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History

I Wilder’s problem

I Rudin’s solution

I Nyikos’ problem
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Theorem 1 (Provisional)

If it is consistent there is a supercompact cardinal, it is consistent
that every hereditarily normal manifold of dimension > 1 is
metrizable.

The model

1. Start with a supercompact. Force ♦ or add a Cohen real.

2. Construct a coherent Souslin tree S .

3. Iterate proper posets as in proof of consistency of PFA, but
only those that preserve S .

4. Force with S .

We say PFA(S)[S ] implies Φ to mean that if Φ is a proposition, S
is a coherent Souslin tree, then any model formed via (3) and (4)
is a model of Φ.
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∑∑∑−: In a compact, countably tight space, locally countable
subspaces of size ℵ1 are σ-discrete.

CW: Normal, first countable spaces are ℵ1-collectionwise Hausdorff.

PPI: Every first countable perfect pre-image of ω1 includes a copy
of ω1.

M-M: Compact, countably tight spaces are sequential.
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Definition
A collection I of countable subsets of a set X is a P-ideal if each
subset of a member of I is in I, finite unions of members of I are
in I, and whenever {In : n ∈ ω} ⊆ I, there is a J ∈ I such that
In − J is finite for all n.

I is ℵ1-generated if there is {Iα}α<ω1
⊆ I such that for each

I ∈ I, there is an α such that I ⊆ Iα.

P22(ℵ1): Suppose I is an ℵ1-generated P-ideal on a stationary
subset S of ω1. Then either:

1. there is a stationary E ⊆ S such that every countable subset
of E is in I, or

2. there is a stationary D ⊆ S such that for every countable
subset D1 of D, D1 ∩ I is finite, for each I ∈ I.
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Theorem 2∑∑∑− + CW + PPI + P22(ℵ1) implies every T5 manifold of
dimension > 1 is metrizable.

Theorem 3 (Provisional)

PFA(S)[S ] implies
∑∑∑−,CW,PPI, and P22(ℵ1).

Proof of Theorem 2.
Assemble pieces from Balogh’s and Nyikos’ papers.
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Proof of Theorem 3.

I PFA(S)[S ] implies M-M [Tod]: Claimed by Todorcevic.

I PFA(S)[S ] implies
∑∑∑−, assuming M-M [FTT].

I PFA(S)[S ] implies CW [LT10]:

I PFA(S)[S ] implies P22(ℵ1) (indeed P-ideal Dichotomy)
[Tod].

I PFA(S)[S ] implies PPI [Dow]: Claimed by Dow.

I Steps remaining: Check Dow’s proof; Todorcevic fills gap in
his proof that PFA(S)[S ] implies M-M.
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Aside
PFA(S)[S] also implies:

1. b = ℵ2 = 2ℵ0 ,

2. p = ℵ1,

3. there are no first countable L-spaces [LT02] ,

4. there are no compact S-spaces [Tod],

5. locally compact normal spaces are ℵ1-collectionwise Hausdorff
[Tal],

6. compact spaces with T5 squares are metrizable [LT02].

By doing a preliminary forcing, one can get a model in which also:

7. normal spaces which are either first countable or locally
compact are collectionwise Hausdorff,

8. locally compact perfectly normal spaces are paracompact
[LT10].
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The topology

Definition
A locally compact space X is of Type I if it can be expressed as
X =

⋃
α<ω1

Mα, where each Mα is open, Mα is Lindelöf and
included in Mα+1, and for limit α, Mα =

⋃
β<α Mβ.

{Mα : α < ω1} is called a canonical sequence for M.

For a manifold, we may assume each Mα is Lindelöf.
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9 / 26



Lemma 2∑∑∑− + CW implies T5 manifolds are of Type I.

Proof.
The manifold M has a basis of open Lindelöf subspaces. We will
show closures of Lindelöf subspaces are Lindelöf. Then we can
define open Lindelöf Mα, α < ω1, by recursion:
Start with M0, cover M0 by open Lindelöf sets, take countable
subcover, take closure of union, etc. By first countable,

⋃
α<ω1

Mα

is clopen and so = M.

