeble compactness \iff pseudocompactness.

An extention of the Comfort–Ross theorem about products:

Theorem 1.8 (Ravsky, 2010).

The topological product of an arbitrary family of feebly compact paratopological groups is feebly compact.

Idea of the proof: 1) Take the regularization of a product of feebly compact paratopological group \cong the product of regularizations of the factors.

Definition 1.7.

A space X is called feebly compact if every locally finite family of open sets in X is finite.

In Tych. spaces: feeble compactness \iff pseudocompactness.

An extention of the Comfort–Ross theorem about products:

Theorem 1.8 (Ravsky, 2010).

The topological product of an arbitrary family of feebly compact paratopological groups is feebly compact.

Idea of the proof: 1) Take the regularization of a product of feebly compact paratopological group \cong the product of regularizations of the factors. 2) Apply the fact that every regular (even T_3) feebly compact paratopological group is a topological group (Arhangel'skii–Reznichenko plus Ravsky).

Definition 1.7.

A space X is called feebly compact if every locally finite family of open sets in X is finite.

In Tych. spaces: feeble compactness \iff pseudocompactness.

An extention of the Comfort–Ross theorem about products:

Theorem 1.8 (Ravsky, 2010).

The topological product of an arbitrary family of feebly compact paratopological groups is feebly compact.

Idea of the proof: 1) Take the regularization of a product of feebly compact paratopological group \cong the product of regularizations of the factors. 2) Apply the fact that every regular (even T_3) feebly compact paratopological group is a topological group (Arhangel'skii–Reznichenko plus Ravsky).

3) Use the Comfort-Ross theorem.

Definition 1.7.

A space X is called feebly compact if every locally finite family of open sets in X is finite.

In Tych. spaces: feeble compactness \iff pseudocompactness.

An extention of the Comfort–Ross theorem about products:

Theorem 1.8 (Ravsky, 2010).

The topological product of an arbitrary family of feebly compact paratopological groups is feebly compact.

Idea of the proof: 1) Take the regularization of a product of feebly compact paratopological group \cong the product of regularizations of the factors. 2) Apply the fact that every regular (even T_3) feebly compact paratopological group is a topological group (Arhangel'skii–Reznichenko plus Ravsky).

3) Use the Comfort-Ross theorem.

4) Note that a space X is feebly compact iff so is X_{sr} .

Discussion

Taking the associated topological group G^* , the group reflection G_* , and the regularization G_r of a paratopological group G are, in fact, covariant functors in the category of paratopological groups and their continuous homomorphisms.

Discussion

Taking the associated topological group G^* , the group reflection G_* , and the regularization G_r of a paratopological group G are, in fact, covariant functors in the category of paratopological groups and their continuous homomorphisms.

Another useful functor in the category of topological groups:

 $G
ightarrow G/\overline{\{e\}},$

where $\overline{\{e\}}$ is the closure of the identity *e* in *G*.

Discussion

Taking the associated topological group G^* , the group reflection G_* , and the regularization G_r of a paratopological group G are, in fact, covariant functors in the category of paratopological groups and their continuous homomorphisms.

Another useful functor in the category of topological groups:

$$G \to G/\overline{\{e\}},$$

where $\overline{\{e\}}$ is the closure of the identity e in G. The invariant subgroup $\overline{\{e\}}$ is closed in G, so the group $T_1(G) = G/\overline{\{e\}}$ is a T_1 -space (hence, Tychonoff).

Discussion

Taking the associated topological group G^* , the group reflection G_* , and the regularization G_r of a paratopological group G are, in fact, covariant functors in the category of paratopological groups and their continuous homomorphisms.

Another useful functor in the category of topological groups:

$$G \to G/\overline{\{e\}},$$

where $\{e\}$ is the closure of the identity e in G. The invariant subgroup $\overline{\{e\}}$ is closed in G, so the group $T_1(G) = G/\overline{\{e\}}$ is a T_1 -space (hence, Tychonoff). Let $\pi_G \colon G \to T_1(G)$ be the quotient homomorphism.

Discussion

Taking the associated topological group G^* , the group reflection G_* , and the regularization G_r of a paratopological group G are, in fact, covariant functors in the category of paratopological groups and their continuous homomorphisms.

Another useful functor in the category of topological groups:

$$G \to G/\overline{\{e\}},$$

where $\{e\}$ is the closure of the identity e in G. The invariant subgroup $\overline{\{e\}}$ is closed in G, so the group $T_1(G) = G/\overline{\{e\}}$ is a T_1 -space (hence, Tychonoff). Let $\pi_G \colon G \to T_1(G)$ be the quotient homomorphism.

Further, if $f: G \to X$ is a continuous mapping of a topological group G to a T_1 -space X, then there exists a continuous mapping $\overline{f}: T_1(G) \to X$ such that $f = \overline{f} \circ \pi_G$.

Discussion

Taking the associated topological group G^* , the group reflection G_* , and the regularization G_r of a paratopological group G are, in fact, covariant functors in the category of paratopological groups and their continuous homomorphisms.

Another useful functor in the category of topological groups:

$$G \to G/\overline{\{e\}},$$

where $\overline{\{e\}}$ is the closure of the identity e in G. The invariant subgroup $\overline{\{e\}}$ is closed in G, so the group $T_1(G) = G/\overline{\{e\}}$ is a T_1 -space (hence, Tychonoff). Let $\pi_G \colon G \to T_1(G)$ be the quotient homomorphism.

Further, if $f: G \to X$ is a continuous mapping of a topological group G to a T_1 -space X, then there exists a continuous mapping $\overline{f}: T_1(G) \to X$ such that $f = \overline{f} \circ \pi_G$.

Question. Is a similar construction possible in paratopological or semitopological groups?

