A Provisional Solution of Nyikos' Manifold Problem: Hereditarily Normal Manifolds of Dimension > 1 May All Be Metrizable (Verification in progress: proofs by Todorcevic and by Dow

need to be checked)

Franklin D. Tall

July 23, 2013

1/26

History

- Wilder's problem
- Rudin's solution
- Nyikos' problem

If it is consistent there is a supercompact cardinal, it is consistent that every hereditarily normal manifold of dimension > 1 is metrizable.

If it is consistent there is a supercompact cardinal, it is consistent that every hereditarily normal manifold of dimension > 1 is metrizable.

The model

1. Start with a supercompact. Force \Diamond or add a Cohen real.

If it is consistent there is a supercompact cardinal, it is consistent that every hereditarily normal manifold of dimension > 1 is metrizable.

The model

3 / 26

- 1. Start with a supercompact. Force \Diamond or add a Cohen real.
- 2. Construct a coherent Souslin tree S.

If it is consistent there is a supercompact cardinal, it is consistent that every hereditarily normal manifold of dimension > 1 is metrizable.

The model

- 1. Start with a supercompact. Force \diamondsuit or add a Cohen real.
- 2. Construct a coherent Souslin tree S.
- 3. Iterate proper posets as in proof of consistency of PFA, but only those that preserve *S*.

If it is consistent there is a supercompact cardinal, it is consistent that every hereditarily normal manifold of dimension > 1 is metrizable.

The model

- 1. Start with a supercompact. Force \Diamond or add a Cohen real.
- 2. Construct a coherent Souslin tree S.
- 3. Iterate proper posets as in proof of consistency of PFA, but only those that preserve *S*.
- 4. Force with S.

If it is consistent there is a supercompact cardinal, it is consistent that every hereditarily normal manifold of dimension > 1 is metrizable.

The model

- 1. Start with a supercompact. Force \Diamond or add a Cohen real.
- 2. Construct a coherent Souslin tree S.
- 3. Iterate proper posets as in proof of consistency of PFA, but only those that preserve *S*.
- 4. Force with S.

We say PFA(S)[S] implies Φ to mean that if Φ is a proposition, S is a coherent Souslin tree, then any model formed via (3) and (4) is a model of Φ .

CW: Normal, first countable spaces are \aleph_1 -collectionwise Hausdorff.

CW: Normal, first countable spaces are \aleph_1 -collectionwise Hausdorff.

PPI: Every first countable perfect pre-image of ω_1 includes a copy of ω_1 .

CW: Normal, first countable spaces are \aleph_1 -collectionwise Hausdorff.

PPI: Every first countable perfect pre-image of ω_1 includes a copy of ω_1 .

M-M: Compact, countably tight spaces are sequential.

A collection \mathcal{I} of countable subsets of a set X is a **P-ideal** if each subset of a member of \mathcal{I} is in \mathcal{I} , finite unions of members of \mathcal{I} are in \mathcal{I} , and whenever $\{I_n : n \in \omega\} \subseteq \mathcal{I}$, there is a $J \in \mathcal{I}$ such that $I_n - J$ is finite for all n.

A collection \mathcal{I} of countable subsets of a set X is a **P-ideal** if each subset of a member of \mathcal{I} is in \mathcal{I} , finite unions of members of \mathcal{I} are in \mathcal{I} , and whenever $\{I_n : n \in \omega\} \subseteq \mathcal{I}$, there is a $J \in \mathcal{I}$ such that $I_n - J$ is finite for all n.

 \mathcal{I} is \aleph_1 -generated if there is $\{I_{\alpha}\}_{\alpha < \omega_1} \subseteq \mathcal{I}$ such that for each $I \in \mathcal{I}$, there is an α such that $I \subseteq I_{\alpha}$.

A collection \mathcal{I} of countable subsets of a set X is a **P-ideal** if each subset of a member of \mathcal{I} is in \mathcal{I} , finite unions of members of \mathcal{I} are in \mathcal{I} , and whenever $\{I_n : n \in \omega\} \subseteq \mathcal{I}$, there is a $J \in \mathcal{I}$ such that $I_n - J$ is finite for all n.

 \mathcal{I} is \aleph_1 -generated if there is $\{I_{\alpha}\}_{\alpha < \omega_1} \subseteq \mathcal{I}$ such that for each $I \in \mathcal{I}$, there is an α such that $I \subseteq I_{\alpha}$.

 $P_{22}(\aleph_1)$: Suppose \mathcal{I} is an \aleph_1 -generated P-ideal on a stationary subset S of ω_1 . Then either:

A collection \mathcal{I} of countable subsets of a set X is a **P-ideal** if each subset of a member of \mathcal{I} is in \mathcal{I} , finite unions of members of \mathcal{I} are in \mathcal{I} , and whenever $\{I_n : n \in \omega\} \subseteq \mathcal{I}$, there is a $J \in \mathcal{I}$ such that $I_n - J$ is finite for all n.

 \mathcal{I} is \aleph_1 -generated if there is $\{I_{\alpha}\}_{\alpha < \omega_1} \subseteq \mathcal{I}$ such that for each $I \in \mathcal{I}$, there is an α such that $I \subseteq I_{\alpha}$.

 $P_{22}(\aleph_1)$: Suppose \mathcal{I} is an \aleph_1 -generated P-ideal on a stationary subset S of ω_1 . Then either:

1. there is a stationary $E \subseteq S$ such that every countable subset of E is in \mathcal{I} , or

A collection \mathcal{I} of countable subsets of a set X is a **P-ideal** if each subset of a member of \mathcal{I} is in \mathcal{I} , finite unions of members of \mathcal{I} are in \mathcal{I} , and whenever $\{I_n : n \in \omega\} \subseteq \mathcal{I}$, there is a $J \in \mathcal{I}$ such that $I_n - J$ is finite for all n.

 \mathcal{I} is \aleph_1 -generated if there is $\{I_{\alpha}\}_{\alpha < \omega_1} \subseteq \mathcal{I}$ such that for each $I \in \mathcal{I}$, there is an α such that $I \subseteq I_{\alpha}$.

 $P_{22}(\aleph_1)$: Suppose \mathcal{I} is an \aleph_1 -generated P-ideal on a stationary subset S of ω_1 . Then either:

- 1. there is a stationary $E \subseteq S$ such that every countable subset of E is in \mathcal{I} , or
- there is a stationary D ⊆ S such that for every countable subset D₁ of D, D₁ ∩ I is finite, for each I ∈ I.

Theorem 2 $\sum^{-} + \mathbf{CW} + \mathbf{PPI} + \mathbf{P}_{22}(\aleph_1)$ implies every T_5 manifold of dimension > 1 is metrizable.

6/26

Theorem 2 $\sum^{-} + \mathbf{CW} + \mathbf{PPI} + \mathbf{P}_{22}(\aleph_1)$ implies every T_5 manifold of dimension > 1 is metrizable.

イロト 不得下 イヨト イヨト 二日

6/26

Theorem 3 (Provisional) $PFA(S)[S] \text{ implies } \sum^{-}, CW, PPI, \text{ and } P_{22}(\aleph_1).$

Proof of Theorem 2.

Assemble pieces from Balogh's and Nyikos' papers.

▶ **PFA**(S)[S] **implies M-M [Tod]:** Claimed by Todorcevic.

- ▶ **PFA**(*S*)[*S*] **implies M-M [Tod]:** Claimed by Todorcevic.
- ▶ PFA(S)[S] implies \sum^{-} , assuming M-M [FTT].

- ▶ **PFA**(*S*)[*S*] **implies M-M [Tod]:** Claimed by Todorcevic.
- ▶ **PFA**(S)[S] implies $\sum_{i=1}^{n}$, assuming M-M [FTT].
- PFA(S)[S] implies CW [LT10]:

- ▶ **PFA**(*S*)[*S*] **implies M-M [Tod]:** Claimed by Todorcevic.
- ▶ **PFA**(S)[S] implies \sum^{-} , assuming M-M [FTT].
- PFA(S)[S] implies CW [LT10]:
- ▶ PFA(S)[S] implies P₂₂(ℵ₁) (indeed P-ideal Dichotomy) [Tod].