To show Y Lindelöf implies Y Lindelöf, note Y is metrizable,
hence separable, so Y separable. Y is T5, so CW implies it has
countable spread, as does its one-point compactification Y

∗
. Y

∗
is

countably tight; it is hereditarily Lindelöf, for by
∑∑∑−, an

uncountable right-separated subspace would be σ-discrete,
contradiction.
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subcover, take closure of union, etc. By first countable,

⋃
α<ω1

Mα

is clopen and so = M.
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Lemma 3∑∑∑− + CW implies a locally compact subspace of a T5 manifold is
paracompact if and only if it does not include a perfect pre-image
of ω1.

Proof.
Postponed.
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In fact, if Todorcevic’s M-M result is correct, Larson and I can
prove

Theorem ([LTa], Provisional)

If it’s consistent there is a supercompact, it’s consistent that a
locally compact T5 space is (hereditarily) paracompact iff it does
not include a perfect pre-image of ω1.

Adding Dow, I can get

Theorem
If it’s consistent there is a supercompact, it’s consistent that a
locally compact T5 space is paracompact iff it does not include a
copy of ω1.
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Definition
Suppose π : X → ω1. We say Y ⊆ X is unbounded if π(Y ) is
unbounded.

Lemma 6 (Nyi02)

PPI +
∑∑∑−+ CW implies a T5, perfect pre-image of ω1 included in

a manifold is the union of a paracompact space with a finite
number of disjoint unbounded copies of ω1.

Definition
A selection of one point from each non-empty Bα = Mα −Mα,
where {Mα : α < ω1} is a canonical sequence for a Type I space is
called a bone-scan.
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Lemma 4
Suppose S is a stationary subset of ω1 and Y = {yα : α ∈ S} is a
subset of a bone-scan of a canonical sequence for a Type I, normal,
first countable space M, such that countable subsets of Y have
compact closure in M. Then Y is a perfect pre-image of ω1.

Proof.
Postponed.
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Some proofs

Lemma 6
PPI +

∑∑∑−+ CW implies a T5, perfect pre-image of ω1 included in
a manifold is the union of a paracompact space with a finite
number of disjoint unbounded copies of ω1.

Proof.
By first countable and PPI, X ⊇W1

∼= ω1. Claim W1 is
unbounded. If not, W1 ⊆ π−1([0, α]) for some α. W1 is countably
compact in first countable X , so closed in X and hence in
π−1([0, α]), which is compact. But then W1 is compact,
contradiction.
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Since W1 is closed, X −W1 is open and hence locally compact.

If
it is paracompact, we are done; if not, apply Lemma 3 again to get
perfect pre-image P of ω1 included in X −W1. By PPI, take a
copy W2 of ω1 included in P. Continue. We must end at some
finite stage, since:

Lemma 7 ( [Nyi04a])

Let X be a T5 space, π : X → ω1 continuous, π−1({α}) countably
compact for all α ∈ S, a stationary subset of ω1. Then X cannot
include an infinite disjoint family of closed, countably compact,
unbounded subspaces.

16 / 26



Since W1 is closed, X −W1 is open and hence locally compact. If
it is paracompact, we are done; if not, apply Lemma 3 again to get
perfect pre-image P of ω1 included in X −W1.

By PPI, take a
copy W2 of ω1 included in P. Continue. We must end at some
finite stage, since:

Lemma 7 ( [Nyi04a])

Let X be a T5 space, π : X → ω1 continuous, π−1({α}) countably
compact for all α ∈ S, a stationary subset of ω1. Then X cannot
include an infinite disjoint family of closed, countably compact,
unbounded subspaces.

16 / 26



Since W1 is closed, X −W1 is open and hence locally compact. If
it is paracompact, we are done; if not, apply Lemma 3 again to get
perfect pre-image P of ω1 included in X −W1. By PPI, take a
copy W2 of ω1 included in P. Continue. We must end at some
finite stage, since:

Lemma 7 ( [Nyi04a])

Let X be a T5 space, π : X → ω1 continuous, π−1({α}) countably
compact for all α ∈ S, a stationary subset of ω1. Then X cannot
include an infinite disjoint family of closed, countably compact,
unbounded subspaces.

