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History
> Wilder's problem
> Rudin’s solution

» Nyikos' problem
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Theorem 1 (Provisional)

If it is consistent there is a supercompact cardinal, it is consistent

that every hereditarily normal manifold of dimension > 1 is
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Theorem 1 (Provisional)

If it is consistent there is a supercompact cardinal, it is consistent

that every hereditarily normal manifold of dimension > 1 is
metrizable.

The model
1. Start with a supercompact. Force < or add a Cohen real.
2. Construct a coherent Souslin tree S.

3. lterate proper posets as in proof of consistency of PFA, but
only those that preserve S.
4. Force with S.
We say PFA(S)[S] implies ® to mean that if ® is a proposition, S

is a coherent Souslin tree, then any model formed via (3) and (4)
is a model of &.
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> In a compact, countably tight space, locally countable
subspaces of size ¥; are o-discrete.
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> In a compact, countably tight space, locally countable
subspaces of size ¥; are o-discrete.

CW: Normal, first countable spaces are N1-collectionwise Hausdorff.

PPI: Every first countable perfect pre-image of wj includes a copy
of w1.

M-M: Compact, countably tight spaces are sequential.
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Definition

A collection Z of countable subsets of a set X is a P-ideal if each
subset of a member of 7 is in Z, finite unions of members of Z are
in Z, and whenever {/, : n € w} CZ, there is a J € Z such that

I, — J is finite for all n.
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T is N;-generated if there is {ls} .,
| € Z, there is an « such that | C /.

C 7 such that for each

P22(X1): Suppose 7 is an Nj-generated P-ideal on a stationary
subset S of wi. Then either:

1. there is a stationary E C S such that every countable subset
of EisinZ, or

2. there is a stationary D C S such that for every countable
subset Dy of D, D; N[ is finite, for each | € 7.
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Theorem 2
Y7 + CW + PPI + Pyy(Ry) implies every Ts manifold of
dimension > 1 is metrizable.
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Theorem 2

Y7 + CW + PPI + Pyy(Xy) implies every Ts manifold of
dimension > 1 is metrizable.

Theorem 3 (Provisional)
PFA(S)[S] implies >, CW, PPI, and P2y(Xy).

Proof of Theorem 2.
Assemble pieces from Balogh's and Nyikos' papers. O
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Proof of Theorem 3.

» PFA(S)[S] implies M-M [Tod]: Claimed by Todorcevic.

» PFA(S)[S] implies ), assuming M-M [FTT].

» PFA(S)[S] implies CW [LT10]:

» PFA(S)[S] implies P22(X;) (indeed P-ideal Dichotomy)
[Tod].

» PFA(S)[S] implies PPl [Dow]: Claimed by Dow.

» Steps remaining: Check Dow's proof; Todorcevic fills gap in
his proof that PFA(S)[S] implies M-M.

L]
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Aside
PFA(S)[S] also implies:
b =Ny = 2%,
p =12y,
there are no first countable L-spaces [LT02] ,
there are no compact S-spaces [Tod],

locally compact normal spaces are Ni-collectionwise Hausdorff
[Tal],
compact spaces with Ts squares are metrizable [LT02].

By doing a preliminary forcing, one can get a model in which also:

7.

8.

normal spaces which are either first countable or locally
compact are collectionwise Hausdorff,

locally compact perfectly normal spaces are paracompact
[LT10].
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The topology
Definition
A locally compact space X is of Type | if it can be expressed as
X = Ua<w1 M, where each M,, is open, M, is Lindel6f and
included in M,.1, and for limit o, M, = U5<a Mg.
{M, : @ < w1} is called a canonical sequence for M.

9/26



The topology
Definition
A locally compact space X is of Type | if it can be expressed as
X = Ua<w1 M, where each M,, is open, M, is Lindel6f and
included in M,.1, and for limit o, M, = U5<a Mg.
{M, : @ < w1} is called a canonical sequence for M.

For a manifold, we may assume each M,, is Lindelof.
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Lemma 2
Y7 + CW implies Ts manifolds are of Type I.

Proof.

The manifold M has a basis of open Lindelof subspaces. We will
show closures of Lindelof subspaces are Lindelof. Then we can
define open Lindelof M, o < wy, by recursion:

Start with My, cover My by open Lindeldf sets, take countable
subcover, take closure of union, etc. By first countable, | J
is clopen and so = M.

