(*a*)-spaces and selectively (*a*)-spaces from almost disjoint families

Samuel Gomes da Silva

Federal University of Bahia Salvador – Bahia – Brazil

Maresias - Brazil

August 13, 2013

イロン イヨン イヨン ・ ヨン

3

This paper was accepted for publication in **Acta Mathematica Hungarica**, and it is dedicated to Ofelia Alas - who, in her kind and generous way, made several comments and suggestions on previous versions of the paper.

Thanks again, Ofelia !

Throughout the paper, we work with a **star covering property** and with a **selective version** of it.

(After the submission of this paper, I learned that selective versions of star covering properties, as well as other similar notions, are becoming to be known as **star selection principles**.)

- 4 周 ト 4 日 ト 4 日 ト - 日

Matveev, 94/97

X has **property** (a) (or is said to be an (a)-**space**) if for every open cover \mathcal{U} of X and for every dense set $D \subseteq X$ there is $F \subseteq D$ such that F is a closed discrete subset of X and $St(F, \mathcal{U}) = X$.

Caserta, Di Maio, Kočinac, 2011

A topological space X is said to be a **selectively** (a)-**space** if for every sequence $\langle \mathcal{U}_n : n < \omega \rangle$ of open covers and for every dense set $D \subseteq X$ there is a sequence $\langle A_n : n < \omega \rangle$ of subsets of D which are closed and discrete in X and such that $\{St(A_n, \mathcal{U}_n) : n < \omega\}$ is a open cover of X.

<ロ> (四) (四) (三) (三) (三)

It is natural, given a class of topological spaces, to wonder under which conditions these notions are equivalent – or not – when restricted to such class.

We consider such question for spaces constructed from **almost disjoint families** - the well-known Mrówka-Isbell spaces of the form $\Psi(\mathcal{A})$, where \mathcal{A} denotes an almost disjoint family of infinite subsets of ω .

As probably expected, both properties under investigation, when restricted to Ψ -spaces, have nice combinatorial characterizations.

- 4 周 ト 4 日 ト 4 日 ト - 日

Szeptycki and Vaughan, 1998

Given an almost disjoint family A, the corresponding Ψ -space satisfies property (a) if, and only if,

 $(\forall f: \mathcal{A} \to \omega) \; (\exists P \subseteq \omega) \; (\forall A \in \mathcal{A}) \; [\; \mathsf{0} < |P \cap (A \setminus f(A))| < \omega \;].$

da Silva, 2013

Let $\mathcal{A} \subseteq [\omega]^{\omega}$ be an a. d. family. The corresponding space $\Psi(\mathcal{A})$ is selectively (a) if, and only if, the following property holds:

For every sequence $\langle f_n : n < \omega \rangle$ of functions such that $f_n \in {}^{\mathcal{A}}\omega$ for every $n < \omega$, there is a sequence $\langle P_n : n < \omega \rangle$ of subsets of ω satisfying both following clauses:

(i)
$$(\forall n < \omega)(\forall A \in \mathcal{A})[|P_n \cap A| < \omega]$$

(ii) $(\forall A \in \mathcal{A})(\exists n < \omega)[P_n \cap (A \setminus f_n(A)) \neq \emptyset]$

Matveev, in 1997, showed that separable, (a)-spaces cannot include closed discrete subsets of size c.

Such result is usually referred as **Matveev's** (a)-**Jones' Lemma**. His proof was done for the separable case, but is straighforward to give a general proof (for $d(X) = \kappa$).

Now we give the selective version of such result (also in the general case).

The separable case of the following proposition was already remarked, without a proof, by Caserta, di Maio and Kočinac.

da Silva, 2013

If X is a selectively (a)-space and H is a closed discrete subset of X, then $|H| < 2^{d(X)}$.

Sketch of the proof: The proof is by contraposition. Let *D* be a dense set, |D| = d(X), and $|H| \ge 2^{d(X)}$. W.l.g., $H \cap D = \emptyset$.

 $(2^{d(X)})^{\aleph_0} = 2^{d(X)} \leq |H|$ and so we are allowed to use H to index the family of all sequences of closed discrete subsets of D; let $\{G_x : x \in H\}$ be such family (with $G_x = \langle G_{x,n} : n < \omega \rangle$, say).

