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D. Alcaraz (Universidad de Cartagena, Spain) and D. Dikranjan
(Università di Udine, Italy). The remainder of the results is a
joint work with D. Dikranjan (Università di Udine, Italy)
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Introduction

Definition

Let X be a compact space. If α : X → X is a continuous
function, then the topological entropy of α with respect to a
cover U is defined as

hT (α,U) = lim
n→∞

logN

(
n−1∧
i=0

α−i(U)

)
n

where, as usual,
n−1∧
i=0

α−i(U) stands for the cover

U ∩ α−1(U) ∩ α−2(U) ∩ · · · · · ∩ α−(n−1)(U) .

N

(
n−1∧
i=0

α−i(U)

)
≡ the smallest cardinality of a finite subcover

of
n−1∧
i=0

α−i(U).
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Introduction

Definition (Adler, Konheim and McAndrew (1965))

Let X be a compact space. If α : X → X is a continuous
function, then the topological entropy of α is defined as

hT (α) = sup{hT (α,U) | U an open cover of X } .
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Introduction

Bowen’s Entropy (Bowen (1971))

Let (X,U) be a uniform space. Let α : X → X be a uniformly
continuous function. Consider U ∈ U

.

A subset F (n,U)-span a compact subset C if for every x ∈ C
there is y ∈ F such that

(αj(x), αj(y)) ∈ U 0 ≤ j < n
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Introduction

Bowen’s Entropy (Bowen (1971))

For a compact subset C ⊆ X, we consider the numbers

• rn(U,C) ≡ the smallest cardinality of any set F which
(n,U)-spans C.

• hB(α,C) = supU∈U{ lim supn→∞
1
n log rn (U,C) }

Definition

The Bowen entropy hB(α) of α with respect to the uniformity
U is defined as

hB(α) = sup{hB(α,C) | C ⊆ X, compact }
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Introduction

Metric Entropy

Let (X, d) be a metric space. If α : X → X is a uniformly
continuous function, then

hd(α) = hB(α)

where hB(α) is the Bowen’s Entropy with respect to the
uniformity induced by the metric d .
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Theorem (Bowen, 1971)

Let (X, d) a compact metric space. If α : X → X is a
continuous function, then

hd(α) = hT (α) .
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Let X be a compact space. If α : X → X is a continuous
function, then

hB(α) = hT (α)

where hB(α) is the Bowen Entropy with respect to the unique
uniformity on X.
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Uniform Entropy and Topological Groups

Let (G, τ) be a topological group.

• UR ≡ the right uniformity .

• UL ≡ the left uniformity .

Theorem

Let (G, τ) be a topological group. If α : G→ G is a continuous
endomorphism, then the uniform entropy of α with respect to
the right uniformity on G coincides with the uniform entropy of
α with respect to the left uniformity on G.
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Let (G, τ) be a topological group.

Given an integer k, let mG
k denote the continuous endomorphism

mG
k (x) = kx x ∈ G .
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Bowen’s Entropy and Dimension

Theorem

Let G be a topological abelian group that is either locally
compact or ω-bounded. Then

hB(mG
k ) = dimG · log k for every k > 1 .

Moreover, the following are equivalent:

G is totally disconnected.

hB(mG
k ) = 0 for every integer k.

hB(mG
k ) = 0 for some integer k > 1.
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Bowen’s Entropy and Dimension

Example An infinite-dimensional compact connected group G
may have no continuous automorphisms of infinite entropy

• Consider, for each n ≥ 1, a connected compact simple Lie
group Ln which are pairwise non-isomorphic.
• Every automorphism α on Ln is continuous and, moreover
some finite power of α is an inner automorphism (van der
Waerden’s theorem).
• Then α has zero topological entropy.
• G =

∏∞
n=1 Ln. (Notice that every continuous automorphism

on G is a product of continuous automorphisms of the single
components Ln).
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h-jump endomorphisms

Let G be an abstract abelian group.

• G# ≡ G endowed with the weak topology associated to the
family of all homomorphisms from G into the circle T (the Bohr
topology)

• bG ≡ its Weil completion (the Bohr compactification of G)
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h-jump endomorphisms

Theorem

For every infinite abelian group G there exists an h-jump
endomorphism α : G# → G#, i.e., such that hB(b(α)) =∞ for
the extension b(α) : bG→ bG of α.

Case 1. G is not bounded torsion.

(The function
mG
k (k > 1).)

Case 2. G =
⊕

κ Z(n), where κ is an infinite cardinal and
n > 1.

(The left Bernoulli shift.)

Case 3. There exists a natural n > 1 such that nG = 0.

(The left Bernoulli shift.)
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Compact abelian groups without endomorphisms of infinite entropy

Definition

A group of the form G =
∏
p Z

np
p × Fp, where np ≥ 0 is an

integer and Fp is a finite p-group for every prime p, is called an
Orsatti group.
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Compact abelian groups without endomorphisms of infinite entropy

Theorem (Orsatti, 1967)

An abelian group G is an Orsatti group if and only if the
Z-topology on G is compact.

• The Z-topology of G is the group topology of G having as
basic neighborhoods of 0 all subgroups of G of the form nG,
n > 0.
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Compact abelian groups without endomorphisms of infinite entropy

Theorem

Every endomorphism on an Orsatti group has zero entropy.
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Compact abelian groups without endomorphisms of infinite entropy

Theorem

For every compact finite-dimensional abelian group G the
following statements are equivalent:

(1) G/c(G) is an Orsatti group.

(2) G/pG is finite for every prime p.

(3) For every prime p, every endomorphism on G/pG has finite
entropy.

(4) Every endomorphism on a quotient of G has finite entropy.

(5) There exists a closed subgroup G1 of G containing c(G),
such that G = G1 ×

∏
p Z

np
p and G1/c(G) ∼=

∏
p Fp, where

np is a non-negative integer and Fp is a finite p-group for
every prime p.

In case these conditions hold, G is metrizable.
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Theorem

For every totally disconnected compact abelian group G the
following statements are equivalent:

(1) G is an Orsatti group.

(2) Every endomorphism on a quotient of G has finite entropy.

(3) For every prime p, every endomorphism on G/pG has finite
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In case these conditions hold, G is metrizable.
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Open Questions

Open Questions

E ≡ the class of topological groups without endomorphisms of
infinite entropy.

E0 ≡ the class of topological groups with the property that
every endomorphism has zero entropy.

(P1) Are the classes (of compact abelian groups in) E and E0

closed with respect to: (i) taking finite products, and (ii)
taking extensions?

(P2) Is there a metrizable abelian group which has
h-endomorphisms?

(P3) (J. Peters, 1981) Let G be a locally compact abelian group.
Is the function

α ∈ Aut(G)→ hB(α) ∈ [0,∞]

continuous?
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Muito obrigado pela sua atenção !!
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