- ▶ **PFA**(*S*)[*S*] **implies M-M [Tod]:** Claimed by Todorcevic.
- ▶ **PFA**(S)[S] implies $\sum_{i=1}^{n}$, assuming M-M [FTT].
- ▶ **PFA**(*S*)[*S*] implies CW [LT10]:
- ▶ PFA(S)[S] implies P₂₂(ℵ₁) (indeed P-ideal Dichotomy) [Tod].
- ▶ **PFA**(S)[S] **implies PPI [Dow]:** Claimed by Dow.

- ▶ **PFA**(*S*)[*S*] **implies M-M [Tod]:** Claimed by Todorcevic.
- ▶ **PFA**(S)[S] implies $\sum_{i=1}^{n}$, assuming M-M [FTT].
- ▶ **PFA**(*S*)[*S*] implies CW [LT10]:
- ▶ PFA(S)[S] implies P₂₂(ℵ₁) (indeed P-ideal Dichotomy) [Tod].
- ▶ **PFA**(*S*)[*S*] **implies PPI [Dow]:** Claimed by Dow.
- Steps remaining: Check Dow's proof; Todorcevic fills gap in his proof that PFA(S)[S] implies M-M.

7 / 26

1. $\mathfrak{b} = \aleph_2 = 2^{\aleph_0}$,

1. $\mathfrak{b} = \aleph_2 = 2^{\aleph_0}$, 2. $\mathfrak{p} = \aleph_1$,

- 1. $\mathfrak{b} = \aleph_2 = 2^{\aleph_0}$,
- 2. $\mathfrak{p} = \aleph_1$,
- 3. there are no first countable L-spaces [LT02]

- 1. $\mathfrak{b} = \aleph_2 = 2^{\aleph_0}$,
- 2. $\mathfrak{p} = \aleph_1$,
- 3. there are no first countable L-spaces [LT02],
- 4. there are no compact S-spaces [Tod],

- 1. $\mathfrak{b} = \aleph_2 = 2^{\aleph_0}$,
- $2. \ \mathfrak{p} = \aleph_1,$
- 3. there are no first countable L-spaces [LT02],
- 4. there are no compact S-spaces [Tod],
- locally compact normal spaces are ℵ₁-collectionwise Hausdorff [Tal],

- 1. $\mathfrak{b} = \aleph_2 = 2^{\aleph_0}$,
- $2. \hspace{0.1 cm} \mathfrak{p} = \aleph_1,$
- 3. there are no first countable L-spaces [LT02],
- 4. there are no compact S-spaces [Tod],
- locally compact normal spaces are ℵ₁-collectionwise Hausdorff [Tal],
- 6. compact spaces with T_5 squares are metrizable [LT02].

- 1. $\mathfrak{b} = \aleph_2 = 2^{\aleph_0}$,
- $2. \ \mathfrak{p} = \aleph_1,$
- 3. there are no first countable L-spaces [LT02],
- 4. there are no compact S-spaces [Tod],
- locally compact normal spaces are ℵ₁-collectionwise Hausdorff [Tal],
- 6. compact spaces with T_5 squares are metrizable [LT02].
- By doing a preliminary forcing, one can get a model in which also:
 - 7. normal spaces which are either first countable or locally compact are collectionwise Hausdorff,

- 1. $\mathfrak{b} = \aleph_2 = 2^{\aleph_0}$,
- $2. \ \mathfrak{p} = \aleph_1,$
- 3. there are no first countable L-spaces [LT02],
- 4. there are no compact S-spaces [Tod],
- locally compact normal spaces are ℵ₁-collectionwise Hausdorff [Tal],
- 6. compact spaces with T_5 squares are metrizable [LT02].
- By doing a preliminary forcing, one can get a model in which also:
 - 7. normal spaces which are either first countable or locally compact are collectionwise Hausdorff,
 - locally compact perfectly normal spaces are paracompact [LT10].

The topology

Definition

A locally compact space X is of **Type I** if it can be expressed as $X = \bigcup_{\alpha < \omega_1} M_{\alpha}$, where each M_{α} is open, \overline{M}_{α} is Lindelöf and included in $M_{\alpha+1}$, and for limit α , $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$. { $M_{\alpha} : \alpha < \omega_1$ } is called a **canonical sequence** for M.

The topology

Definition

A locally compact space X is of **Type I** if it can be expressed as $X = \bigcup_{\alpha < \omega_1} M_{\alpha}$, where each M_{α} is open, \overline{M}_{α} is Lindelöf and included in $M_{\alpha+1}$, and for limit α , $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$. { $M_{\alpha} : \alpha < \omega_1$ } is called a **canonical sequence** for M.

For a manifold, we may assume each M_{α} is Lindelöf.

9 / 26

Lemma 2 $\sum^{-} + \mathbf{CW}$ implies T_5 manifolds are of Type I.
Lemma 2 $\sum^{-} + \mathbf{CW}$ implies T_5 manifolds are of Type I.

Proof.

The manifold M has a basis of open Lindelöf subspaces. We will show closures of Lindelöf subspaces are Lindelöf.

Lemma 2 $\sum^{-} + \mathbf{CW}$ implies T_5 manifolds are of Type I.

Proof.

The manifold M has a basis of open Lindelöf subspaces. We will show closures of Lindelöf subspaces are Lindelöf. Then we can define open Lindelöf M_{α} , $\alpha < \omega_1$, by recursion:

Lemma 2 $\sum^{-} + \mathbf{CW}$ implies T_5 manifolds are of Type I.

Proof.

The manifold M has a basis of open Lindelöf subspaces. We will show closures of Lindelöf subspaces are Lindelöf. Then we can define open Lindelöf M_{α} , $\alpha < \omega_1$, by recursion: Start with M_0 , cover \overline{M}_0 by open Lindelöf sets, take countable subcover, take closure of union, etc.

Lemma 2 $\sum^{-} + \mathbf{CW}$ implies T_5 manifolds are of Type I.

Proof.

The manifold M has a basis of open Lindelöf subspaces. We will show closures of Lindelöf subspaces are Lindelöf. Then we can define open Lindelöf M_{α} , $\alpha < \omega_1$, by recursion: Start with M_0 , cover \overline{M}_0 by open Lindelöf sets, take countable subcover, take closure of union, etc. By first countable, $\bigcup_{\alpha < \omega_1} M_{\alpha}$ is clopen and so = M.

Lemma 2 $\sum^{-} + \mathbf{CW}$ implies T_5 manifolds are of Type I.

Proof.

The manifold M has a basis of open Lindelöf subspaces. We will show closures of Lindelöf subspaces are Lindelöf. Then we can define open Lindelöf M_{α} , $\alpha < \omega_1$, by recursion: Start with M_0 , cover \overline{M}_0 by open Lindelöf sets, take countable subcover, take closure of union, etc. By first countable, $\bigcup_{\alpha < \omega_1} M_{\alpha}$ is clopen and so = M.

To show Y Lindelöf implies \overline{Y} Lindelöf, note Y is metrizable, hence separable, so \overline{Y} separable.

Lemma 2 $\sum^{-} + \mathbf{CW}$ implies T_5 manifolds are of Type I.

Proof.

The manifold M has a basis of open Lindelöf subspaces. We will show closures of Lindelöf subspaces are Lindelöf. Then we can define open Lindelöf M_{α} , $\alpha < \omega_1$, by recursion: Start with M_0 , cover \overline{M}_0 by open Lindelöf sets, take countable subcover, take closure of union, etc. By first countable, $\bigcup_{\alpha < \omega_1} M_{\alpha}$ is clopen and so = M.

To show Y Lindelöf implies \overline{Y} Lindelöf, note Y is metrizable, hence separable, so \overline{Y} separable. \overline{Y} is T_5 , so **CW** implies it has countable spread, as does its one-point compactification \overline{Y}^* .

Lemma 2 $\sum^{-} + \mathbf{CW}$ implies T_5 manifolds are of Type I.

Proof.