The first difficulty: the closure of the identity, $\overline{\{e\}}$, in a paratopological group *G* can fail to be a subgroup of *G*:

The first difficulty: the closure of the identity, $\{e\}$, in a paratopological group *G* can fail to be a subgroup of *G*: Consider the real line \mathbb{R} with the 'topology' $\tau = \{(r, \infty) : r \in \mathbb{R}\}$. Then (G, τ) is a T_0 paratopological group, but $\{0\} = (-\infty, 0]$.

The first difficulty: the closure of the identity, $\{e\}$, in a paratopological group *G* can fail to be a subgroup of *G*: Consider the real line \mathbb{R} with the 'topology' $\tau = \{(r, \infty) : r \in \mathbb{R}\}$. Then (G, τ) is a T_0 paratopological group, but $\{0\} = (-\infty, 0]$.

Definition 2.1.

Let \mathfrak{P} be a (topological) property and G a semitopological group. A semitopological group H is called a \mathfrak{P} -reflection of G if there exists a continuous homomorphism $\varphi_G \colon G \to H$ onto H satisfying the following conditions:

The first difficulty: the closure of the identity, $\{e\}$, in a paratopological group *G* can fail to be a subgroup of *G*: Consider the real line \mathbb{R} with the 'topology' $\tau = \underline{\{(r, \infty) : r \in \mathbb{R}\}}$. Then (G, τ) is a T_0 paratopological group, but $\overline{\{0\}} = (-\infty, 0]$.

Definition 2.1.

Let \mathfrak{P} be a (topological) property and G a semitopological group. A semitopological group H is called a \mathfrak{P} -reflection of G if there exists a continuous homomorphism $\varphi_G \colon G \to H$ onto H satisfying the following conditions:

(a) $H \in \mathcal{P}$;

The first difficulty: the closure of the identity, $\{e\}$, in a paratopological group *G* can fail to be a subgroup of *G*: Consider the real line \mathbb{R} with the 'topology' $\tau = \{(r, \infty) : r \in \mathbb{R}\}$. Then (G, τ) is a T_0 paratopological group, but $\{0\} = (-\infty, 0]$.

Definition 2.1.

Let \mathfrak{P} be a (topological) property and G a semitopological group. A semitopological group H is called a \mathfrak{P} -reflection of G if there exists a continuous homomorphism $\varphi_G \colon G \to H$ onto H satisfying the following conditions:

- (a) $H \in \mathcal{P}$;
- (b) Given a continuous mapping $f : G \to X$ to a space $X \in \mathcal{P}$, one can find a continuous mapping $h : H \to X$ with $f = h \circ \varphi_G$.

The first difficulty: the closure of the identity, $\{e\}$, in a paratopological group *G* can fail to be a subgroup of *G*: Consider the real line \mathbb{R} with the 'topology' $\tau = \{(r, \infty) : r \in \mathbb{R}\}$. Then (G, τ) is a T_0 paratopological group, but $\{0\} = (-\infty, 0]$.

Definition 2.1.

Let \mathfrak{P} be a (topological) property and G a semitopological group. A semitopological group H is called a \mathfrak{P} -reflection of G if there exists a continuous homomorphism $\varphi_G \colon G \to H$ onto H satisfying the following conditions:

- (a) $H \in \mathcal{P}$;
- (b) Given a continuous mapping $f : G \to X$ to a space $X \in \mathcal{P}$, one can find a continuous mapping $h : H \to X$ with $f = h \circ \varphi_G$.

The definition of a \mathcal{P} -reflection in the class of paratopological groups is the same (*H* must be a paratopological group).

Theorem 2.2 (Tk., 2013).

For every k = 0, 1, 2, 3, 3.5, there exists a covariant functor T_k in the category of semitopological groups such that $T_k(G)$ is the T_k -reflection of G, for an arbitrary semitopological group G.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem 2.2 (Tk., 2013).

For every k = 0, 1, 2, 3, 3.5, there exists a covariant functor T_k in the category of semitopological groups such that $T_k(G)$ is the T_k -reflection of G, for an arbitrary semitopological group G. If k = 0, 1, 2, then the corresponding continuous homomorphism $\varphi_{G,k}: G \to T_k(G)$ is open, so $T_k(G)$ is a quotient group of G.

Theorem 2.2 (Tk., 2013).

For every k = 0, 1, 2, 3, 3.5, there exists a covariant functor T_k in the category of semitopological groups such that $T_k(G)$ is the T_k -reflection of G, for an arbitrary semitopological group G. If k = 0, 1, 2, then the corresponding continuous homomorphism $\varphi_{G,k}: G \to T_k(G)$ is open, so $T_k(G)$ is a quotient group of G. ' T_k -reflection' means the reflection in the class of spaces satisfying the T_k separation axiom.

Theorem 2.2 (Tk., 2013).

For every k = 0, 1, 2, 3, 3.5, there exists a covariant functor T_k in the category of semitopological groups such that $T_k(G)$ is the T_k -reflection of G, for an arbitrary semitopological group G. If k = 0, 1, 2, then the corresponding continuous homomorphism $\varphi_{G,k}: G \to T_k(G)$ is open, so $T_k(G)$ is a quotient group of G. ' T_k -reflection' means the reflection in the class of spaces satisfying

the T_k separation axiom. Two more functors:

 $T_1\&T_3 \rightarrow \textit{Reg} \text{ and } T_1\&T_{3.5} \rightarrow \textit{Tych}$

Theorem 2.2 (Tk., 2013).

For every k = 0, 1, 2, 3, 3.5, there exists a covariant functor T_k in the category of semitopological groups such that $T_k(G)$ is the T_k -reflection of G, for an arbitrary semitopological group G. If k = 0, 1, 2, then the corresponding continuous homomorphism $\varphi_{G,k}: G \to T_k(G)$ is open, so $T_k(G)$ is a quotient group of G.