For every fixed $n < \omega$ and $x \in H$, let $U_{x,n}$ be the open neighbourhood of x given by $U_{x,n} = X \setminus ((H \setminus \{x\}) \cup G_{x,n})$ and consider the open cover $\mathcal{U}_n = \{X \setminus H\} \cup \{U_{x,n} : x \in H\}.$

It is easy to check that D and the sequence $\langle U_n : n < \omega \rangle$ witness that X is not selectively (a).

Metrizability of Moore, selectively (a)-spaces under CH

 Ψ -spaces are separable, and \mathcal{A} is closed discrete in $\Psi(\mathcal{A})$; so, if $\Psi(\mathcal{A})$ is selectively (a) then $|\mathcal{A}| < \mathfrak{c}$.

In general, separable selectively (a) spaces cannot include closed discrete subsets of size c.

This lead us to the following result:

da Silva, 2013

Under **CH**, separable, Moore, selectively (*a*)-spaces are metrizable.

The proof goes easily, considering the boldfaced phrase of this slide and the following result (due to van Douwen, Reed, Roscoe and Tree): "If X is a Moore space such that w(X) does not have countable cofinality, then there is a closed discrete subset D of X such that |D| = w(X)".

・ロト ・四ト ・ヨト ・ヨト ・ヨ

For now on, we focus on consistency results related to equivalence and non-equivalence of the properties under investigation, restricted to the class of Ψ -spaces.

First, we remark the following:

Consistency of the equivalence

Assume **CH** and let $\Psi(\mathcal{A})$ be a Ψ -space. Then both properties under investigation – property (a) and its selective version – are equivalent to the countability of the almost disjoint family \mathcal{A} .

Indeed: under **CH**, Matveev's result – and its selective version – avoid the existence of uncountable a.d. families whose corresponding space satisfy (*a*) or selectively (*a*). On the other hand, countable a. d. families always correspond to **metrizable** Ψ -spaces !

CH is independent of the equivalence between being (*a*) and being selectively (*a*)

Here we use Martin's Axiom/small cardinals for obtaining models of \neg **CH** were the properties are equivalent for Ψ -spaces.

It is well-known that $\mathfrak{p} = \mathfrak{m}_{\sigma\text{-centered}}$ (a classical result from Bell).

Szeptycki and Vaughan (1998) have considered a σ -centered p.o. to prove within **ZFC** that if $|\mathcal{A}| < \mathfrak{p}$ then $\Psi(\mathcal{A})$ has property (a).

So, we have the following:

The equivalence is consistent with $\mathbf{ZFC} + \neg \mathbf{CH}$ (da Silva, 2013) If $\mathfrak{p} = \mathfrak{c}$, then a Ψ -space satisfies property (*a*) if, and only if, satisfies its selective version.

In fact, this also shows that even $``2^{\aleph_0}<2^{\aleph_1}''$ is independent of the referred equivalence.

To give a framework for further consistency results, we now prove that, in a certain way, the role played by \mathfrak{p} in the context of (a)-spaces is played by \mathfrak{d} in the context of selectively (a)-spaces.

 $\begin{array}{l} \mbox{Proposition (da Silva, 2013)}\\ \mbox{Let } \mathcal{A} \subseteq [\omega]^{\omega} \mbox{ be an infinite a. d. family.}\\ (i) \mbox{ If } |\mathcal{A}| < \mathfrak{d}, \mbox{ then } \Psi(\mathcal{A}) \mbox{ is selectively } (a).\\ (ii) \mbox{ Suppose } \mathcal{A} \mbox{ is maximal. Then } \Psi(\mathcal{A}) \mbox{ is selectively } (a) \mbox{ if, and only if, } |\mathcal{A}| < \mathfrak{d}. \end{array}$

Sketch of the proof

For the first part:

- A a.d. family of size |A| < 0, ⟨U_n : n < ω⟩ arbitrary sequence of open covers of X.
- For A ∈ A and n < ω, let U_{A,n} be an open neighbourhood of A which belongs to U_n.
- $\mathcal{F} = \{f_A : A \in \mathcal{A}\} \subseteq {}^{\omega}\omega$ defined by putting $f_A(n) = \min(U_{A,n} \cap \omega)$ for every $A \in \mathcal{A}$ and $n < \omega$.
- As $|\mathcal{F}| \leq |\mathcal{A}| < \mathfrak{d}$, there is $f : \omega \to \omega$ such that for every $A \in \mathcal{A}$ there is $m < \omega$ such that $f_A(m) < f(m)$.
- Define $A_n = \{k < \omega : 0 \leq k \leq f(n)\} \cup \{n\}$ and we are done.