Ma

a<wi

To show Y Lindeldf implies Y Lindeldf, note Y is metrizable,
hence separable, so Y separable. Y is Ts, so CW implies it has
countable spread, as does its one-point compactification Y. Y is
countably tight; it is hereditarily Lindelof, for by .7, an
uncountable right-separated subspace would be o-discrete,
contradiction. |
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Lemma 3
>~ + CW implies a locally compact subspace of a Ts manifold is
paracompact if and only if it does not include a perfect pre-image

ofwl.
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In fact, if Todorcevic's M-M result is correct, Larson and | can
prove

Theorem ([LTa], Provisional)

If it's consistent there is a supercompact, it's consistent that a
locally compact Ts space is (hereditarily) paracompact iff it does
not include a perfect pre-image of w.
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In fact, if Todorcevic's M-M result is correct, Larson and | can
prove

Theorem ([LTa], Provisional)

If it's consistent there is a supercompact, it's consistent that a
locally compact Ts space is (hereditarily) paracompact iff it does
not include a perfect pre-image of w.

Adding Dow, | can get

Theorem

If it's consistent there is a supercompact, it's consistent that a
locally compact Ts space is paracompact iff it does not include a
copy of wy.
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Definition
Suppose 7 : X — wi. We say Y C X is unbounded if 7(Y) is
unbounded.
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Definition
Suppose 7 : X — wi. We say Y C X is unbounded if 7(Y) is
unbounded.

Lemma 6 (Nyi02)

PPI+Y " + CW implies a Ts, perfect pre-image of wy included in
a manifold is the union of a paracompact space with a finite
number of disjoint unbounded copies of w;.

Definition

A selection of one point from each non-empty B, = M, — M,,
where {M,, : & < w1} is a canonical sequence for a Type | space is
called a bone-scan.
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Lemma 4

Suppose S is a stationary subset of w1 and Y = {y,:a € S} is a
subset of a bone-scan of a canonical sequence for a Type I, normal,
first countable space M, such that countable subsets of Y have
compact closure in M. Then Y is a perfect pre-image of w;.
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subset of a bone-scan of a canonical sequence for a Type I, normal,
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compact closure in M. Then Y is a perfect pre-image of w;.

Proof.

Postponed. O
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Lemma 6

PPI+Y " + CW implies a Ts, perfect pre-image of wy included in
a manifold is the union of a paracompact space with a finite
number of disjoint unbounded copies of w.

Proof.

By first countable and PPI, X © Wi = w;. Claim W is
unbounded. If not, Wy C 7~1([0, a]) for some a. Wj is countably
compact in first countable X, so closed in X and hence in

771([0, a]), which is compact. But then Wj is compact,
contradiction.
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Since W is closed, X — W4 is open and hence locally compact.
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perfect pre-image P of w; included in X — W;. By PPI, take a
copy W5 of wy included in P. Continue. We must end at some
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Lemma 7 ( [NyiO4a])

Let X be a Ts space, m: X — wy continuous, m~1({a}) countably
compact for all a € S, a stationary subset of wi. Then X cannot
include an infinite disjoint family of closed, countably compact,
unbounded subspaces.
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sequence { My }o<w, for M such that for each p € B, = M, — M,,
there is a non-trivial continuum K,(p) C By, with p € K,(p).
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Lemma 11 ( [Nyi02])

Let M be a hereditarily Ri-collectionwise Hausdorff Type |
subspace of a manifold, and {y, : « € S}, S a stationary subset of
w1, be a subset of a bone-scan. Then Pa2(X1) implies there is a
stationary S’ C S such that every countable subset of

{Ya : « € S’} has compact closure in M.
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We also need:

Lemma 12
> — =CH.

Proof.

CH — 3 compact S-space: the Kunen Line [JKR]. Y. implies
there are no compact S-spaces, since S-spaces are countably

tight. O
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B, else it would be a closed subspace of a sum of Lindelof spaces
and so would be paracompact. Pick w, € W N B,, a € some
stationary Eg C wy. By Lemma 8, pick non-trivial continua K,
such that w, € K, C B,. |W| =81 < 2%, so pick q, € K, — W.
Let M!, = M, — W. W is closed, so M — W is open, so locally
compact.
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Now we can finally prove:

Theorem 2
> + CW + PPI + P2(Ry) implies Ts manifolds of dimension
greater than 1 are metrizable.