16 / 26



Since W1 is closed, X −W1 is open and hence locally compact. If
it is paracompact, we are done; if not, apply Lemma 3 again to get
perfect pre-image P of ω1 included in X −W1. By PPI, take a
copy W2 of ω1 included in P. Continue. We must end at some
finite stage, since:

Lemma 7 ( [Nyi04a])

Let X be a T5 space, π : X → ω1 continuous, π−1({α}) countably
compact for all α ∈ S, a stationary subset of ω1. Then X cannot
include an infinite disjoint family of closed, countably compact,
unbounded subspaces.

16 / 26



Since W1 is closed, X −W1 is open and hence locally compact. If
it is paracompact, we are done; if not, apply Lemma 3 again to get
perfect pre-image P of ω1 included in X −W1. By PPI, take a
copy W2 of ω1 included in P. Continue. We must end at some
finite stage, since:

Lemma 7 ( [Nyi04a])

Let X be a T5 space, π : X → ω1 continuous, π−1({α}) countably
compact for all α ∈ S, a stationary subset of ω1. Then X cannot
include an infinite disjoint family of closed, countably compact,
unbounded subspaces.

16 / 26



The only use of dim > 1 is what I call the Fat Boundary Theorem:

Lemma 8 ( [Nyi02])

If M is a Type I manifold of dim > 1, then there is a canonical
sequence {Mα}α<ω1 for M such that for each p ∈ Bα = Mα −Mα,
there is a non-trivial continuum Kα(p) ⊆ Bα, with p ∈ Kα(p).
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Ideals enter the picture via:

Lemma 11 ( [Nyi02])

Let M be a hereditarily ℵ1-collectionwise Hausdorff Type I
subspace of a manifold, and {yα : α ∈ S}, S a stationary subset of
ω1, be a subset of a bone-scan. Then P22(ℵ1) implies there is a
stationary S ′ ⊆ S such that every countable subset of
{yα : α ∈ S ′} has compact closure in M.
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We also need:

Lemma 12∑∑∑− → ¬CH.

Proof.
CH → ∃ compact S-space: the Kunen Line [JKR].

∑∑∑− implies
there are no compact S-spaces, since S-spaces are countably
tight.

19 / 26



We also need:

Lemma 12∑∑∑− → ¬CH.

Proof.
CH → ∃ compact S-space: the Kunen Line [JKR].

∑∑∑− implies
there are no compact S-spaces, since S-spaces are countably
tight.

19 / 26



We also need:

Lemma 12∑∑∑− → ¬CH.

Proof.
CH → ∃ compact S-space: the Kunen Line [JKR].

∑∑∑− implies
there are no compact S-spaces, since S-spaces are countably
tight.

19 / 26



Now we can finally prove:

Theorem 2∑∑∑− + CW + PPI + P22(ℵ1) implies T5 manifolds of dimension
greater than 1 are metrizable.

Proof.
Non-metrizable T5 Type I manifold M includes a perfect pre-image
of ω1, and hence a copy W of ω1. W must meet stationarily many
Bα, else it would be a closed subspace of a sum of Lindelöf spaces
and so would be paracompact. Pick wα ∈W ∩ Bα, α ∈ some
stationary E0 ⊆ ω1. By Lemma 8, pick non-trivial continua Kα

such that wα ∈ Kα ⊆ Bα. |W | = ℵ1 < 2ℵ0 , so pick qα ∈ Kα −W .
Let M ′α = Mα −W . W is closed, so M −W is open, so locally
compact. Mα is hereditarily Lindelöf, so M −W =

⋃
α<ω1

M ′α is
Type I.
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and so would be paracompact.

Pick wα ∈W ∩ Bα, α ∈ some
stationary E0 ⊆ ω1. By Lemma 8, pick non-trivial continua Kα

such that wα ∈ Kα ⊆ Bα. |W | = ℵ1 < 2ℵ0 , so pick qα ∈ Kα −W .
Let M ′α = Mα −W . W is closed, so M −W is open, so locally
compact. Mα is hereditarily Lindelöf, so M −W =
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and so would be paracompact. Pick wα ∈W ∩ Bα, α ∈ some
stationary E0 ⊆ ω1. By Lemma 8, pick non-trivial continua Kα

such that wα ∈ Kα ⊆ Bα. |W | = ℵ1 < 2ℵ0 , so pick qα ∈ Kα −W .
Let M ′α = Mα −W . W is closed, so M −W is open, so locally
compact. Mα is hereditarily Lindelöf, so M −W =
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Proof continued.
A Type I space is paracompact iff for (some) every canonical
sequence {Mα}α<ω1

, club many (Mα −Mα)’s are empty.