- A a.d. family of size |A| < ∂, ⟨U_n : n < ω⟩ arbitrary sequence of open covers of X.
- For $A \in \mathcal{A}$ and $n < \omega$, let $U_{A,n}$ be an open neighbourhood of A which belongs to \mathcal{U}_n .
- $\mathcal{F} = \{f_A : A \in \mathcal{A}\} \subseteq {}^{\omega}\omega$ defined by putting $f_A(n) = \min(U_{A,n} \cap \omega)$ for every $A \in \mathcal{A}$ and $n < \omega$.
- As $|\mathcal{F}| \leq |\mathcal{A}| < \mathfrak{d}$, there is $f : \omega \to \omega$ such that for every $A \in \mathcal{A}$ there is $m < \omega$ such that $f_A(m) < f(m)$.
- Define $A_n = \{k < \omega : 0 \leq k \leq f(n)\} \cup \{n\}$ and we are done.

- A a.d. family of size |A| < ∂, ⟨U_n : n < ω⟩ arbitrary sequence of open covers of X.
- For A ∈ A and n < ω, let U_{A,n} be an open neighbourhood of A which belongs to U_n.
- $\mathcal{F} = \{f_A : A \in \mathcal{A}\} \subseteq {}^{\omega}\omega$ defined by putting $f_A(n) = \min(U_{A,n} \cap \omega)$ for every $A \in \mathcal{A}$ and $n < \omega$.
- As $|\mathcal{F}| \leq |\mathcal{A}| < \mathfrak{d}$, there is $f : \omega \to \omega$ such that for every $A \in \mathcal{A}$ there is $m < \omega$ such that $f_A(m) < f(m)$.
- Define $A_n = \{k < \omega : 0 \leq k \leq f(n)\} \cup \{n\}$ and we are done.

- A a.d. family of size |A| < ∂, ⟨U_n : n < ω⟩ arbitrary sequence of open covers of X.
- For A ∈ A and n < ω, let U_{A,n} be an open neighbourhood of A which belongs to U_n.
- $\mathcal{F} = \{f_A : A \in \mathcal{A}\} \subseteq {}^{\omega}\omega$ defined by putting $f_A(n) = \min(U_{A,n} \cap \omega)$ for every $A \in \mathcal{A}$ and $n < \omega$.
- As $|\mathcal{F}| \leq |\mathcal{A}| < \mathfrak{d}$, there is $f : \omega \to \omega$ such that for every $A \in \mathcal{A}$ there is $m < \omega$ such that $f_A(m) < f(m)$.

• Define $A_n = \{k < \omega : 0 \leq k \leq f(n)\} \cup \{n\}$ and we are done.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- A a.d. family of size |A| < ∂, ⟨U_n : n < ω⟩ arbitrary sequence of open covers of X.
- For $A \in \mathcal{A}$ and $n < \omega$, let $U_{A,n}$ be an open neighbourhood of A which belongs to \mathcal{U}_n .
- $\mathcal{F} = \{f_A : A \in \mathcal{A}\} \subseteq {}^{\omega}\omega$ defined by putting $f_A(n) = \min(U_{A,n} \cap \omega)$ for every $A \in \mathcal{A}$ and $n < \omega$.
- As $|\mathcal{F}| \leq |\mathcal{A}| < \mathfrak{d}$, there is $f : \omega \to \omega$ such that for every $A \in \mathcal{A}$ there is $m < \omega$ such that $f_A(m) < f(m)$.
- Define $A_n = \{k < \omega : 0 \leq k \leq f(n)\} \cup \{n\}$ and we are done.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- Let \mathcal{A} be a maximal a.d. family \mathcal{A} , $|\mathcal{A}| \ge \mathfrak{d}$. We show that $\Psi(\mathcal{A})$ is not selectively (a).
- Take: A' ⊆ A with |A'| = ∂, say A' = {A_α : α < ∂}, and {f_α : α < ∂} a dominating family in the pointwisely defined order.
- For each $n < \omega$, take the open cover $\mathcal{U}_n = \{\{A_\alpha\} \cup (A_\alpha \setminus f_\alpha(n)) : \alpha < \mathfrak{d}\} \cup \{X \setminus \mathcal{A}'\}.$
- If ⟨P_n : n < ω⟩ is an arbitrary sequence of closed discrete subsets of the dense set ω, the maximality of A ensures that each one of the P_n's is a finite set.
- If $g: \omega \to \omega$ is defined by putting $g(n) = \sup(P_n) + 1$, take $\xi < \mathfrak{d}$ such that $g(n) \leq f_{\xi}(n)$ for every $n < \omega$. Then we have that $A_{\xi} \notin \bigcup \{St(P_n, \mathcal{U}_n) : n < \omega\}$, so we are done.