Proof.

Non-metrizable Ts Type | manifold M includes a perfect pre-image
of wy, and hence a copy W of wy. W must meet stationarily many
B, else it would be a closed subspace of a sum of Lindelof spaces
and so would be paracompact. Pick w, € W N B,, a € some
stationary Eg C wy. By Lemma 8, pick non-trivial continua K,
such that w, € K, C B,. |W| =81 < 2%, so pick q, € K, — W.
Let M!, = M, — W. W is closed, so M — W is open, so IocaIIy
compact. M,, is hereditarily Lindeldf, so M — W = |J is
Type I.

a<wi Oé
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Proof continued.
A Type | space is paracompact iff for (some) every canonical

sequence {M,} club many (M, — M,,)'s are empty.

a<wy!
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Proof continued.

A Type | space is paracompact iff for (some) every canonical
sequence {My} ., , club many (M, — M,)'s are empty.
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f:M—[0,1], f(W)=0,f(Q)=1. Then f(K,) = [0, 1] for each
«a € E;. For a's in Ej, recursively pick z, € K, such that V3 < a,
f(xg) # f(xa). By P22(R1) and Lemmas 4, 11, there is a
stationary E C Ej such that Z = {z, : « € E} is a perfect
pre-image of wj.
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2. p) € U{Bayyap)  k <w} = U{ By ap : k <w}. Also
observe that f(z(a, p)) = p. Thus we can recursively pick
uncountably many members of Z which get sent to p. Since f is
continuous, Z N f~1({p}) is closed, hence countably compact.
Such sets are unbounded, and are disjoint for different p. But this
contradicts Lemma 7. Ol

22/26



Some more proofs.

Lemma 3
>~ + CW implies a locally compact subspace of a Ts manifold is
paracompact if and only if it does not include a perfect pre-image

ofwl.

23 /26



Some more proofs.

Lemma 3

>~ + CW implies a locally compact subspace of a Ts manifold is
paracompact if and only if it does not include a perfect pre-image
ofwl.

Proof.

—: A ppi would be countably compact, hence closed, hence
paracompact, but not compact, contradiction.

23 /26



Some more proofs.

Lemma 3

>~ + CW implies a locally compact subspace of a Ts manifold is
paracompact if and only if it does not include a perfect pre-image
ofwl.

Proof.
—: A ppi would be countably compact, hence closed, hence
paracompact, but not compact, contradiction.

< As in proof of Lemma 2, each component Y is Type I.

23 /26



Some more proofs.

Lemma 3

>~ + CW implies a locally compact subspace of a Ts manifold is
paracompact if and only if it does not include a perfect pre-image
ofwl.

Proof.
—: A ppi would be countably compact, hence closed, hence
paracompact, but not compact, contradiction.

< As in proof of Lemma 2, each component Y is Type |. It

suffices to show Y = Ua<w1 Y, is paracompact.

23 /26



Some more proofs.

Lemma 3

>~ + CW implies a locally compact subspace of a Ts manifold is
paracompact if and only if it does not include a perfect pre-image
ofwl.

Proof.
—: A ppi would be countably compact, hence closed, hence
paracompact, but not compact, contradiction.

< As in proof of Lemma 2, each component Y is Type |. It

suffices to show Y = Ua<w1 Y, is paracompact. As in proof of
Lemma 2, each Y, has countable spread.

23 /26



Some more proofs.

Lemma 3

>~ + CW implies a locally compact subspace of a Ts manifold is
paracompact if and only if it does not include a perfect pre-image
ofwl.

Proof.
—: A ppi would be countably compact, hence closed, hence
paracompact, but not compact, contradiction.

< As in proof of Lemma 2, each component Y is Type |. It
suffices to show Y = Ua<w1 Y, is paracompact. As in proof of
Lemma 2, each Y, has countable spread. If Y were not
paracompact, there would be a stationary S C wj such that for
eacha €S, Y,— Yy #0.

23 /26



Some more proofs.