' T_k -reflection' means the reflection in the class of spaces satisfying the T_k separation axiom. Two more functors:

 $T_1\&T_3 \rightarrow \textit{Reg} \text{ and } T_1\&T_{3.5} \rightarrow \textit{Tych}$

Corollary 2.3.

For every semitopological (paratopological) group G and every $k \in \{0, 1, 2, 3, R\}$, there exists a continuous homomorphism $\varphi_{G,k} \colon G \to H$ onto a semitopological (paratopological) group H satisfying the T_k separation axiom such that for every continuous mapping $f \colon G \to X$ to a T_k -space X, one can find a continuous mapping $h \colon H \to X$ with $f = h \circ \varphi_{G,k}$. [R stands for regularity.]

The canonical homomorphism $\varphi_{G,k} \colon G \to T_k(G)$ is continuous, open, and surjective for k = 0, 1, 2 (Theorem 2.2). Hence $T_k(G)$ is a quotient group of G in this case.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The canonical homomorphism $\varphi_{G,k} \colon G \to T_k(G)$ is continuous, open, and surjective for k = 0, 1, 2 (Theorem 2.2). Hence $T_k(G)$ is a quotient group of G in this case.

Conclusion: To describe the group $T_k(G)$ for k = 0, 1, 2 in 'internal' terms, it suffices to determine the kernel N_k of the homomorphism $\varphi_{G,k}$. Then $T_k(G) \cong G/N_k$ and $\varphi_{G,k}$ is simply the quotient homomorphism $\pi_k \colon G \to G/N_k$.

The canonical homomorphism $\varphi_{G,k} \colon G \to T_k(G)$ is continuous, open, and surjective for k = 0, 1, 2 (Theorem 2.2). Hence $T_k(G)$ is a quotient group of G in this case.

Conclusion: To describe the group $T_k(G)$ for k = 0, 1, 2 in 'internal' terms, it suffices to determine the kernel N_k of the homomorphism $\varphi_{G,k}$. Then $T_k(G) \cong G/N_k$ and $\varphi_{G,k}$ is simply the quotient homomorphism $\pi_k \colon G \to G/N_k$.

Let us start with k = 0.

Theorem 3.1.

Let G be an arbitrary semitopological group and $\mathcal{N}(e)$ the family of open neighborhoods of the neutral element e in G. Then $N_0 = P \cap P^{-1}$, where $P = \bigcap \mathcal{N}(e)$. Hence $T_0(G) \cong G/N_0$.

The canonical homomorphism $\varphi_{G,k} \colon G \to T_k(G)$ is continuous, open, and surjective for k = 0, 1, 2 (Theorem 2.2). Hence $T_k(G)$ is a quotient group of G in this case.

Conclusion: To describe the group $T_k(G)$ for k = 0, 1, 2 in 'internal' terms, it suffices to determine the kernel N_k of the homomorphism $\varphi_{G,k}$. Then $T_k(G) \cong G/N_k$ and $\varphi_{G,k}$ is simply the quotient homomorphism $\pi_k \colon G \to G/N_k$.

Let us start with k = 0.

Theorem 3.1.

Let G be an arbitrary semitopological group and $\mathcal{N}(e)$ the family of open neighborhoods of the neutral element e in G. Then $N_0 = P \cap P^{-1}$, where $P = \bigcap \mathcal{N}(e)$. Hence $T_0(G) \cong G/N_0$.

Warning: The subgroup N_0 of G is not necessarily closed in G.

The case k = 1.

<□ > < @ > < E > < E > E のQ @

The case k = 1.

Given a semitopological group G, it is tempting to conjecture that $N_1 = \bigcap \mathcal{N}(e)$. Unfortunately, this candidate for N_1 can easily fail to be a subgroup!

The case k = 1.

Given a semitopological group G, it is tempting to conjecture that $N_1 = \bigcap \mathcal{N}(e)$. Unfortunately, this candidate for N_1 can easily fail to be a subgroup!

Theorem 3.2.

Let G be an arbitrary semitopological group. Then N_1 is the smallest closed subgroup of G. Hence $T_1(G) \cong G/N_1$.

The case k = 1.

Given a semitopological group G, it is tempting to conjecture that $N_1 = \bigcap \mathcal{N}(e)$. Unfortunately, this candidate for N_1 can easily fail to be a subgroup!

Theorem 3.2.

Let G be an arbitrary semitopological group. Then N_1 is the smallest closed subgroup of G. Hence $T_1(G) \cong G/N_1$.

Clearly, the quotient group G/N_1 satisfies the T_1 separation axiom. To show that $T_1(G) \cong G/N_1$, it suffices to prove the following:

The case k = 1.

Given a semitopological group G, it is tempting to conjecture that $N_1 = \bigcap \mathcal{N}(e)$. Unfortunately, this candidate for N_1 can easily fail to be a subgroup!

Theorem 3.2.

Let G be an arbitrary semitopological group. Then N_1 is the smallest closed subgroup of G. Hence $T_1(G) \cong G/N_1$.

Clearly, the quotient group G/N_1 satisfies the T_1 separation axiom. To show that $T_1(G) \cong G/N_1$, it suffices to prove the following:

For every continuous mapping $f: G \to X$ to a T_1 -space X, there exists a continuous mapping $h: G/N_1 \to X$ satisfying $f = h \circ \pi_1$, where π_1 is the quotient homomorphism of G onto G/N_1 .

The case k = 1.

Given a semitopological group G, it is tempting to conjecture that $N_1 = \bigcap \mathcal{N}(e)$. Unfortunately, this candidate for N_1 can easily fail to be a subgroup!

Theorem 3.2.

Let G be an arbitrary semitopological group. Then N_1 is the smallest closed subgroup of G. Hence $T_1(G) \cong G/N_1$.

Clearly, the quotient group G/N_1 satisfies the T_1 separation axiom. To show that $T_1(G) \cong G/N_1$, it suffices to prove the following:

For every continuous mapping $f: G \to X$ to a T_1 -space X, there exists a continuous mapping $h: G/N_1 \to X$ satisfying $f = h \circ \pi_1$, where π_1 is the quotient homomorphism of G onto G/N_1 .