The manifold M has a basis of open Lindelöf subspaces. We will show closures of Lindelöf subspaces are Lindelöf. Then we can define open Lindelöf M_{α} , $\alpha < \omega_1$, by recursion: Start with M_0 , cover \overline{M}_0 by open Lindelöf sets, take countable subcover, take closure of union, etc. By first countable, $\bigcup_{\alpha < \omega_1} M_{\alpha}$ is clopen and so = M.

To show Y Lindelöf implies \overline{Y} Lindelöf, note Y is metrizable, hence separable, so \overline{Y} separable. \overline{Y} is T_5 , so **CW** implies it has countable spread, as does its one-point compactification \overline{Y}^* . \overline{Y}^* is countably tight; it is hereditarily Lindelöf, for by Σ^- , an uncountable right-separated subspace would be σ -discrete, contradiction. Lemma 3 $\sum^{-} + \mathbf{CW}$ implies a locally compact subspace of a T_5 manifold is paracompact if and only if it does not include a perfect pre-image of ω_1 .

イロト 不得下 イヨト イヨト 二日

11/26

Lemma 3 $\sum^{-} + \mathbf{CW}$ implies a locally compact subspace of a T_5 manifold is paracompact if and only if it does not include a perfect pre-image of ω_1 .

Proof.

Postponed.

Lemma 3 $\sum^{-} + \mathbf{CW}$ implies a locally compact subspace of a T_5 manifold is paracompact if and only if it does not include a perfect pre-image of ω_1 .

Proof.

Postponed.

In fact, if Todorcevic's M-M result is correct, Larson and I can prove

Theorem ([LTa], Provisional)

If it's consistent there is a supercompact, it's consistent that a locally compact T_5 space is (hereditarily) paracompact iff it does not include a perfect pre-image of ω_1 .

In fact, if Todorcevic's M-M result is correct, Larson and I can prove

Theorem ([LTa], Provisional)

If it's consistent there is a supercompact, it's consistent that a locally compact T_5 space is (hereditarily) paracompact iff it does not include a perfect pre-image of ω_1 .

Adding Dow, I can get

Theorem

If it's consistent there is a supercompact, it's consistent that a locally compact T_5 space is paracompact iff it does not include a copy of ω_1 .

Definition

Suppose $\pi : X \to \omega_1$. We say $Y \subseteq X$ is **unbounded** if $\pi(Y)$ is unbounded.

Definition

Suppose $\pi : X \to \omega_1$. We say $Y \subseteq X$ is **unbounded** if $\pi(Y)$ is unbounded.

Lemma 6 (Nyi02)

PPI + \sum^{-} + **CW** implies a T_5 , perfect pre-image of ω_1 included in a manifold is the union of a paracompact space with a finite number of disjoint unbounded copies of ω_1 .

Definition

Suppose $\pi : X \to \omega_1$. We say $Y \subseteq X$ is **unbounded** if $\pi(Y)$ is unbounded.

Lemma 6 (Nyi02)

PPI + \sum^{-} + **CW** implies a T_5 , perfect pre-image of ω_1 included in a manifold is the union of a paracompact space with a finite number of disjoint unbounded copies of ω_1 .

Definition

A selection of one point from each non-empty $B_{\alpha} = \overline{M}_{\alpha} - M_{\alpha}$, where $\{M_{\alpha} : \alpha < \omega_1\}$ is a canonical sequence for a Type I space is called a **bone-scan**.

Lemma 4

Suppose S is a stationary subset of ω_1 and $Y = \{y_\alpha : \alpha \in S\}$ is a subset of a bone-scan of a canonical sequence for a Type I, normal, first countable space M, such that countable subsets of Y have compact closure in M. Then \overline{Y} is a perfect pre-image of ω_1 .

Lemma 4

Suppose S is a stationary subset of ω_1 and $Y = \{y_\alpha : \alpha \in S\}$ is a subset of a bone-scan of a canonical sequence for a Type I, normal, first countable space M, such that countable subsets of Y have compact closure in M. Then \overline{Y} is a perfect pre-image of ω_1 .

Proof.

Postponed.

Lemma 6

PPI + \sum^{-} + **CW** implies a T_5 , perfect pre-image of ω_1 included in a manifold is the union of a paracompact space with a finite number of disjoint unbounded copies of ω_1 .

Lemma 6

PPI + \sum^{-} + **CW** implies a T_5 , perfect pre-image of ω_1 included in a manifold is the union of a paracompact space with a finite number of disjoint unbounded copies of ω_1 .

Proof.

By first countable and **PPI**, $X \supseteq W_1 \cong \omega_1$. Claim W_1 is unbounded.

Lemma 6

PPI + \sum^{-} + **CW** implies a T_5 , perfect pre-image of ω_1 included in a manifold is the union of a paracompact space with a finite number of disjoint unbounded copies of ω_1 .

Proof.

By first countable and **PPI**, $X \supseteq W_1 \cong \omega_1$. Claim W_1 is unbounded. If not, $W_1 \subseteq \pi^{-1}([0, \alpha])$ for some α . W_1 is countably compact in first countable X, so closed in X and hence in $\pi^{-1}([0, \alpha])$, which is compact.

Lemma 6

PPI + \sum^{-} + **CW** implies a T_5 , perfect pre-image of ω_1 included in a manifold is the union of a paracompact space with a finite number of disjoint unbounded copies of ω_1 .

Proof.

By first countable and **PPI**, $X \supseteq W_1 \cong \omega_1$. Claim W_1 is unbounded. If not, $W_1 \subseteq \pi^{-1}([0, \alpha])$ for some α . W_1 is countably compact in first countable X, so closed in X and hence in $\pi^{-1}([0, \alpha])$, which is compact. But then W_1 is compact, contradiction. Since W_1 is closed, $X - W_1$ is open and hence locally compact.

Since W_1 is closed, $X - W_1$ is open and hence locally compact. If it is paracompact, we are done; if not, apply Lemma 3 again to get perfect pre-image P of ω_1 included in $X - W_1$. Since W_1 is closed, $X - W_1$ is open and hence locally compact. If it is paracompact, we are done; if not, apply Lemma 3 again to get perfect pre-image P of ω_1 included in $X - W_1$. By **PPI**, take a copy W_2 of ω_1 included in P. Continue. We must end at some finite stage, since: Since W_1 is closed, $X - W_1$ is open and hence locally compact. If it is paracompact, we are done; if not, apply Lemma 3 again to get perfect pre-image P of ω_1 included in $X - W_1$. By **PPI**, take a copy W_2 of ω_1 included in P. Continue. We must end at some finite stage, since:

Lemma 7 ([Nyi04a])

Let X be a T_5 space, $\pi : X \to \omega_1$ continuous, $\pi^{-1}(\{\alpha\})$ countably compact for all $\alpha \in S$, a stationary subset of ω_1 . Then X cannot include an infinite disjoint family of closed, countably compact, unbounded subspaces. Since W_1 is closed, $X - W_1$ is open and hence locally compact. If it is paracompact, we are done; if not, apply Lemma 3 again to get perfect pre-image P of ω_1 included in $X - W_1$. By **PPI**, take a copy W_2 of ω_1 included in P. Continue. We must end at some finite stage, since:

Lemma 7 ([Nyi04a])

Let X be a T_5 space, $\pi : X \to \omega_1$ continuous, $\pi^{-1}(\{\alpha\})$ countably compact for all $\alpha \in S$, a stationary subset of ω_1 . Then X cannot include an infinite disjoint family of closed, countably compact, unbounded subspaces.

The only use of dim > 1 is what I call the *Fat Boundary Theorem*:

The only use of dim > 1 is what I call the *Fat Boundary Theorem*: Lemma 8 ([Nyi02])

If *M* is a Type I manifold of dim > 1, then there is a canonical sequence $\{M_{\alpha}\}_{\alpha < \omega_1}$ for *M* such that for each $p \in B_{\alpha} = \overline{M}_{\alpha} - M_{\alpha}$, there is a non-trivial continuum $K_{\alpha}(p) \subseteq B_{\alpha}$, with $p \in K_{\alpha}(p)$.