イロン スポン スポン スポン 一部

- Let \mathcal{A} be a maximal a.d. family \mathcal{A} , $|\mathcal{A}| \ge \mathfrak{d}$. We show that $\Psi(\mathcal{A})$ is not selectively (a).
- Take: $\mathcal{A}' \subseteq \mathcal{A}$ with $|\mathcal{A}'| = \mathfrak{d}$, say $\mathcal{A}' = \{A_{\alpha} : \alpha < \mathfrak{d}\}$, and $\{f_{\alpha} : \alpha < \mathfrak{d}\}$ a dominating family in the pointwisely defined order.
- For each $n < \omega$, take the open cover $\mathcal{U}_n = \{\{A_\alpha\} \cup (A_\alpha \setminus f_\alpha(n)) : \alpha < \mathfrak{d}\} \cup \{X \setminus \mathcal{A}'\}.$
- If ⟨P_n : n < ω⟩ is an arbitrary sequence of closed discrete subsets of the dense set ω, the maximality of A ensures that each one of the P_n's is a finite set.
- If $g: \omega \to \omega$ is defined by putting $g(n) = \sup(P_n) + 1$, take $\xi < \mathfrak{d}$ such that $g(n) \leq f_{\xi}(n)$ for every $n < \omega$. Then we have that $A_{\xi} \notin \bigcup \{St(P_n, \mathcal{U}_n) : n < \omega\}$, so we are done.

- Let \mathcal{A} be a maximal a.d. family \mathcal{A} , $|\mathcal{A}| \ge \mathfrak{d}$. We show that $\Psi(\mathcal{A})$ is not selectively (a).
- Take: $\mathcal{A}' \subseteq \mathcal{A}$ with $|\mathcal{A}'| = \mathfrak{d}$, say $\mathcal{A}' = \{A_{\alpha} : \alpha < \mathfrak{d}\}$, and $\{f_{\alpha} : \alpha < \mathfrak{d}\}$ a dominating family in the pointwisely defined order.
- For each $n < \omega$, take the open cover $\mathcal{U}_n = \{\{A_\alpha\} \cup (A_\alpha \setminus f_\alpha(n)) : \alpha < \mathfrak{d}\} \cup \{X \setminus \mathcal{A}'\}.$
- If (P_n : n < ω) is an arbitrary sequence of closed discrete subsets of the dense set ω, the maximality of A ensures that each one of the P_n's is a finite set.
- If $g: \omega \to \omega$ is defined by putting $g(n) = \sup(P_n) + 1$, take $\xi < \mathfrak{d}$ such that $g(n) \leq f_{\xi}(n)$ for every $n < \omega$. Then we have that $A_{\xi} \notin \bigcup \{St(P_n, \mathcal{U}_n) : n < \omega\}$, so we are done.