TRY IT! (A hint follows.)

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Open problem. Give an internal description of the kernel N_2 of the canonical homomorphism $\varphi_{G,2} \colon G \to T_2(G)$, for an arbitrary semitopological group G.

Open problem. Give an internal description of the kernel N_2 of the canonical homomorphism $\varphi_{G,2} \colon G \to T_2(G)$, for an arbitrary semitopological group G.

We solve the problem for paratopological groups:

Theorem 3.3.

Let G be a paratopological group and $\mathcal{N}(e)$ the family of open neighborhoods of the neutral element e in G. Then

$$N_2 = \bigcap_{U \in \mathcal{N}(e)} \overline{U}$$

or, equivalently,

$$N_2 = \bigcap_{U \in \mathcal{N}(e)} UU^{-1}.$$

Hence $T_2(G) \cong G/N_2$.

'Internal' description of the groups $T_3(G)$ and Reg(G)Again, we **do not know** any description of $T_3(G)$ or Reg(G), for a semitopological group G.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

'Internal' description of the groups $T_3(G)$ and Reg(G)Again, we **do not know** any description of $T_3(G)$ or Reg(G), for a semitopological group G.

Lemma 3.4.

For every semitopological group G, the canonical homomorphism $\varphi_{G,3}$: $G \to T_3(G)$ is a continuous bijection. Hence the kernel N_3 of $\varphi_{G,3}$ is trivial.

Again, we **do not know** any description of $T_3(G)$ or Reg(G), for a semitopological group G.

Lemma 3.4.

For every semitopological group G, the canonical homomorphism $\varphi_{G,3}$: $G \to T_3(G)$ is a continuous bijection. Hence the kernel N_3 of $\varphi_{G,3}$ is trivial.

Sometimes the functor T_3 'collapses' the topology of a paratopological group G:

Again, we **do not know** any description of $T_3(G)$ or Reg(G), for a semitopological group G.

Lemma 3.4.

For every semitopological group G, the canonical homomorphism $\varphi_{G,3}$: $G \to T_3(G)$ is a continuous bijection. Hence the kernel N_3 of $\varphi_{G,3}$ is trivial.

Sometimes the functor T_3 'collapses' the topology of a paratopological group G:

Example 3.5.

Let $(\mathbb{R},+)$ be the additive group of reals and

$$V_n=\{0\}\cup [n,\infty).$$

Again, we **do not know** any description of $T_3(G)$ or Reg(G), for a semitopological group G.

Lemma 3.4.

For every semitopological group G, the canonical homomorphism $\varphi_{G,3}$: $G \to T_3(G)$ is a continuous bijection. Hence the kernel N_3 of $\varphi_{G,3}$ is trivial.

Sometimes the functor T_3 'collapses' the topology of a paratopological group G:

Example 3.5.

Let $(\mathbb{R},+)$ be the additive group of reals and

$$V_n = \{0\} \cup [n,\infty).$$

Then $\{V_n : n \in \mathbb{N}\}$ is a local base at zero for a paratopological group topology \mathcal{T} on \mathbb{R} and the group $G = (\mathbb{R}, \mathcal{T})$ satisfies the T_1 separation axiom.

Again, we **do not know** any description of $T_3(G)$ or Reg(G), for a semitopological group G.

Lemma 3.4.

For every semitopological group G, the canonical homomorphism $\varphi_{G,3}$: $G \to T_3(G)$ is a continuous bijection. Hence the kernel N_3 of $\varphi_{G,3}$ is trivial.

Sometimes the functor T_3 'collapses' the topology of a paratopological group G:

Example 3.5.

Let $(\mathbb{R}, +)$ be the additive group of reals and

$$V_n = \{0\} \cup [n,\infty).$$

Then $\{V_n : n \in \mathbb{N}\}$ is a local base at zero for a paratopological group topology \mathcal{T} on \mathbb{R} and the group $G = (\mathbb{R}, \mathcal{T})$ satisfies the T_1 separation axiom. Further, the group $T_3(G)$ carries the anti-discrete topology since every V_n is dense in G.

Theorem 3.6. $T_3(G)$ is the regularization of G, i.e., $T_3(G) \cong G_r$, for every paratopological group G.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theorem 3.6.

 $T_3(G)$ is the regularization of G, i.e., $T_3(G) \cong G_r$, for every paratopological group G.

Thus the groups $T_3(G)$ and G coincide algebraically, while the regular open sets in G constitute a base for the topology of $T_3(G)$.

Theorem 3.6.

 $T_3(G)$ is the regularization of G, i.e., $T_3(G) \cong G_r$, for every paratopological group G.

Thus the groups $T_3(G)$ and G coincide algebraically, while the regular open sets in G constitute a base for the topology of $T_3(G)$.

Here is a two-step description of the groups Reg(G):

Theorem 3.7.

Let G be an arbitrary paratopological group. Then Reg(G) is the regularization of the paratopological group $T_2(G)$. Therefore, $Reg(G) \cong (G/N_2)_r$.

'Internal' description of the groups $T_3(G)$ and Reg(G)

Theorem 3.6.

 $T_3(G)$ is the regularization of G, i.e., $T_3(G) \cong G_r$, for every paratopological group G.

Thus the groups $T_3(G)$ and G coincide algebraically, while the regular open sets in G constitute a base for the topology of $T_3(G)$.

Here is a two-step description of the groups Reg(G):

Theorem 3.7.

Let G be an arbitrary paratopological group. Then Reg(G) is the regularization of the paratopological group $T_2(G)$. Therefore, $Reg(G) \cong (G/N_2)_r$.