The only use of dim > 1 is what I call the *Fat Boundary Theorem*: Lemma 8 ([Nyi02])

If *M* is a Type I manifold of dim > 1, then there is a canonical sequence $\{M_{\alpha}\}_{\alpha < \omega_1}$ for *M* such that for each $p \in B_{\alpha} = \overline{M}_{\alpha} - M_{\alpha}$, there is a non-trivial continuum $K_{\alpha}(p) \subseteq B_{\alpha}$, with $p \in K_{\alpha}(p)$.

イロト 不得 とくき とくきとう き

IF dim M >1:

Ideals enter the picture via:

Ideals enter the picture via:

Lemma 11 ([Nyi02])

Let *M* be a hereditarily \aleph_1 -collectionwise Hausdorff Type I subspace of a manifold, and $\{y_\alpha : \alpha \in S\}$, *S* a stationary subset of ω_1 , be a subset of a bone-scan. Then $\mathbf{P}_{22}(\aleph_1)$ implies there is a stationary $S' \subseteq S$ such that every countable subset of $\{y_\alpha : \alpha \in S'\}$ has compact closure in *M*. Ideals enter the picture via:

Lemma 11 ([Nyi02])

Let *M* be a hereditarily \aleph_1 -collectionwise Hausdorff Type I subspace of a manifold, and $\{y_\alpha : \alpha \in S\}$, *S* a stationary subset of ω_1 , be a subset of a bone-scan. Then $\mathbf{P}_{22}(\aleph_1)$ implies there is a stationary $S' \subseteq S$ such that every countable subset of $\{y_\alpha : \alpha \in S'\}$ has compact closure in *M*. We also need:

We also need:

Lemma 12 $\Sigma^- \rightarrow \neg CH.$

We also need:

Lemma 12 $\sum^{-} \rightarrow \neg CH.$

Proof.

 $CH \rightarrow \exists$ compact S-space: the Kunen Line [JKR]. \sum^{-} implies there are no compact S-spaces, since S-spaces are countably tight.

Now we can finally prove:
Theorem 2 $\sum^{-} + \mathbf{CW} + \mathbf{PPI} + \mathbf{P}_{22}(\aleph_1)$ implies T_5 manifolds of dimension greater than 1 are metrizable.

Theorem 2 $\sum^{-} + \mathbf{CW} + \mathbf{PPI} + \mathbf{P}_{22}(\aleph_1)$ implies T_5 manifolds of dimension greater than 1 are metrizable.

Proof.

Non-metrizable T_5 Type I manifold M includes a perfect pre-image of ω_1 , and hence a copy W of ω_1 .

Theorem 2

 \sum^{-} + **CW** + **PPI** + **P**₂₂(\aleph_1) implies T_5 manifolds of dimension greater than 1 are metrizable.

Proof.

Non-metrizable T_5 Type I manifold M includes a perfect pre-image of ω_1 , and hence a copy W of ω_1 . W must meet stationarily many B_{α} , else it would be a closed subspace of a sum of Lindelöf spaces and so would be paracompact.

Theorem 2

 $\sum^{-} + \mathbf{CW} + \mathbf{PPI} + \mathbf{P}_{22}(\aleph_1)$ implies T_5 manifolds of dimension greater than 1 are metrizable.

Proof.

Non-metrizable T_5 Type I manifold M includes a perfect pre-image of ω_1 , and hence a copy W of ω_1 . W must meet stationarily many B_{α} , else it would be a closed subspace of a sum of Lindelöf spaces and so would be paracompact. Pick $w_{\alpha} \in W \cap B_{\alpha}$, $\alpha \in$ some stationary $E_0 \subseteq \omega_1$.

Theorem 2

 $\sum^{-} + \mathbf{CW} + \mathbf{PPI} + \mathbf{P}_{22}(\aleph_1)$ implies T_5 manifolds of dimension greater than 1 are metrizable.

Proof.

Non-metrizable T_5 Type I manifold M includes a perfect pre-image of ω_1 , and hence a copy W of ω_1 . W must meet stationarily many B_{α} , else it would be a closed subspace of a sum of Lindelöf spaces and so would be paracompact. Pick $w_{\alpha} \in W \cap B_{\alpha}$, $\alpha \in$ some stationary $E_0 \subseteq \omega_1$. By Lemma 8, pick non-trivial continua K_{α} such that $w_{\alpha} \in K_{\alpha} \subseteq B_{\alpha}$.

Theorem 2

 \sum^{-} + **CW** + **PPI** + **P**₂₂(\aleph_1) implies T_5 manifolds of dimension greater than 1 are metrizable.

Proof.

Non-metrizable T_5 Type I manifold M includes a perfect pre-image of ω_1 , and hence a copy W of ω_1 . W must meet stationarily many B_{α} , else it would be a closed subspace of a sum of Lindelöf spaces and so would be paracompact. Pick $w_{\alpha} \in W \cap B_{\alpha}$, $\alpha \in$ some stationary $E_0 \subseteq \omega_1$. By Lemma 8, pick non-trivial continua K_{α} such that $w_{\alpha} \in K_{\alpha} \subseteq B_{\alpha}$. $|W| = \aleph_1 < 2^{\aleph_0}$, so pick $q_{\alpha} \in K_{\alpha} - W$.

Theorem 2

 \sum^{-} + **CW** + **PPI** + **P**₂₂(\aleph_1) implies T_5 manifolds of dimension greater than 1 are metrizable.

Proof.

Non-metrizable T_5 Type I manifold M includes a perfect pre-image of ω_1 , and hence a copy W of ω_1 . W must meet stationarily many B_{α} , else it would be a closed subspace of a sum of Lindelöf spaces and so would be paracompact. Pick $w_{\alpha} \in W \cap B_{\alpha}$, $\alpha \in$ some stationary $E_0 \subseteq \omega_1$. By Lemma 8, pick non-trivial continua K_{α} such that $w_{\alpha} \in K_{\alpha} \subseteq B_{\alpha}$. $|W| = \aleph_1 < 2^{\aleph_0}$, so pick $q_{\alpha} \in K_{\alpha} - W$. Let $M'_{\alpha} = M_{\alpha} - W$.

20 / 26

Theorem 2

 \sum^{-} + **CW** + **PPI** + **P**₂₂(\aleph_1) implies T_5 manifolds of dimension greater than 1 are metrizable.

Proof.

Non-metrizable T_5 Type I manifold M includes a perfect pre-image of ω_1 , and hence a copy W of ω_1 . W must meet stationarily many B_{α} , else it would be a closed subspace of a sum of Lindelöf spaces and so would be paracompact. Pick $w_{\alpha} \in W \cap B_{\alpha}$, $\alpha \in$ some stationary $E_0 \subseteq \omega_1$. By Lemma 8, pick non-trivial continua K_{α} such that $w_{\alpha} \in K_{\alpha} \subseteq B_{\alpha}$. $|W| = \aleph_1 < 2^{\aleph_0}$, so pick $q_{\alpha} \in K_{\alpha} - W$. Let $M'_{\alpha} = M_{\alpha} - W$. W is closed, so M - W is open, so locally compact.

Theorem 2

 \sum^{-} + **CW** + **PPI** + **P**₂₂(\aleph_1) implies T_5 manifolds of dimension greater than 1 are metrizable.

Proof.

Non-metrizable T_5 Type I manifold M includes a perfect pre-image of ω_1 , and hence a copy W of ω_1 . W must meet stationarily many B_{α} , else it would be a closed subspace of a sum of Lindelöf spaces and so would be paracompact. Pick $w_{\alpha} \in W \cap B_{\alpha}$, $\alpha \in$ some stationary $E_0 \subseteq \omega_1$. By Lemma 8, pick non-trivial continua K_{α} such that $w_{\alpha} \in K_{\alpha} \subseteq B_{\alpha}$. $|W| = \aleph_1 < 2^{\aleph_0}$, so pick $q_{\alpha} \in K_{\alpha} - W$. Let $M'_{\alpha} = M_{\alpha} - W$. W is closed, so M - W is open, so locally compact. \overline{M}_{α} is hereditarily Lindelöf, so $M - W = \bigcup_{\alpha < \omega_1} M'_{\alpha}$ is Type I.