Therefore M −W is not paracompact. By P22(ℵ1) and Lemma 4,
it includes a perfect pre-image Q of ω1, Q = the closure of
{qα : α ∈ E1} in M −W , for a stationary E1 ⊆ E0.

Q is countably compact and hence closed in M. Let
f : M → [0, 1], f (W ) = 0, f (Q) = 1. Then f (Kα) = [0, 1] for each
α ∈ E1. For α’s in E1, recursively pick zα ∈ Kα such that ∀β < α,
f (xβ) 6= f (xα). By P22(ℵ1) and Lemmas 4, 11, there is a

stationary E ⊆ E1 such that Z = {zα : α ∈ E} is a perfect
pre-image of ω1.
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Proof continued.
{f (zα) : α ∈ E} is an uncountable subset of [0, 1] and hence has
uncountably many complete accumulation points.

For each such
point p and each α ∈ E , we may take a strictly increasing
sequence in E of countable ordinals βn(α, p) > α, 0 < n < ω, and
points zβn(α,p) ∈ Kβn(α,p), such that

∣∣p − f (zβn(α,p))
∣∣ < 1

n . Z is
sequentially compact, so there is a subsequence 〈zβnk (α,p)〉 which
converges to some z(α, p) ∈ Z . Note that

z(α, p) ∈
⋃{

Bβnk (α,p) : k < ω
}
−
⋃{

Bβnk (α,p) : k < ω
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Some more proofs.

Lemma 3∑∑∑− + CW implies a locally compact subspace of a T5 manifold is
paracompact if and only if it does not include a perfect pre-image
of ω1.

Proof.
→: A ppi would be countably compact, hence closed, hence
paracompact, but not compact, contradiction.

←: As in proof of Lemma 2, each component Y is Type I. It
suffices to show Y =

⋃
α<ω1

Yα is paracompact. As in proof of
Lemma 2, each Yα has countable spread. If Y were not
paracompact, there would be a stationary S ⊆ ω1 such that for
each α ∈ S , Y α − Yα 6= ∅. Pick yα ∈ Y α − Yα, α ∈ S . Y

∗
is

countably tight, {yα : α ∈ S} is locally countable, so by
∑∑∑− it is

σ-discrete. Apply CW and press down to obtain an uncountable
discrete subspace of some Yα. But Yα is hereditarily Lindelöf,
contradiction.
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Definition
A subspace Z of a space X is conditionally compact if every
infinite subspace of Z has a limit point in X .

Lemma 5
In a normal space, the closure of a conditionally compact subspace
is countably compact.

Proof.
Exercise.
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Lemma 4
Suppose S is a stationary subset of ω1 and Y = {yα : α ∈ S} is a
subset of a bone-scan of a canonical sequence for a Type I, normal,
first countable space M, such that countable subsets of Y have
compact closure in M. Then Y is a perfect pre-image of ω1.

Proof.
Let {Mα : α < ω1} be the canonical sequence. Let
Bα = Mα −Mα. Let Yα = Y ∩ Bα. Then Y =

⋃
α<ω1

Yα. Define

π : Y → ω1

by π(y) = α iff y ∈ Yα. First, claim π−1({α}) is compact. Yα is
closed in Bα, which is closed and Lindelöf, so it is closed in Y and
is Lindelöf. It suffices to show Y is countably compact. But Y is
conditionally compact.
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Proof continued.
Next, claim π is continuous. This is because if yαn ∈ Yαn and
yαn → yα, then yα ∈ Yα.

Note π is closed, since continuous images of countably compact
spaces are countably compact.

The range of π is unbounded, since S is uncountable and the Bα’s
are disjoint. Range π is closed, since π is closed. Thus range π is
club, so homeomorphic to ω1.
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