Theorem 3.7 admits a more general functorial form:

$$Reg \cong T_3 \circ T_2.$$

Regularity = $T_1 + T_3$. Does this imply that $Reg \cong T_3 \circ T_1$ or $Reg \cong T_1 \circ T_3$ in the category of paratopological groups?

Regularity = $T_1 + T_3$. Does this imply that $Reg \cong T_3 \circ T_1$ or $Reg \cong T_1 \circ T_3$ in the category of paratopological groups?

Theorem 4.1.

The functors Reg, $T_0 \circ T_3$, $T_1 \circ T_3$ and $T_2 \circ T_3$ are naturally equivalent in the category of semitopological groups.

Regularity = $T_1 + T_3$. Does this imply that $Reg \cong T_3 \circ T_1$ or $Reg \cong T_1 \circ T_3$ in the category of paratopological groups?

Theorem 4.1.

The functors Reg, $T_0 \circ T_3$, $T_1 \circ T_3$ and $T_2 \circ T_3$ are naturally equivalent in the category of semitopological groups.

Since $Reg \cong T_3 \circ T_2$ in the category of paratopological groups, we obtain:

Regularity = $T_1 + T_3$. Does this imply that $Reg \cong T_3 \circ T_1$ or $Reg \cong T_1 \circ T_3$ in the category of paratopological groups?

Theorem 4.1.

The functors Reg, $T_0 \circ T_3$, $T_1 \circ T_3$ and $T_2 \circ T_3$ are naturally equivalent in the category of semitopological groups.

Since $Reg \cong T_3 \circ T_2$ in the category of paratopological groups, we obtain:

Corollary 4.2.

 $T_2 \circ T_3 \cong T_3 \circ T_2$, i.e., the functors T_2 and T_3 'commute' in the category of paratopological groups.

Regularity = $T_1 + T_3$. Does this imply that $Reg \cong T_3 \circ T_1$ or $Reg \cong T_1 \circ T_3$ in the category of paratopological groups?

Theorem 4.1.

The functors Reg, $T_0 \circ T_3$, $T_1 \circ T_3$ and $T_2 \circ T_3$ are naturally equivalent in the category of semitopological groups.

Since $Reg \cong T_3 \circ T_2$ in the category of paratopological groups, we obtain:

Corollary 4.2.

 $T_2 \circ T_3 \cong T_3 \circ T_2$, i.e., the functors T_2 and T_3 'commute' in the category of paratopological groups.

Open problem. Do the functors T_2 and T_3 commute in the category of semitopological groups?

```
Which of the 'equalities'
```

$$T_1 \circ T_3 \cong T_3 \circ T_1$$
 or $T_0 \circ T_3 \cong T_3 \circ T_0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

are valid in the category of paratopological groups?

```
Which of the 'equalities'
```

$$T_1 \circ T_3 \cong T_3 \circ T_1$$
 or $T_0 \circ T_3 \cong T_3 \circ T_0$

are valid in the category of paratopological groups?

Example 4.3.

 $T_1 \circ T_3 \not\cong T_3 \circ T_1.$

```
Which of the 'equalities'
```

 $T_1 \circ T_3 \cong T_3 \circ T_1$ or $T_0 \circ T_3 \cong T_3 \circ T_0$

are valid in the category of paratopological groups?

Example 4.3.

 $T_1 \circ T_3 \not\cong T_3 \circ T_1$. Indeed, let G be the group in Example 3.5. We know that G is a T_1 -space with $|G| = |\mathbb{R}| = 2^{\omega}$ and $T_3(G)$ is the same group G endowed with the anti-discrete topology.

```
Which of the 'equalities'
```

 $T_1 \circ T_3 \cong T_3 \circ T_1$ or $T_0 \circ T_3 \cong T_3 \circ T_0$

are valid in the category of paratopological groups?

Example 4.3.

 $T_1 \circ T_3 \ncong T_3 \circ T_1$. Indeed, let *G* be the group in Example 3.5. We know that *G* is a T_1 -space with $|G| = |\mathbb{R}| = 2^{\omega}$ and $T_3(G)$ is the same group *G* endowed with the anti-discrete topology. Hence $T_1(G) \cong G$.

Which of the 'equalities'

 $T_1 \circ T_3 \cong T_3 \circ T_1$ or $T_0 \circ T_3 \cong T_3 \circ T_0$

are valid in the category of paratopological groups?

Example 4.3.

 $T_1 \circ T_3 \ncong T_3 \circ T_1$. Indeed, let *G* be the group in Example 3.5. We know that *G* is a T_1 -space with $|G| = |\mathbb{R}| = 2^{\omega}$ and $T_3(G)$ is the same group *G* endowed with the anti-discrete topology. Hence $T_1(G) \cong G$. Therefore,

$$T_3(T_1(G))\cong T_3(G)$$

is an infinite group, while $T_1(T_3(G))$ is a trivial one-element group.

Which of the 'equalities'

 $T_1 \circ T_3 \cong T_3 \circ T_1$ or $T_0 \circ T_3 \cong T_3 \circ T_0$

are valid in the category of paratopological groups?

Example 4.3.

 $T_1 \circ T_3 \ncong T_3 \circ T_1$. Indeed, let *G* be the group in Example 3.5. We know that *G* is a T_1 -space with $|G| = |\mathbb{R}| = 2^{\omega}$ and $T_3(G)$ is the same group *G* endowed with the anti-discrete topology. Hence $T_1(G) \cong G$. Therefore,

$$T_3(T_1(G))\cong T_3(G)$$

is an infinite group, while $T_1(T_3(G))$ is a trivial one-element group. Concluding, $|T_3(T_1(G))| = 2^{\omega} > 1 = |T_1(T_3(G))|$.

```
Which of the 'equalities'
```

 $T_1 \circ T_3 \cong T_3 \circ T_1$ or $T_0 \circ T_3 \cong T_3 \circ T_0$

are valid in the category of paratopological groups?

Example 4.3.