A Type I space is paracompact iff for (some) every canonical sequence $\{M_{\alpha}\}_{\alpha < \omega_1}$, club many $(\overline{M}_{\alpha} - M_{\alpha})$'s are empty.

A Type I space is paracompact iff for (some) every canonical sequence $\{M_{\alpha}\}_{\alpha < \omega_1}$, club many $(\overline{M}_{\alpha} - M_{\alpha})$'s are empty. Therefore M - W is not paracompact.

A Type I space is paracompact iff for (some) every canonical sequence $\{M_{\alpha}\}_{\alpha<\omega_1}$, club many $(\overline{M}_{\alpha} - M_{\alpha})$'s are empty. Therefore M - W is not paracompact. By $P_{22}(\aleph_1)$ and Lemma 4, it includes a perfect pre-image Q of ω_1 , Q = the closure of $\{q_{\alpha} : \alpha \in E_1\}$ in M - W, for a stationary $E_1 \subseteq E_0$.

A Type I space is paracompact iff for (some) every canonical sequence $\{M_{\alpha}\}_{\alpha<\omega_1}$, club many $(\overline{M}_{\alpha} - M_{\alpha})$'s are empty. Therefore M - W is not paracompact. By $P_{22}(\aleph_1)$ and Lemma 4, it includes a perfect pre-image Q of ω_1 , Q = the closure of $\{q_{\alpha} : \alpha \in E_1\}$ in M - W, for a stationary $E_1 \subseteq E_0$.

Q is countably compact and hence closed in M.

A Type I space is paracompact iff for (some) every canonical sequence $\{M_{\alpha}\}_{\alpha<\omega_1}$, club many $(\overline{M}_{\alpha} - M_{\alpha})$'s are empty. Therefore M - W is not paracompact. By $P_{22}(\aleph_1)$ and Lemma 4, it includes a perfect pre-image Q of ω_1 , Q = the closure of $\{q_{\alpha} : \alpha \in E_1\}$ in M - W, for a stationary $E_1 \subseteq E_0$.

Q is countably compact and hence closed in M. Let $f: M \to [0,1], f(W) = 0, f(Q) = 1$. Then $f(K_{\alpha}) = [0,1]$ for each $\alpha \in E_1$.

A Type I space is paracompact iff for (some) every canonical sequence $\{M_{\alpha}\}_{\alpha<\omega_1}$, club many $(\overline{M}_{\alpha} - M_{\alpha})$'s are empty. Therefore M - W is not paracompact. By $P_{22}(\aleph_1)$ and Lemma 4, it includes a perfect pre-image Q of ω_1 , Q = the closure of $\{q_{\alpha} : \alpha \in E_1\}$ in M - W, for a stationary $E_1 \subseteq E_0$.

Q is countably compact and hence closed in M. Let $f: M \to [0,1], f(W) = 0, f(Q) = 1$. Then $f(K_{\alpha}) = [0,1]$ for each $\alpha \in E_1$. For α 's in E_1 , recursively pick $z_{\alpha} \in K_{\alpha}$ such that $\forall \beta < \alpha$, $f(x_{\beta}) \neq f(x_{\alpha})$.

A Type I space is paracompact iff for (some) every canonical sequence $\{M_{\alpha}\}_{\alpha<\omega_1}$, club many $(\overline{M}_{\alpha} - M_{\alpha})$'s are empty. Therefore M - W is not paracompact. By $P_{22}(\aleph_1)$ and Lemma 4, it includes a perfect pre-image Q of ω_1 , Q = the closure of $\{q_{\alpha} : \alpha \in E_1\}$ in M - W, for a stationary $E_1 \subseteq E_0$.

Q is countably compact and hence closed in *M*. Let $f: M \to [0,1], f(W) = 0, f(Q) = 1$. Then $f(K_{\alpha}) = [0,1]$ for each $\alpha \in E_1$. For α 's in E_1 , recursively pick $z_{\alpha} \in K_{\alpha}$ such that $\forall \beta < \alpha$, $f(x_{\beta}) \neq f(x_{\alpha})$. By $P_{22}(\aleph_1)$ and Lemmas 4, 11, there is a stationary $E \subseteq E_1$ such that $Z = \overline{\{z_{\alpha} : \alpha \in E\}}$ is a perfect pre-image of ω_1 .

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅう

 ${f(z_{\alpha}) : \alpha \in E}$ is an uncountable subset of [0, 1] and hence has uncountably many complete accumulation points.

 $\{f(z_{\alpha}): \alpha \in E\}$ is an uncountable subset of [0, 1] and hence has uncountably many complete accumulation points. For each such point p and each $\alpha \in E$, we may take a strictly increasing sequence in E of countable ordinals $\beta_n(\alpha, p) > \alpha$, $0 < n < \omega$, and points $z_{\beta_n(\alpha,p)} \in K_{\beta_n(\alpha,p)}$, such that $|p - f(z_{\beta_n(\alpha,p)})| < \frac{1}{n}$.

 $\{f(z_{\alpha}): \alpha \in E\}$ is an uncountable subset of [0, 1] and hence has uncountably many complete accumulation points. For each such point p and each $\alpha \in E$, we may take a strictly increasing sequence in E of countable ordinals $\beta_n(\alpha, p) > \alpha$, $0 < n < \omega$, and points $z_{\beta_n(\alpha,p)} \in K_{\beta_n(\alpha,p)}$, such that $|p - f(z_{\beta_n(\alpha,p)})| < \frac{1}{n}$. Z is sequentially compact, so there is a subsequence $\langle z_{\beta_{n_k}(\alpha,p)} \rangle$ which converges to some $z(\alpha, p) \in Z$.

 $\{f(z_{\alpha}): \alpha \in E\}$ is an uncountable subset of [0, 1] and hence has uncountably many complete accumulation points. For each such point p and each $\alpha \in E$, we may take a strictly increasing sequence in E of countable ordinals $\beta_n(\alpha, p) > \alpha$, $0 < n < \omega$, and points $z_{\beta_n(\alpha,p)} \in K_{\beta_n(\alpha,p)}$, such that $|p - f(z_{\beta_n(\alpha,p)})| < \frac{1}{n}$. Z is sequentially compact, so there is a subsequence $\langle z_{\beta_{n_k}(\alpha,p)} \rangle$ which converges to some $z(\alpha, p) \in Z$. Note that

$$z(\alpha, p) \in \bigcup \left\{ B_{\beta_{n_k}(\alpha, p)} : k < \omega \right\} - \bigcup \left\{ B_{\beta_{n_k}(\alpha, p)} : k < \omega \right\}.$$

 $\{f(z_{\alpha}) : \alpha \in E\}$ is an uncountable subset of [0, 1] and hence has uncountably many complete accumulation points. For each such point p and each $\alpha \in E$, we may take a strictly increasing sequence in E of countable ordinals $\beta_n(\alpha, p) > \alpha$, $0 < n < \omega$, and points $z_{\beta_n(\alpha,p)} \in K_{\beta_n(\alpha,p)}$, such that $|p - f(z_{\beta_n(\alpha,p)})| < \frac{1}{n}$. Z is sequentially compact, so there is a subsequence $\langle z_{\beta_{n_k}(\alpha,p)} \rangle$ which converges to some $z(\alpha, p) \in Z$. Note that

 $z(\alpha, p) \in \overline{\bigcup \left\{ B_{\beta_{n_k}(\alpha, p)} : k < \omega \right\}} - \bigcup \left\{ B_{\beta_{n_k}(\alpha, p)} : k < \omega \right\}.$ Also observe that $f(z(\alpha, p)) = p$.

