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A star selection principle

This paper was accepted for publication in Acta Mathematica
Hungarica, and it is dedicated to Ofelia Alas - who, in her kind
and generous way, made several comments and suggestions on
previous versions of the paper.

Thanks again, Ofelia !

Throughout the paper, we work with a star covering property
and with a selective version of it.

(After the submission of this paper, I learned that selective versions
of star covering properties, as well as other similar notions, are
becoming to be known as star selection principles.)
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The definitions

Matveev, 94/97

X has property (a) (or is said to be an (a)-space) if for every open
cover U of X and for every dense set D ⊆ X there is F ⊆ D such
that F is a closed discrete subset of X and St(F ,U) = X .

Caserta, Di Maio, Kočinac, 2011

A topological space X is said to be a selectively (a)-space if for
every sequence 〈Un : n < ω〉 of open covers and for every dense set
D ⊆ X there is a sequence 〈An : n < ω〉 of subsets of D which are
closed and discrete in X and such that {St(An,Un) : n < ω} is a
open cover of X .
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Spaces from almost disjoint families

It is natural, given a class of topological spaces, to wonder under
which conditions these notions are equivalent – or not – when
restricted to such class.

We consider such question for spaces constructed from almost
disjoint families - the well-known Mrówka-Isbell spaces of the
form Ψ(A), where A denotes an almost disjoint family of infinite
subsets of ω.

As probably expected, both properties under investigation, when
restricted to Ψ-spaces, have nice combinatorial characterizations.
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Combinatorial characterizations

Szeptycki and Vaughan, 1998

Given an almost disjoint family A, the corresponding Ψ-space
satisfies property (a) if, and only if,

(∀f : A → ω) (∃P ⊆ ω) (∀A ∈ A) [ 0 < |P ∩ (A \ f (A))| < ω ].

da Silva, 2013

Let A ⊆ [ω]ω be an a. d. family. The corresponding space Ψ(A) is
selectively (a) if, and only if, the following property holds:

For every sequence 〈fn : n < ω〉 of functions such that fn ∈ Aω
for every n < ω, there is a sequence 〈Pn : n < ω〉 of subsets of ω
satisfying both following clauses:

(i) (∀n < ω)(∀A ∈ A)[|Pn ∩ A| < ω]
(ii) (∀A ∈ A)(∃n < ω)[Pn ∩ (A \ fn(A)) 6= ∅]
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On the extent of selectively (a)-spaces

Matveev, in 1997, showed that separable, (a)-spaces cannot
include closed discrete subsets of size c.

Such result is usually referred as Matveev’s (a)-Jones’ Lemma.
His proof was done for the separable case, but is straighforward to
give a general proof (for d(X ) = κ).

Now we give the selective version of such result
(also in the general case).

The separable case of the following proposition was already
remarked, without a proof, by Caserta, di Maio and Kočinac.
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On the extent of selectively (a)-spaces

da Silva, 2013

If X is a selectively (a)-space and H is a closed discrete subset of
X , then |H| < 2d(X ).

Sketch of the proof: The proof is by contraposition. Let D be a
dense set, |D| = d(X ), and |H| > 2d(X ). W.l.g., H ∩ D = ∅.

(2d(X ))ℵ0 = 2d(X ) 6 |H| and so we are allowed to use H to index
the family of all sequences of closed discrete subsets of D; let
{Gx : x ∈ H} be such family (with Gx = 〈Gx ,n : n < ω〉, say).

For every fixed n < ω and x ∈ H, let Ux ,n be the open

neighbourhood of x given by Ux ,n = X \
(

(H \ {x}) ∪ Gx ,n

)
and

consider the open cover Un = {X \ H} ∪ {Ux ,n : x ∈ H}.

It is easy to check that D and the sequence 〈Un : n < ω〉 witness
that X is not selectively (a).
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Metrizability of Moore, selectively (a)-spaces under CH

Ψ-spaces are separable, and A is closed discrete in Ψ(A); so, if
Ψ(A) is selectively (a) then |A| < c.

In general, separable selectively (a) spaces cannot include
closed discrete subsets of size c.

This lead us to the following result:

da Silva, 2013

Under CH, separable, Moore, selectively (a)-spaces are metrizable.

The proof goes easily, considering the boldfaced phrase of this slide
and the following result (due to van Douwen, Reed, Roscoe and
Tree): “If X is a Moore space such that w(X ) does not have
countable cofinality, then there is a closed discrete subset D of X
such that |D| = w(X )”.
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More consistency results

For now on, we focus on consistency results related to equivalence
and non-equivalence of the properties under investigation,
restricted to the class of Ψ-spaces.

First, we remark the following:

Consistency of the equivalence

Assume CH and let Ψ(A) be a Ψ-space. Then both properties under
investigation – property (a) and its selective version – are equivalent
to the countability of the almost disjoint family A.

Indeed: under CH, Matveev’s result – and its selective version –
avoid the existence of uncountable a.d. families whose
corresponding space satisfy (a) or selectively (a). On the other
hand, countable a. d. families always correspond to metrizable
Ψ-spaces !
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CH is independent of the equivalence
between being (a) and being selectively (a)

Here we use Martin’s Axiom/small cardinals for obtaining models
of ¬CH were the properties are equivalent for Ψ-spaces.

It is well-known that p = mσ-centered (a classical result from Bell).

Szeptycki and Vaughan (1998) have considered a σ-centered p.o.
to prove within ZFC that if |A| < p then Ψ(A) has property (a).