 $T_1 \circ T_3 \ncong T_3 \circ T_1$. Indeed, let *G* be the group in Example 3.5. We know that *G* is a T_1 -space with $|G| = |\mathbb{R}| = 2^{\omega}$ and $T_3(G)$ is the same group *G* endowed with the anti-discrete topology. Hence $T_1(G) \cong G$. Therefore,

$$T_3(T_1(G))\cong T_3(G)$$

is an infinite group, while $T_1(T_3(G))$ is a trivial one-element group. Concluding, $|T_3(T_1(G))| = 2^{\omega} > 1 = |T_1(T_3(G))|$.

Similarly, $T_0 \circ T_3 \ncong T_3 \circ T_0$.

Let $\Pi = \prod_{i \in I} G_i$ be a product of semitopological (paratopological) groups. We wonder whether the 'equality'

$$T_k(\Pi)\cong\prod_{i\in I}T_k(G_i)$$

holds for some k = 0, 1, 2, 3.

Let $\Pi = \prod_{i \in I} G_i$ be a product of semitopological (paratopological) groups. We wonder whether the 'equality'

$$T_k(\Pi)\cong\prod_{i\in I}T_k(G_i)$$

holds for some k = 0, 1, 2, 3. The same question stands for the functors *Reg* and *Tych*. If the equality is valid, we say that the corresponding functor T_k commutes with products.

Let $\Pi = \prod_{i \in I} G_i$ be a product of semitopological (paratopological) groups. We wonder whether the 'equality'

$$T_k(\Pi) \cong \prod_{i \in I} T_k(G_i)$$

holds for some k = 0, 1, 2, 3. The same question stands for the functors *Reg* and *Tych*. If the equality is valid, we say that the corresponding functor T_k commutes with products.

Theorem 5.1.

The functors T_0 , T_1 , and T_2 commute with arbitrary products of semitopological groups.

Let $\Pi = \prod_{i \in I} G_i$ be a product of semitopological (paratopological) groups. We wonder whether the 'equality'

$$T_k(\Pi) \cong \prod_{i \in I} T_k(G_i)$$

holds for some k = 0, 1, 2, 3. The same question stands for the functors *Reg* and *Tych*. If the equality is valid, we say that the corresponding functor T_k commutes with products.

Theorem 5.1.

The functors T_0 , T_1 , and T_2 commute with arbitrary products of semitopological groups.

For each of the functors T_0 , T_1 , T_2 , the proof of Theorem 5.1 is 'individual', depending on the form of $N_k = \ker \varphi_{G,k}$ for k = 0, 1, 2.

The case of products of paratopological groups:

Theorem 5.2.

The functors T_3 and Reg commute with arbitrary products of paratopological groups.

The case of products of paratopological groups:

Theorem 5.2.

The functors T_3 and Reg commute with arbitrary products of paratopological groups.

Sketch of the proof. It is well-known that every product of topological spaces satisfies

$$(\prod_{i\in I}X_i)_{sr}\cong\prod_{i\in I}(X_i)_{sr}$$

where the subscript 'sr' stands for the semiregularization.

The case of products of paratopological groups:

Theorem 5.2.

The functors T_3 and Reg commute with arbitrary products of paratopological groups.

Sketch of the proof. It is well-known that every product of topological spaces satisfies

$$(\prod_{i\in I}X_i)_{sr}\cong\prod_{i\in I}(X_i)_{sr}$$

where the subscript 'sr' stands for the semiregularization. Since $T_3(G) \cong G_r = G_{sr}$ for every paratopological group G, the conclusion for T_3 is immediate.

The case of products of paratopological groups:

Theorem 5.2.

The functors T_3 and Reg commute with arbitrary products of paratopological groups.

Sketch of the proof. It is well-known that every product of topological spaces satisfies

$$(\prod_{i\in I}X_i)_{sr}\cong\prod_{i\in I}(X_i)_{sr}$$

where the subscript 'sr' stands for the semiregularization. Since $T_3(G) \cong G_r = G_{sr}$ for every paratopological group G, the conclusion for T_3 is immediate. Also, $Reg(G) \cong T_1(T_3(G))$, for any paratopological group G.

The case of products of paratopological groups:

Theorem 5.2.

The functors T_3 and Reg commute with arbitrary products of paratopological groups.

Sketch of the proof. It is well-known that every product of topological spaces satisfies

$$(\prod_{i\in I}X_i)_{sr}\cong\prod_{i\in I}(X_i)_{sr}$$

where the subscript 'sr' stands for the semiregularization. Since $T_3(G) \cong G_r = G_{sr}$ for every paratopological group G, the conclusion for T_3 is immediate. Also, $Reg(G) \cong T_1(T_3(G))$, for any paratopological group G. Since both T_1 and T_3 commute with products, so does Reg.

Extension of Reznichenko's theorem (*Every* σ -compact Hausdorff paratopological group has countable cellularity):

Extension of Reznichenko's theorem (*Every* σ -compact Hausdorff paratopological group has countable cellularity): **One can drop Hausdorff here.**

Extension of Reznichenko's theorem (*Every* σ -compact Hausdorff paratopological group has countable cellularity): **One can drop Hausdorff here.**

Theorem 6.1.

Every σ -compact paratopological group has countable cellularity.

Extension of Reznichenko's theorem (*Every* σ -compact Hausdorff paratopological group has countable cellularity): **One can drop Hausdorff here.**

Theorem 6.1.

Every σ -compact paratopological group has countable cellularity.

Lemma 6.2.

Let G be an arbitrary paratopological group and $\varphi_2 \colon G \to T_2(G)$ the canonical quotient homomorphism.

Extension of Reznichenko's theorem (*Every* σ -compact Hausdorff paratopological group has countable cellularity): **One can drop Hausdorff here.**

Theorem 6.1.

Every σ -compact paratopological group has countable cellularity.

Lemma 6.2.