 $\{f(z_{\alpha}): \alpha \in E\}$ is an uncountable subset of [0, 1] and hence has uncountably many complete accumulation points. For each such point p and each $\alpha \in E$, we may take a strictly increasing sequence in E of countable ordinals $\beta_n(\alpha, p) > \alpha$, $0 < n < \omega$, and points $z_{\beta_n(\alpha,p)} \in K_{\beta_n(\alpha,p)}$, such that $|p - f(z_{\beta_n(\alpha,p)})| < \frac{1}{n}$. Z is sequentially compact, so there is a subsequence $\langle z_{\beta_{n_k}(\alpha,p)} \rangle$ which converges to some $z(\alpha, p) \in Z$. Note that $z(\alpha, p) \in \overline{\bigcup \left\{ B_{\beta_{n_k}(\alpha,p)} : k < \omega \right\}} - \bigcup \left\{ B_{\beta_{n_k}(\alpha,p)} : k < \omega \right\}$. Also

 $z(\alpha, p) \in \bigcup \left\{ B_{\beta_{n_k}(\alpha, p)} : k < \omega \right\} - \bigcup \left\{ B_{\beta_{n_k}(\alpha, p)} : k < \omega \right\}$. Also observe that $f(z(\alpha, p)) = p$. Thus we can recursively pick uncountably many members of Z which get sent to p.

 $\{f(z_{\alpha}) : \alpha \in E\}$ is an uncountable subset of [0, 1] and hence has uncountably many complete accumulation points. For each such point p and each $\alpha \in E$, we may take a strictly increasing sequence in E of countable ordinals $\beta_n(\alpha, p) > \alpha$, $0 < n < \omega$, and points $z_{\beta_n(\alpha,p)} \in K_{\beta_n(\alpha,p)}$, such that $|p - f(z_{\beta_n(\alpha,p)})| < \frac{1}{n}$. Z is sequentially compact, so there is a subsequence $\langle z_{\beta_{n_k}(\alpha,p)} \rangle$ which converges to some $z(\alpha, p) \in Z$. Note that

 $z(\alpha, p) \in \overline{\bigcup \left\{ B_{\beta_{n_k}(\alpha, p)} : k < \omega \right\}} - \bigcup \left\{ B_{\beta_{n_k}(\alpha, p)} : k < \omega \right\}.$ Also observe that $f(z(\alpha, p)) = p$. Thus we can recursively pick uncountably many members of Z which get sent to p. Since f is continuous, $Z \cap f^{-1}(\{p\})$ is closed, hence countably compact.

 $\{f(z_{\alpha}) : \alpha \in E\}$ is an uncountable subset of [0, 1] and hence has uncountably many complete accumulation points. For each such point p and each $\alpha \in E$, we may take a strictly increasing sequence in E of countable ordinals $\beta_n(\alpha, p) > \alpha$, $0 < n < \omega$, and points $z_{\beta_n(\alpha,p)} \in K_{\beta_n(\alpha,p)}$, such that $|p - f(z_{\beta_n(\alpha,p)})| < \frac{1}{n}$. Z is sequentially compact, so there is a subsequence $\langle z_{\beta_{n_k}(\alpha,p)} \rangle$ which converges to some $z(\alpha, p) \in Z$. Note that

 $z(\alpha, p) \in \overline{\bigcup \left\{ B_{\beta_{n_k}(\alpha, p)} : k < \omega \right\}} - \bigcup \left\{ B_{\beta_{n_k}(\alpha, p)} : k < \omega \right\}.$ Also observe that $f(z(\alpha, p)) = p$. Thus we can recursively pick uncountably many members of Z which get sent to p. Since f is continuous, $Z \cap f^{-1}(\{p\})$ is closed, hence countably compact. Such sets are unbounded, and are disjoint for different p.

 $\{f(z_{\alpha}) : \alpha \in E\}$ is an uncountable subset of [0, 1] and hence has uncountably many complete accumulation points. For each such point p and each $\alpha \in E$, we may take a strictly increasing sequence in E of countable ordinals $\beta_n(\alpha, p) > \alpha$, $0 < n < \omega$, and points $z_{\beta_n(\alpha,p)} \in K_{\beta_n(\alpha,p)}$, such that $|p - f(z_{\beta_n(\alpha,p)})| < \frac{1}{n}$. Z is sequentially compact, so there is a subsequence $\langle z_{\beta_{n_k}(\alpha,p)} \rangle$ which converges to some $z(\alpha, p) \in Z$. Note that

 $z(\alpha, p) \in \overline{\bigcup \left\{ B_{\beta_{n_k}(\alpha, p)} : k < \omega \right\}} - \bigcup \left\{ B_{\beta_{n_k}(\alpha, p)} : k < \omega \right\}.$ Also observe that $f(z(\alpha, p)) = p$. Thus we can recursively pick uncountably many members of Z which get sent to p. Since f is continuous, $Z \cap f^{-1}(\{p\})$ is closed, hence countably compact. Such sets are unbounded, and are disjoint for different p. But this contradicts Lemma 7.

Lemma 3

 \sum^{-} + **CW** implies a locally compact subspace of a T₅ manifold is paracompact if and only if it does not include a perfect pre-image of ω_1 .

Lemma 3

 \sum^{-} + **CW** implies a locally compact subspace of a T₅ manifold is paracompact if and only if it does not include a perfect pre-image of ω_1 .

Proof.

 $\rightarrow:$ A ppi would be countably compact, hence closed, hence paracompact, but not compact, contradiction.

Lemma 3

 \sum^{-} + **CW** implies a locally compact subspace of a T₅ manifold is paracompact if and only if it does not include a perfect pre-image of ω_1 .

Proof.

 $\rightarrow:$ A ppi would be countably compact, hence closed, hence paracompact, but not compact, contradiction.

 \leftarrow : As in proof of Lemma 2, each component Y is Type I.

Lemma 3

 \sum^{-} + **CW** implies a locally compact subspace of a T₅ manifold is paracompact if and only if it does not include a perfect pre-image of ω_1 .

Proof.

 $\rightarrow:$ A ppi would be countably compact, hence closed, hence paracompact, but not compact, contradiction.

 $\leftarrow: \text{ As in proof of Lemma 2, each component } Y \text{ is Type I. It suffices to show } Y = \bigcup_{\alpha < \omega_1} Y_\alpha \text{ is paracompact.}$

Lemma 3

 \sum^{-} + **CW** implies a locally compact subspace of a T₅ manifold is paracompact if and only if it does not include a perfect pre-image of ω_1 .

Proof.

 $\rightarrow:$ A ppi would be countably compact, hence closed, hence paracompact, but not compact, contradiction.

 $\begin{array}{l} \leftarrow: \text{ As in proof of Lemma 2, each component } Y \text{ is Type I. It} \\ \text{suffices to show } Y = \bigcup_{\alpha < \omega_1} Y_\alpha \text{ is paracompact. As in proof of } \\ \text{Lemma 2, each } Y_\alpha \text{ has countable spread.} \end{array}$

Lemma 3

 \sum^{-} + **CW** implies a locally compact subspace of a T₅ manifold is paracompact if and only if it does not include a perfect pre-image of ω_1 .

Proof.

 $\rightarrow:$ A ppi would be countably compact, hence closed, hence paracompact, but not compact, contradiction.

 $\begin{array}{l} \leftarrow: \text{ As in proof of Lemma 2, each component } Y \text{ is Type I. It} \\ \text{suffices to show } Y = \bigcup_{\alpha < \omega_1} Y_\alpha \text{ is paracompact. As in proof of} \\ \text{Lemma 2, each } Y_\alpha \text{ has countable spread. If } Y \text{ were not} \\ \text{paracompact, there would be a stationary } S \subseteq \omega_1 \text{ such that for} \\ \text{each } \alpha \in S, \ \overline{Y}_\alpha - Y_\alpha \neq \emptyset. \end{array}$

Lemma 3

 \sum^{-} + **CW** implies a locally compact subspace of a T_5 manifold is paracompact if and only if it does not include a perfect pre-image of ω_1 .

Proof.

 $\rightarrow:$ A ppi would be countably compact, hence closed, hence paracompact, but not compact, contradiction.