Lemma 3

>~ + CW implies a locally compact subspace of a Ts manifold is
paracompact if and only if it does not include a perfect pre-image
ofwl.

Proof.
—: A ppi would be countably compact, hence closed, hence
paracompact, but not compact, contradiction.

< As in proof of Lemma 2, each component Y is Type |. It
suffices to show Y = Ua<w1 Y, is paracompact. As in proof of
Lemma 2, each Y, has countable spread. If Y were not
paracompact, there would be a stationary S C wj such that for
eacha €S, Yy—Yy#0. Pickyo € Yo — Yo, a €S.

23 /26



Some more proofs.

Lemma 3

>~ + CW implies a locally compact subspace of a Ts manifold is
paracompact if and only if it does not include a perfect pre-image
ofwl.

Proof.
—: A ppi would be countably compact, hence closed, hence
paracompact, but not compact, contradiction.

< As in proof of Lemma 2, each component Y is Type |. It
suffices to show Y = Ua<w1 Y, is paracompact. As in proof of
Lemma 2, each Y, has countable spread. If Y were not
paracompact, there would be a stationary S C wj such that for
each €S, Yo —Ya#0. Pickya € Ya— Yo, a€S. Y'is
countably tight, {y, : @ € S} is locally countable, so by .~ it is
o-discrete.

23 /26



Some more proofs.

Lemma 3

>~ + CW implies a locally compact subspace of a Ts manifold is
paracompact if and only if it does not include a perfect pre-image
ofwl.

Proof.
—: A ppi would be countably compact, hence closed, hence
paracompact, but not compact, contradiction.

< As in proof of Lemma 2, each component Y is Type |. It
suffices to show Y = Ua<w1 Y, is paracompact. As in proof of
Lemma 2, each Y, has countable spread. If Y were not
paracompact, there would be a stationary S C wj such that for
each €S, Yo —Ya#0. Pickya € Ya— Yo, a€S. Y'is
countably tight, {y, : @ € S} is locally countable, so by .~ it is
o-discrete. Apply CW and press down to obtain an uncountable
discrete subspace of some Y.

23 /26



Some more proofs.

Lemma 3

>~ + CW implies a locally compact subspace of a Ts manifold is
paracompact if and only if it does not include a perfect pre-image
ofwl.

Proof.
—: A ppi would be countably compact, hence closed, hence
paracompact, but not compact, contradiction.

< As in proof of Lemma 2, each component Y is Type |. It
suffices to show Y = Ua<w1 Y, is paracompact. As in proof of
Lemma 2, each Y, has countable spread. If Y were not
paracompact, there would be a stationary S C wj such that for
each €S, Yo —Ya#0. Pickya € Ya— Yo, a€S. Y'is
countably tight, {y, : @ € S} is locally countable, so by .~ it is
o-discrete. Apply CW and press down to obtain an uncountable
discrete subspace of some Y. But Y, is hereditarily Lindelof,
contradiction.
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Definition
A subspace Z of a space X is conditionally compact if every
infinite subspace of Z has a limit point in X.
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Definition
A subspace Z of a space X is conditionally compact if every
infinite subspace of Z has a limit point in X.

Lemma 5

In a normal space, the closure of a conditionally compact subspace
is countably compact.

Proof.

Exercise.

OJ
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Lemma 4

Suppose S is a stationary subset of w; and Y = {y,:a €S} isa
subset of a bone-scan of a canonical sequence for a Type I, normal,
first countable space M, such that countable subsets of Y have
compact closure in M. Then Y is a perfect pre-image of w;.
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closed in B, which is closed and Lindeldf, so it is closed in Y and
is Lindelof. It suffices to show Y is countably compact. But Y is
conditionally compact.

25 /26



Proof continued.
Next, claim 7 is continuous. This is because if y,, € Y, and
Ya, — Ya, then y, € Y,.
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Proof continued.
Next, claim 7 is continuous. This is because if y,, € Y, and
Ya, — Ya, then y, € Y,.

Note 7 is closed, since continuous images of countably compact
spaces are countably compact.
The range of 7 is unbounded, since S is uncountable and the B,'s

are disjoint. Range 7 is closed, since 7 is closed. Thus range 7 is
club, so homeomorphic to wj. O
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