(日) (四) (王) (王) (王)

- Let \mathcal{A} be a maximal a.d. family \mathcal{A} , $|\mathcal{A}| \ge \mathfrak{d}$. We show that $\Psi(\mathcal{A})$ is not selectively (a).
- Take: $\mathcal{A}' \subseteq \mathcal{A}$ with $|\mathcal{A}'| = \mathfrak{d}$, say $\mathcal{A}' = \{A_{\alpha} : \alpha < \mathfrak{d}\}$, and $\{f_{\alpha} : \alpha < \mathfrak{d}\}$ a dominating family in the pointwisely defined order.
- For each $n < \omega$, take the open cover $\mathcal{U}_n = \{\{A_\alpha\} \cup (A_\alpha \setminus f_\alpha(n)) : \alpha < \mathfrak{d}\} \cup \{X \setminus \mathcal{A}'\}.$
- If ⟨P_n : n < ω⟩ is an arbitrary sequence of closed discrete subsets of the dense set ω, the maximality of A ensures that each one of the P_n's is a finite set.
- If $g: \omega \to \omega$ is defined by putting $g(n) = \sup(P_n) + 1$, take $\xi < \mathfrak{d}$ such that $g(n) \leq f_{\xi}(n)$ for every $n < \omega$. Then we have that $A_{\xi} \notin \bigcup \{St(P_n, \mathcal{U}_n) : n < \omega\}$, so we are done.

- Let \mathcal{A} be a maximal a.d. family \mathcal{A} , $|\mathcal{A}| \ge \mathfrak{d}$. We show that $\Psi(\mathcal{A})$ is not selectively (a).
- Take: $\mathcal{A}' \subseteq \mathcal{A}$ with $|\mathcal{A}'| = \mathfrak{d}$, say $\mathcal{A}' = \{A_{\alpha} : \alpha < \mathfrak{d}\}$, and $\{f_{\alpha} : \alpha < \mathfrak{d}\}$ a dominating family in the pointwisely defined order.
- For each $n < \omega$, take the open cover $\mathcal{U}_n = \{\{A_\alpha\} \cup (A_\alpha \setminus f_\alpha(n)) : \alpha < \mathfrak{d}\} \cup \{X \setminus \mathcal{A}'\}.$
- If ⟨P_n : n < ω⟩ is an arbitrary sequence of closed discrete subsets of the dense set ω, the maximality of A ensures that each one of the P_n's is a finite set.
- If $g: \omega \to \omega$ is defined by putting $g(n) = \sup(P_n) + 1$, take $\xi < \mathfrak{d}$ such that $g(n) \leq f_{\xi}(n)$ for every $n < \omega$. Then we have that $A_{\xi} \notin \bigcup \{St(P_n, \mathcal{U}_n) : n < \omega\}$, so we are done.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

It is well known that MAD families are not (a)-spaces. It follows that:

Corollary (da Silva, 2013)

It is consistent that there are selectively (a) spaces, constructed from almost disjoint families, which are not (a)-spaces.

Indeed, one has just to consider an infinite MAD family of minimal size in a model of $a < \mathfrak{d}$.

イロト イポト イラト イラト 一日

By just mimicking the proof of the first part of the preceding proposition, we also get the following:

Corollary (da Silva, 2013)

Let X be a T_1 separable space with $|X| < \mathfrak{d}$ and suppose X has the following property:

(*) Any dense subset of X has a countable, dense subset.

Under these assumptions, X is a selectively (a) space.

In particular, it is consistent that T_1 spaces satisfying (*) and with size less than c are all selectively (a).

Examples of spaces satisfying (*): spaces with a countable base, or even first countable separable spaces; hereditarily separable spaces; separable spaces with a dense set of isolated points; and so on.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Notes and Questions

Adding \aleph_{ω_1} Cohen reals to a model of **GCH**, one has $\aleph_1 = \mathfrak{a} < \mathfrak{d} = \mathfrak{c}$ and $2^{\aleph_0} < 2^{\aleph_1}$ in the extension. So we have:

Proposition (da Silva, 2013)

The following statement is consistent with $\mathbf{ZFC} + 2^{\aleph_0} < 2^{\aleph_1}$:

"There is a Ψ -space which is selectively (a) but does not satisfy property (a)"

Proposition (da Silva, 2013)

The following statement is consistent with $\mathbf{ZFC} + 2^{\aleph_0} < 2^{\aleph_1}$:

"There is a separable, selectively (*a*)-space with an uncountable closed discrete subset."

The interest of the 1st proposition of the previous slide is: the equivalence between our properties, restricted to Ψ -spaces, is independent of $2^{\aleph_0} < 2^{\aleph_1}$ (before, we have shown the independency in the other way around...).