 $\begin{array}{l} \leftarrow: \text{ As in proof of Lemma 2, each component } Y \text{ is Type I. It} \\ \text{suffices to show } Y = \bigcup_{\alpha < \omega_1} Y_\alpha \text{ is paracompact. As in proof of} \\ \text{Lemma 2, each } Y_\alpha \text{ has countable spread. If } Y \text{ were not} \\ \text{paracompact, there would be a stationary } S \subseteq \omega_1 \text{ such that for} \\ \text{each } \alpha \in S, \ \overline{Y}_\alpha - Y_\alpha \neq \emptyset. \text{ Pick } y_\alpha \in \overline{Y}_\alpha - Y_\alpha, \ \alpha \in S. \end{array}$

Lemma 3

 \sum^{-} + **CW** implies a locally compact subspace of a T_5 manifold is paracompact if and only if it does not include a perfect pre-image of ω_1 .

Proof.

 $\rightarrow:$ A ppi would be countably compact, hence closed, hence paracompact, but not compact, contradiction.

 $\begin{array}{l} \leftarrow: \text{ As in proof of Lemma 2, each component } Y \text{ is Type I. It} \\ \text{suffices to show } Y = \bigcup_{\alpha < \omega_1} Y_\alpha \text{ is paracompact. As in proof of} \\ \text{Lemma 2, each } Y_\alpha \text{ has countable spread. If } Y \text{ were not} \\ \text{paracompact, there would be a stationary } S \subseteq \omega_1 \text{ such that for} \\ \text{each } \alpha \in S, \ \overline{Y}_\alpha - Y_\alpha \neq \emptyset. \text{ Pick } y_\alpha \in \overline{Y}_\alpha - Y_\alpha, \ \alpha \in S. \ \overline{Y}^* \text{ is} \\ \text{countably tight, } \{y_\alpha : \alpha \in S\} \text{ is locally countable, so by } \sum^- \text{ it is } \\ \sigma\text{-discrete.} \end{array}$

Lemma 3

 \sum^{-} + **CW** implies a locally compact subspace of a T₅ manifold is paracompact if and only if it does not include a perfect pre-image of ω_1 .

Proof.

 $\rightarrow:$ A ppi would be countably compact, hence closed, hence paracompact, but not compact, contradiction.

 $\begin{array}{l} \leftarrow: \text{ As in proof of Lemma 2, each component } Y \text{ is Type I. It} \\ \text{suffices to show } Y = \bigcup_{\alpha < \omega_1} Y_\alpha \text{ is paracompact. As in proof of} \\ \text{Lemma 2, each } Y_\alpha \text{ has countable spread. If } Y \text{ were not} \\ \text{paracompact, there would be a stationary } S \subseteq \omega_1 \text{ such that for} \\ \text{each } \alpha \in S, \ \overline{Y}_\alpha - Y_\alpha \neq \emptyset. \text{ Pick } y_\alpha \in \overline{Y}_\alpha - Y_\alpha, \ \alpha \in S. \ \overline{Y}^* \text{ is} \\ \text{countably tight, } \{y_\alpha : \alpha \in S\} \text{ is locally countable, so by } \sum^- \text{ it is} \\ \sigma\text{-discrete. Apply } \mathbf{CW} \text{ and press down to obtain an uncountable} \\ \text{discrete subspace of some } Y_\alpha. \end{array}$

Lemma 3

 \sum^{-} + **CW** implies a locally compact subspace of a T_5 manifold is paracompact if and only if it does not include a perfect pre-image of ω_1 .

Proof.

 $\rightarrow:$ A ppi would be countably compact, hence closed, hence paracompact, but not compact, contradiction.

 $\leftarrow: \text{ As in proof of Lemma 2, each component } Y \text{ is Type I. It}$ suffices to show $Y = \bigcup_{\alpha < \omega_1} Y_{\alpha}$ is paracompact. As in proof of Lemma 2, each Y_{α} has countable spread. If Y were not paracompact, there would be a stationary $S \subseteq \omega_1$ such that for each $\alpha \in S$, $\overline{Y}_{\alpha} - Y_{\alpha} \neq \emptyset$. Pick $y_{\alpha} \in \overline{Y}_{\alpha} - Y_{\alpha}$, $\alpha \in S$. \overline{Y}^* is countably tight, $\{y_{\alpha} : \alpha \in S\}$ is locally countable, so by \sum^{-1} it is σ -discrete. Apply **CW** and press down to obtain an uncountable discrete subspace of some Y_{α} . But Y_{α} is hereditarily Lindelöf, contradiction.

Definition

A subspace Z of a space X is **conditionally compact** if every infinite subspace of Z has a limit point in X.
Definition

A subspace Z of a space X is **conditionally compact** if every infinite subspace of Z has a limit point in X.

Lemma 5

In a normal space, the closure of a conditionally compact subspace is countably compact.

イロト 不得下 イヨト イヨト 二日

24 / 26

Proof. Exercise.

Suppose S is a stationary subset of ω_1 and $Y = \{y_\alpha : \alpha \in S\}$ is a subset of a bone-scan of a canonical sequence for a Type I, normal, first countable space M, such that countable subsets of Y have compact closure in M. Then \overline{Y} is a perfect pre-image of ω_1 .

Suppose S is a stationary subset of ω_1 and $Y = \{y_\alpha : \alpha \in S\}$ is a subset of a bone-scan of a canonical sequence for a Type I, normal, first countable space M, such that countable subsets of Y have compact closure in M. Then \overline{Y} is a perfect pre-image of ω_1 .

Proof.

Let $\{M_{\alpha} : \alpha < \omega_1\}$ be the canonical sequence.

Suppose S is a stationary subset of ω_1 and $Y = \{y_\alpha : \alpha \in S\}$ is a subset of a bone-scan of a canonical sequence for a Type I, normal, first countable space M, such that countable subsets of Y have compact closure in M. Then \overline{Y} is a perfect pre-image of ω_1 .

Proof.

Let $\{M_{\alpha} : \alpha < \omega_1\}$ be the canonical sequence. Let $B_{\alpha} = \overline{M}_{\alpha} - M_{\alpha}$. Let $Y_{\alpha} = \overline{Y} \cap B_{\alpha}$.

Suppose S is a stationary subset of ω_1 and $Y = \{y_\alpha : \alpha \in S\}$ is a subset of a bone-scan of a canonical sequence for a Type I, normal, first countable space M, such that countable subsets of Y have compact closure in M. Then \overline{Y} is a perfect pre-image of ω_1 .

Proof.

Let $\{M_{\alpha} : \alpha < \omega_1\}$ be the canonical sequence. Let $B_{\alpha} = \overline{M}_{\alpha} - M_{\alpha}$. Let $Y_{\alpha} = \overline{Y} \cap B_{\alpha}$. Then $\overline{Y} = \bigcup_{\alpha < \omega_1} Y_{\alpha}$.

Suppose S is a stationary subset of ω_1 and $Y = \{y_\alpha : \alpha \in S\}$ is a subset of a bone-scan of a canonical sequence for a Type I, normal, first countable space M, such that countable subsets of Y have compact closure in M. Then \overline{Y} is a perfect pre-image of ω_1 .

Proof.

Let $\{M_{\alpha} : \alpha < \omega_1\}$ be the canonical sequence. Let $B_{\alpha} = \overline{M}_{\alpha} - M_{\alpha}$. Let $Y_{\alpha} = \overline{Y} \cap B_{\alpha}$. Then $\overline{Y} = \bigcup_{\alpha < \omega_1} Y_{\alpha}$. Define $\pi : \overline{Y} \to \omega_1$

25 / 26

by $\pi(y) = \alpha$ iff $y \in Y_{\alpha}$.

Suppose S is a stationary subset of ω_1 and $Y = \{y_\alpha : \alpha \in S\}$ is a subset of a bone-scan of a canonical sequence for a Type I, normal, first countable space M, such that countable subsets of Y have compact closure in M. Then \overline{Y} is a perfect pre-image of ω_1 .

Proof.

Let $\{M_{\alpha} : \alpha < \omega_1\}$ be the canonical sequence. Let $B_{\alpha} = \overline{M}_{\alpha} - M_{\alpha}$. Let $Y_{\alpha} = \overline{Y} \cap B_{\alpha}$. Then $\overline{Y} = \bigcup_{\alpha < \omega_1} Y_{\alpha}$. Define $\pi : \overline{Y} \to \omega_1$

by $\pi(y) = \alpha$ iff $y \in Y_{\alpha}$. First, claim $\pi^{-1}(\{\alpha\})$ is compact.