Let G be an arbitrary paratopological group and $\varphi_2 \colon G \to T_2(G)$ the canonical quotient homomorphism. Then $\overline{U} = \varphi_2^{-1} \varphi_2(\overline{U})$, for every open subset U of G.

Extension of Reznichenko's theorem (*Every* σ -compact Hausdorff paratopological group has countable cellularity): **One can drop Hausdorff here.**

Theorem 6.1.

Every σ -compact paratopological group has countable cellularity.

Lemma 6.2.

Let G be an arbitrary paratopological group and $\varphi_2 \colon G \to T_2(G)$ the canonical quotient homomorphism. Then $\overline{U} = \varphi_2^{-1} \varphi_2(\overline{U})$, for every open subset U of G. In particular, $\varphi_2(U) \cap \varphi_2(V) = \emptyset$ if U, V are disjoint open sets in G.

Extension of Reznichenko's theorem (*Every* σ -compact Hausdorff paratopological group has countable cellularity): **One can drop Hausdorff here.**

Theorem 6.1.

Every σ -compact paratopological group has countable cellularity.

Lemma 6.2.

Let G be an arbitrary paratopological group and $\varphi_2 \colon G \to T_2(G)$ the canonical quotient homomorphism. Then $\overline{U} = \varphi_2^{-1}\varphi_2(\overline{U})$, for every open subset U of G. In particular, $\varphi_2(U) \cap \varphi_2(V) = \emptyset$ if U, V are disjoint open sets in G. Hence $c(G) = c(T_2(G))$.

Extension of Reznichenko's theorem (*Every* σ -compact Hausdorff paratopological group has countable cellularity): **One can drop Hausdorff here.**

Theorem 6.1.

Every σ -compact paratopological group has countable cellularity.

Lemma 6.2.

Let G be an arbitrary paratopological group and $\varphi_2 \colon G \to T_2(G)$ the canonical quotient homomorphism. Then $\overline{U} = \varphi_2^{-1}\varphi_2(\overline{U})$, for every open subset U of G. In particular, $\varphi_2(U) \cap \varphi_2(V) = \emptyset$ if U, V are disjoint open sets in G. Hence $c(G) = c(T_2(G))$.

Proof of Theorem 6.1. *G* is σ -compact $\implies T_2(G)$ is σ -compact. Hence, by Lemma 6.2, $c(G) = c(T_2(G)) \le \omega$.

Extension of Reznichenko's theorem (*Every* σ -compact Hausdorff paratopological group has countable cellularity): **One can drop Hausdorff here.**

Theorem 6.1.

Every σ -compact paratopological group has countable cellularity.

Lemma 6.2.

Let G be an arbitrary paratopological group and $\varphi_2 \colon G \to T_2(G)$ the canonical quotient homomorphism. Then $\overline{U} = \varphi_2^{-1}\varphi_2(\overline{U})$, for every open subset U of G. In particular, $\varphi_2(U) \cap \varphi_2(V) = \emptyset$ if U, V are disjoint open sets in G. Hence $c(G) = c(T_2(G))$.

Proof of Theorem 6.1. *G* is σ -compact $\implies T_2(G)$ is σ -compact. Hence, by Lemma 6.2, $c(G) = c(T_2(G)) \le \omega$.

In fact, the conclusion of Theorem 6.1 can be strengthened: *Every* σ -compact paratopological group has the Knaster property.

A space X is Moscow if every regular closed set in X is the union of a family of G_{δ} -sets in X.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A space X is Moscow if every regular closed set in X is the union of a family of G_{δ} -sets in X.

Theorem 6.3 (W.W. Comfort, J. Trigos–Arrieta, M. Sanchis??).

The product of an arbitrary family of locally pseudocompact topological groups is a Moscow space.

A space X is Moscow if every regular closed set in X is the union of a family of G_{δ} -sets in X.

Theorem 6.3 (W.W. Comfort, J. Trigos–Arrieta, M. Sanchis??).

The product of an arbitrary family of locally pseudocompact topological groups is a Moscow space.

A version for paratopological groups (solving M. Sanchis' problem):

A space X is Moscow if every regular closed set in X is the union of a family of G_{δ} -sets in X.

Theorem 6.3 (W.W. Comfort, J. Trigos–Arrieta, M. Sanchis??).

The product of an arbitrary family of locally pseudocompact topological groups is a Moscow space.

A version for paratopological groups (solving M. Sanchis' problem):

Theorem 6.4 (Tk., 2012).

Any product of Hausdorff locally feebly compact paratopological groups is a Moscow space.

A space X is Moscow if every regular closed set in X is the union of a family of G_{δ} -sets in X.

Theorem 6.3 (W.W. Comfort, J. Trigos–Arrieta, M. Sanchis??).

The product of an arbitrary family of locally pseudocompact topological groups is a Moscow space.

A version for paratopological groups (solving M. Sanchis' problem):

Theorem 6.4 (Tk., 2012).

Any product of Hausdorff locally feebly compact paratopological groups is a Moscow space.

One can drop 'Hausdorff' in the above theorem!

Theorem 6.5.

Any product of locally feebly compact paratopological groups is a Moscow space.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem 6.5.

Any product of locally feebly compact paratopological groups is a Moscow space.

Proof.

Let $G = \prod_{i \in I} G_i$ be a product of locally feebly compact paratopological groups.

Theorem 6.5.

Any product of locally feebly compact paratopological groups is a Moscow space.

Proof.

Let $G = \prod_{i \in I} G_i$ be a product of locally feebly compact paratopological groups. We know that $T_2(G) \cong \prod_{i \in I} T_2(G_i)$ (Theorem 5.1).

Theorem 6.5.

Any product of locally feebly compact paratopological groups is a Moscow space.

Proof.