So, we have the following:

The equivalence is consistent with ZFC + ¬CH (da Silva, 2013)

If p = c, then a Ψ-space satisfies property (a) if, and only if, satisfies
its selective version.

In fact, this also shows that even “2ℵ0 < 2ℵ1” is independent of
the referred equivalence.
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A ZFC result

To give a framework for further consistency results, we now prove
that, in a certain way, the role played by p in the context of
(a)-spaces is played by d in the context of selectively (a)-spaces.

Proposition (da Silva, 2013)

Let A ⊆ [ω]ω be an infinite a. d. family.

(i) If |A| < d, then Ψ(A) is selectively (a).

(ii) Suppose A is maximal. Then Ψ(A) is selectively (a)
if, and only if, |A| < d.
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Sketch of the proof

For the first part:

A a.d. family of size |A| < d, 〈Un : n < ω〉 arbitrary sequence
of open covers of X .

For A ∈ A and n < ω, let UA,n be an open neighbourhood of
A which belongs to Un.

F = {fA : A ∈ A} ⊆ ωω defined by putting
fA(n) = min(UA,n ∩ ω) for every A ∈ A and n < ω.

As |F| 6 |A| < d, there is f : ω → ω such that for every
A ∈ A there is m < ω such that fA(m) < f (m).

Define An = {k < ω : 0 6 k 6 f (n)} ∪ {n} and we are done.
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Sketch of the proof

For the second part:

Let A be a maximal a.d. family A, |A| > d. We show that
Ψ(A) is not selectively (a).

Take: A′ ⊆ A with |A′| = d, say A′ = {Aα : α < d}, and
{fα : α < d} a dominating family in the pointwisely defined
order.

For each n < ω, take the open cover
Un = {{Aα} ∪ (Aα \ fα(n)) : α < d} ∪ {X \ A′}.
If 〈Pn : n < ω〉 is an arbitrary sequence of closed discrete
subsets of the dense set ω , the maximality of A ensures that
each one of the Pn’s is a finite set.

If g : ω → ω is defined by putting g(n) = sup(Pn) + 1, take
ξ < d such that g(n) 6 fξ(n) for every n < ω. Then we have
that Aξ /∈

⋃
{St(Pn,Un) : n < ω}, so we are done.
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And more consistency results

It is well known that MAD families are not (a)-spaces. It follows
that:

Corollary (da Silva, 2013)

It is consistent that there are selectively (a) spaces, constructed from
almost disjoint families, which are not (a)-spaces.

Indeed, one has just to consider an infinite MAD family of minimal
size in a model of a < d.
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And more consistency results

By just mimicking the proof of the first part of the preceding
proposition, we also get the following:

Corollary (da Silva, 2013)

Let X be a T1 separable space with |X | < d and suppose X has the
following property:

(*) Any dense subset of X has a countable, dense subset.

Under these assumptions, X is a selectively (a) space.

In particular, it is consistent that T1 spaces satisfying (*) and with
size less than c are all selectively (a).

Examples of spaces satisfying (*): spaces with a countable base, or
even first countable separable spaces; hereditarily separable spaces;
separable spaces with a dense set of isolated points; and so on.
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Notes and Questions

Adding ℵω1 Cohen reals to a model of GCH, one has
ℵ1 = a < d = c and 2ℵ0 < 2ℵ1 in the extension. So we have:

Proposition (da Silva, 2013)

The following statement is consistent with ZFC + 2ℵ0 < 2ℵ1 :

“There is a Ψ-space which is selectively (a) but does not satisfy
property (a)”

Proposition (da Silva, 2013)

The following statement is consistent with ZFC + 2ℵ0 < 2ℵ1 :

“There is a separable, selectively (a)-space with an uncountable
closed discrete subset.”
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Notes and Questions

The interest of the 1st proposition of the previous slide is:
the equivalence between our properties, restricted to Ψ-spaces, is
independent of 2ℵ0 < 2ℵ1 (before, we have shown the
independency in the other way around. . . ).

The interest of the 2nd proposition of the previous slide is:
it is still an open question (due to the speaker) whether 2ℵ0 < 2ℵ1

alone suffices to avoid the existence of separable (a)-spaces with
uncountable closed discrete subsets. So, we could see that, for
selectively (a)-spaces, it doesn’t !!!

This is an example of an open problem on (a)-spaces which, after
relaxing for selectively (a)-spaces, is settled.
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Selective versions of previous questions on (a)-spaces

However, there are open questions in the literature, previously
posed for (a), which still can be formulated for selectively (a).

Three surviving questions

(posed for (a)-spaces by the speaker)

Is it consistent that there is an a.d. family A of size d such
that Ψ(A) is selectively (a) ?

(posed for (a)-spaces by Szeptycki)

If Ψ(A) is normal, is it a selectively (a)-space ?

(posed for (a)-spaces by the speaker)

If Ψ(A) is countably paracompact, is it a selectively
(a)-space ?
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Are we talking of small cardinals ???

To finish, notice that all consistency results of this paper were
given in terms of small cardinals.

Is there a way to describe precisely the possibilities of equivalence
between our two properties, when restricted to Ψ-spaces, by using
such cardinals ?

The final problem

Find a statement ϕ, if any, enunciated in terms of small cardinals,
such that (a) and selectively (a) are equivalent properties for Ψ-
spaces if, and only if, ϕ holds.
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Hope see you soon in Salvador !
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