The interest of the 2nd proposition of the previous slide is: it is still an open question (due to the speaker) whether $2^{\aleph_0} < 2^{\aleph_1}$ alone suffices to avoid the existence of separable (*a*)-spaces with uncountable closed discrete subsets. So, we could see that, for selectively (*a*)-spaces, it doesn't !!!

This is an example of an open problem on (a)-spaces which, after relaxing for selectively (a)-spaces, is settled.

na C

Selective versions of previous questions on (a)-spaces

However, there are open questions in the literature, previously posed for (a), which still can be formulated for selectively (a).

Three surviving questions

• (posed for (a)-spaces by the speaker)

Is it consistent that there is an a.d. family \mathcal{A} of size \mathfrak{d} such that $\Psi(\mathcal{A})$ is selectively (a) ?

• (posed for (a)-spaces by Szeptycki)

If $\Psi(\mathcal{A})$ is normal, is it a selectively (a)-space ?

• (posed for (a)-spaces by the speaker)

If $\Psi(\mathcal{A})$ is countably paracompact, is it a selectively (a)-space ?

イロト イヨト イヨト イヨト

Э

nan

Selective versions of previous questions on (a)-spaces

However, there are open questions in the literature, previously posed for (a), which still can be formulated for selectively (a).

Three surviving questions

• (posed for (a)-spaces by the speaker)

Is it consistent that there is an a.d. family \mathcal{A} of size \mathfrak{d} such that $\Psi(\mathcal{A})$ is selectively (a) ?

• (posed for (a)-spaces by Szeptycki)

If $\Psi(\mathcal{A})$ is normal, is it a selectively (a)-space ?

• (posed for (a)-spaces by the speaker)

If $\Psi(\mathcal{A})$ is countably paracompact, is it a selectively (a)-space ?

イロト イヨト イヨト イヨト

Э

nan

Selective versions of previous questions on (a)-spaces

However, there are open questions in the literature, previously posed for (a), which still can be formulated for selectively (a).

Three surviving questions

• (posed for (a)-spaces by the speaker)

Is it consistent that there is an a.d. family \mathcal{A} of size \mathfrak{d} such that $\Psi(\mathcal{A})$ is selectively (a) ?

• (posed for (a)-spaces by Szeptycki)

If $\Psi(\mathcal{A})$ is normal, is it a selectively (a)-space ?

• (posed for (a)-spaces by the speaker)

If $\Psi(\mathcal{A})$ is countably paracompact, is it a selectively (a)-space ?

<ロト <回ト < 三ト < 三ト

E

nan

To finish, notice that all consistency results of this paper were given in terms of small cardinals.

Is there a way to describe precisely the possibilities of equivalence between our two properties, when restricted to Ψ -spaces, by using such cardinals ?

The final problem

Find a statement φ , if any, enunciated in terms of small cardinals, such that (a) and selectively (a) are equivalent properties for Ψ -spaces if, and only if, φ holds.

- 4 周 ト 4 ヨ ト 4 ヨ ト - ヨ

References

- Bell, M.G., *On the combinatorial principle P(c)*, Fundamenta Mathematicae **114**, 2 (1981), 149-157.
- Caserta, A., Di Maio, G. and Kočinac, Lj. D. R., Versions of properties (a) and (pp), Topology and its Applications 158, 12 (2011), 1360–1368.
 - Matveev, M.V., Some questions on property (a), Questions and Answers in General Topology 15, 2 (1997), 103–111.
- da Silva, S.G., On the presence of countable paracompactness, normality and property (a) in spaces from almost disjoint families, Questions and Answers in General Topology **25**, 1 (2007), 1–18.
- da Silva, S.G., (a)-spaces and selectively (a)-spaces from almost disjoint families, to appear in Acta Mathematica Hungarica.
- Szeptycki, P. J., *Soft almost disjoint families*, Proceedings of American Mathematical Society **130**, 12 (2002), 3713–3717.
- Szeptycki, P.J. and Vaughan, J.E., *Almost disjoint families and property* (*a*), Fundamenta Mathematicae **158**, 3 (1998), 229–240.

Samuel Gomes da Silva STW 2013

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶

E

DQC