Suppose S is a stationary subset of ω_1 and $Y = \{y_\alpha : \alpha \in S\}$ is a subset of a bone-scan of a canonical sequence for a Type I, normal, first countable space M, such that countable subsets of Y have compact closure in M. Then \overline{Y} is a perfect pre-image of ω_1 .

Proof.

Let $\{M_{\alpha} : \alpha < \omega_1\}$ be the canonical sequence. Let $B_{\alpha} = \overline{M}_{\alpha} - M_{\alpha}$. Let $Y_{\alpha} = \overline{Y} \cap B_{\alpha}$. Then $\overline{Y} = \bigcup_{\alpha < \omega_1} Y_{\alpha}$. Define

$$\pi: Y \to \omega_1$$

by $\pi(y) = \alpha$ iff $y \in Y_{\alpha}$. First, claim $\pi^{-1}(\{\alpha\})$ is compact. Y_{α} is closed in B_{α} , which is closed and Lindelöf, so it is closed in \overline{Y} and is Lindelöf.

Suppose S is a stationary subset of ω_1 and $Y = \{y_\alpha : \alpha \in S\}$ is a subset of a bone-scan of a canonical sequence for a Type I, normal, first countable space M, such that countable subsets of Y have compact closure in M. Then \overline{Y} is a perfect pre-image of ω_1 .

Proof.

Let $\{M_{\alpha} : \alpha < \omega_1\}$ be the canonical sequence. Let $B_{\alpha} = \overline{M}_{\alpha} - M_{\alpha}$. Let $Y_{\alpha} = \overline{Y} \cap B_{\alpha}$. Then $\overline{Y} = \bigcup_{\alpha < \omega_1} Y_{\alpha}$. Define

$$\pi:\overline{Y}\to\omega_1$$

by $\pi(y) = \alpha$ iff $y \in Y_{\alpha}$. First, claim $\pi^{-1}(\{\alpha\})$ is compact. Y_{α} is closed in B_{α} , which is closed and Lindelöf, so it is closed in \overline{Y} and is Lindelöf. It suffices to show \overline{Y} is countably compact.

Suppose S is a stationary subset of ω_1 and $Y = \{y_\alpha : \alpha \in S\}$ is a subset of a bone-scan of a canonical sequence for a Type I, normal, first countable space M, such that countable subsets of Y have compact closure in M. Then \overline{Y} is a perfect pre-image of ω_1 .

Proof.

Let $\{M_{\alpha} : \alpha < \omega_1\}$ be the canonical sequence. Let $B_{\alpha} = \overline{M}_{\alpha} - M_{\alpha}$. Let $Y_{\alpha} = \overline{Y} \cap B_{\alpha}$. Then $\overline{Y} = \bigcup_{\alpha < \omega_1} Y_{\alpha}$. Define

$$\pi:\overline{Y}\to\omega_1$$

by $\pi(y) = \alpha$ iff $y \in Y_{\alpha}$. First, claim $\pi^{-1}(\{\alpha\})$ is compact. Y_{α} is closed in B_{α} , which is closed and Lindelöf, so it is closed in \overline{Y} and is Lindelöf. It suffices to show \overline{Y} is countably compact. But Y is conditionally compact.

Next, claim π is continuous. This is because if $y_{\alpha_n} \in Y_{\alpha_n}$ and $y_{\alpha_n} \to y_{\alpha}$, then $y_{\alpha} \in Y_{\alpha}$.

Next, claim π is continuous. This is because if $y_{\alpha_n} \in Y_{\alpha_n}$ and $y_{\alpha_n} \to y_{\alpha}$, then $y_{\alpha} \in Y_{\alpha}$.

Note π is closed, since continuous images of countably compact spaces are countably compact.

Next, claim π is continuous. This is because if $y_{\alpha_n} \in Y_{\alpha_n}$ and $y_{\alpha_n} \to y_{\alpha}$, then $y_{\alpha} \in Y_{\alpha}$.

Note π is closed, since continuous images of countably compact spaces are countably compact.

The range of π is unbounded, since S is uncountable and the B_{α} 's are disjoint.

Next, claim π is continuous. This is because if $y_{\alpha_n} \in Y_{\alpha_n}$ and $y_{\alpha_n} \to y_{\alpha}$, then $y_{\alpha} \in Y_{\alpha}$.

Note π is closed, since continuous images of countably compact spaces are countably compact.

The range of π is unbounded, since S is uncountable and the B_{α} 's are disjoint. Range π is closed, since π is closed.

Next, claim π is continuous. This is because if $y_{\alpha_n} \in Y_{\alpha_n}$ and $y_{\alpha_n} \to y_{\alpha}$, then $y_{\alpha} \in Y_{\alpha}$.

Note π is closed, since continuous images of countably compact spaces are countably compact.

The range of π is unbounded, since S is uncountable and the B_{α} 's are disjoint. Range π is closed, since π is closed. Thus range π is club, so homeomorphic to ω_1 .

- [Bal83] Z.T. Balogh, Locally nice spaces under Martin's axiom, Comment. Math. Univ. Carolin. 24 (1983), no. 1, 63–87.
- [Dow] A. Dow, Forcing copies of ω_1 with PFA(S), preprint.
- [Fle74] W. Fleissner, Normal Moore spaces in the constructible universe, Proc. Amer. Math. Soc. 46 (1974), 294–298.
- [FTT] A. J. Fischer, F. D. Tall, and S. B. Todorcevic, *Forcing* with a coherent Souslin tree and locally countable subspaces of countably tight compact spaces, preprint.
- [JKR76] I. Juhász, K. Kunen, and M. E. Rudin, Two more hereditarily separable non-Lindelöf spaces, Canad. J. Math. 28 (1976), no. 5, 998–1005.
- [LT02] P. Larson and S. Todorcevic, Katětov's problem, Trans. Amer. Math. Soc. 354 (2002), 1783–1791.
- [LT10] P. Larson and F. D. Tall, *Locally compact perfectly* normal spaces may all be paracompact, Fund. Math. **210** (2010), 285–300.

[LTa] P. Larson and F. D. Tall, *On the hereditary* paracompactness of locally compact hereditarily normal spaces, Canad. Math. Bull., to appear.

- [Nyi83] P. J. Nyikos, Set-theoretic topology of manifolds, General topology and its relations to modern analysis and algebra, V (Prague, 1981), Sigma Ser. Pure Math., vol. 3, Heldermann, 1983, pp. 513–526.
- [Nyi84] _____, *The theory of nonmetrizable manifolds*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 633–684.

[Nyi02] _____, Complete normality and metrization theory of manifolds. In Proceedings of the Janós Bolyai Mathematical Society 8th International Topology Conference (Gyula, 1998), Topology Appl. 123 (2002), 181–192. [Nyi03] _____, Applications of some strong set-theoretic axioms to locally compact T₅ and hereditarily scwH spaces, Fund. Math. **176** (2003), no. 1, 25–45.

 [Nyi04a] _____, Correction to: "Complete normality and metrizability theory of manifolds" [Topology Appl. 123 (2002) no. 1 181–192; 1921659], Topology Appl. 138 (2004), no. 1–3, 325–327.

- [Nyi04b] _____, Crowding of functions, para-saturation of ideals, and topological applications, Topology Proc., vol. 28, Spring Topology and Dynamical Systems Conference, 2004, pp. 241–266.
- [Tal] Franklin D. Tall, PFA(S)[S] and locally compact normal spaces, Topology Appl., to appear.
- [Tal77] F. D. Tall, Set-theoretic consistency results and topological theorems concerning the normal Moore space conjecture and related problems. Doctoral dissertation,

University of Wisconsin (Madison), 1969;, Dissertationes Math. (Rozprawy Mat.) **148** (1977), 53.

[Tod] Stevo Todorcevic, *Forcing with a coherent Souslin tree*, Canad. J. Math., to appear.