Let $G = \prod_{i \in I} G_i$ be a product of locally feebly compact paratopological groups. We know that $T_2(G) \cong \prod_{i \in I} T_2(G_i)$ (Theorem 5.1). Each group $T_2(G_i)$ is Hausdorff and locally feebly compact (as a quotient of G_i), hence $T_2(G)$ is a Moscow space by Theorem 6.4.

Theorem 6.5.

Any product of locally feebly compact paratopological groups is a Moscow space.

Proof.

Let $G = \prod_{i \in I} G_i$ be a product of locally feebly compact paratopological groups. We know that $T_2(G) \cong \prod_{i \in I} T_2(G_i)$ (Theorem 5.1). Each group $T_2(G_i)$ is Hausdorff and locally feebly compact (as a quotient of G_i), hence $T_2(G)$ is a Moscow space by Theorem 6.4. Let $\varphi_2 \colon G \to T_2(G)$ be the quotient homomorphism.

Theorem 6.5.

Any product of locally feebly compact paratopological groups is a Moscow space.

Proof.

Let $G = \prod_{i \in I} G_i$ be a product of locally feebly compact paratopological groups. We know that $T_2(G) \cong \prod_{i \in I} T_2(G_i)$ (Theorem 5.1). Each group $T_2(G_i)$ is Hausdorff and locally feebly compact (as a quotient of G_i), hence $T_2(G)$ is a Moscow space by Theorem 6.4. Let $\varphi_2 \colon G \to T_2(G)$ be the quotient homomorphism. If U is open in G, then $\overline{U} = \varphi_2^{-1}\varphi_2(\overline{U})$, whence $\varphi_2(\overline{U}) = \overline{\varphi_2(U)}$.

Theorem 6.5.

Any product of locally feebly compact paratopological groups is a Moscow space.

Proof.

Let $G = \prod_{i \in I} G_i$ be a product of locally feebly compact paratopological groups. We know that $T_2(G) \cong \prod_{i \in I} T_2(G_i)$ (Theorem 5.1). Each group $T_2(G_i)$ is Hausdorff and locally feebly compact (as a quotient of G_i), hence $T_2(G)$ is a Moscow space by Theorem 6.4. Let $\varphi_2 \colon G \to T_2(G)$ be the quotient homomorphism. If U is open in G, then $\overline{U} = \varphi_2^{-1}\varphi_2(\overline{U})$, whence $\varphi_2(\overline{U}) = \overline{\varphi_2(U)}$. Clearly $\overline{\varphi_2(U)}$ is a $G_{\Sigma,\delta}$ -set in $T_2(G)$, and so is $\overline{U} = \varphi_2^{-1}(\overline{\varphi_2(U)})$ in G.

Theorem 6.5.

Any product of locally feebly compact paratopological groups is a Moscow space.

Proof.

Let $G = \prod_{i \in I} G_i$ be a product of locally feebly compact paratopological groups. We know that $T_2(G) \cong \prod_{i \in I} T_2(G_i)$ (Theorem 5.1). Each group $T_2(G_i)$ is Hausdorff and locally feebly compact (as a quotient of G_i), hence $T_2(G)$ is a Moscow space by Theorem 6.4. Let $\varphi_2 \colon G \to T_2(G)$ be the quotient homomorphism. If U is open in G, then $\overline{U} = \varphi_2^{-1}\varphi_2(\overline{U})$, whence $\varphi_2(\overline{U}) = \overline{\varphi_2(U)}$. Clearly $\overline{\varphi_2(U)}$ is a $G_{\Sigma,\delta}$ -set in $T_2(G)$, and so is $\overline{U} = \varphi_2^{-1}(\overline{\varphi_2(U)})$ in G. Hence G is Moscow.

Theorem 6.6 (Pontryagin, \cong 1935).

For every continuous real-valued function f on a compact topological group G, one can find a continuous homomorphism $\pi: G \to H$ onto a compact metrizable topological group H and a continuous function g on H such that $f = g \circ \pi$.

Theorem 6.6 (Pontryagin, \cong 1935).

For every continuous real-valued function f on a compact topological group G, one can find a continuous homomorphism $\pi: G \to H$ onto a compact metrizable topological group H and a continuous function g on H such that $f = g \circ \pi$.

Pontryagin's idea: Given a continuous function f on G as above, consider the set

$$N_f = \{x \in G : f(axb) = f(x) \text{ for all } a, b \in G\}.$$

Theorem 6.6 (Pontryagin, \cong 1935).

For every continuous real-valued function f on a compact topological group G, one can find a continuous homomorphism $\pi: G \to H$ onto a compact metrizable topological group H and a continuous function g on H such that $f = g \circ \pi$.

Pontryagin's idea: Given a continuous function f on G as above, consider the set

$$N_f = \{x \in G : f(axb) = f(x) \text{ for all } a, b \in G\}.$$

Then N_f is a closed invariant subgroup of G and f is constant on each coset of N_f in G.

Theorem 6.6 (Pontryagin, \cong 1935).

For every continuous real-valued function f on a compact topological group G, one can find a continuous homomorphism $\pi: G \to H$ onto a compact metrizable topological group H and a continuous function g on H such that $f = g \circ \pi$.

Pontryagin's idea: Given a continuous function f on G as above, consider the set

$$N_f = \{x \in G : f(axb) = f(x) \text{ for all } a, b \in G\}.$$

Then N_f is a closed invariant subgroup of G and f is constant on each coset of N_f in G.

Crucial step: Let us forget about both the compactness of *G* and topological group structure of *G* and then apply Pontryagin's formula directly to a continuous mapping $f: G \to X$ defined on a semitopological group *G*.

DEAR OFELIA:

THANK YOU FOR YOUR MATHEMATICS AND FOR JOINING US AT THIS WONDERFUL PLACE!

DEAR OFELIA:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

THANK YOU FOR YOUR MATHEMATICS AND FOR JOINING US AT THIS WONDERFUL PLACE!

NEW AMAZING RESULTS TO YOU!!