On $(\mathcal{P}, \mathcal{Q})$ -structured spaces

Fidel Casarrubias Segura Carlos G Paniagua Ramírez

Facultad de Ciencias UNAM, México

STW 2013

ntroduction	Son

Outline

Introduction

• $(\mathcal{P}, \mathcal{Q})$ -structured spaces

2 Some Results

4 Some Questions

Introduction

 $(\mathcal{P}, \mathcal{Q})$ -structured spaces

$(\mathcal{P}, \mathcal{Q})$ -structured spaces

Definition

Let \mathcal{P} and \mathcal{Q} be some classes of topological spaces. A topological space *X* will be called $(\mathcal{P}, \mathcal{Q})$ -*structured* if there exists a subspace *Y* of *X* (called a \mathcal{P} -kernel of *X*) such that $Y \in \mathcal{P}$ and for every open neighborhood *U* of *Y* in *X*, the subspace $X \setminus U$ belongs to \mathcal{Q} .

We denote by \mathcal{M} the class of metrizable separable spaces, \mathcal{K} the class of compact spaces, $L\Sigma$ the class of Lindelöf- Σ spaces. \mathcal{P} and \mathcal{Q} will be subclasses of $L\Sigma$.

The $(L\Sigma, L\Sigma)$ -structured spaces are also called *Charming spaces*.

Proposition

Let \mathcal{P} and \mathcal{Q} be classes of topological spaces closed under countinuous images, closed subspaces, and such that $\mathcal{M} \subseteq \mathcal{P} \subseteq \mathcal{Q} \subseteq L\Sigma$. Then

Every continuous image of a (P, Q)-structured space is a (P, Q)-structured space.

Proposition

Let \mathcal{P} and \mathcal{Q} be classes of topological spaces closed under countinuous images, closed subspaces, and such that $\mathcal{M} \subseteq \mathcal{P} \subseteq \mathcal{Q} \subseteq L\Sigma$. Then

- Every continuous image of a (P, Q)-structured space is a (P, Q)-structured space.
- Every closed subspace of a (P, Q)-structured space is a (P, Q)-structured space.

Proposition

Let \mathcal{P} and \mathcal{Q} be classes of topological spaces closed under countinuous images, closed subspaces, and such that $\mathcal{M} \subseteq \mathcal{P} \subseteq \mathcal{Q} \subseteq L\Sigma$. Then

- Every continuous image of a (P, Q)-structured space is a (P, Q)-structured space.
- Every closed subspace of a (P, Q)-structured space is a (P, Q)-structured space.
- If P and Q are closed under perfect preimages. Then every perfect preimage of a (P, Q)-structured space is a (P, Q)-structured space.

Proposition

Let \mathcal{P} and \mathcal{Q} classes of topological spaces closed under countinuous images, closed subspaces, and such that $\mathcal{M} \subseteq \mathcal{P} \subseteq \mathcal{Q} \subseteq L\Sigma$. Then

- Every continuous image of a (P, Q)-structured space is a (P, Q)-structured space.
- Every closed subspace of a (P, Q)-structured space is a (P, Q)-structured space.
- If P and Q are closed under perfect preimages. Then every perfect preimage of a (P, Q)-structured space is a (P, Q)-structured space.
- Every $(\mathcal{P}, \mathcal{Q})$ -structured space is Lindelöf.

Corollary

- Every continuous image of a (*L*Σ, *L*Σ)-structured space is a (*L*Σ, *L*Σ)-structured space.
- Every closed subspace of a (*L*Σ, *L*Σ)-structured space is a (*L*Σ, *L*Σ)-structured space.
- Severy perfect preimage of a $(L\Sigma, L\Sigma)$ -structured space is a $(L\Sigma, L\Sigma)$ -structured space.
- Every $(L\Sigma, L\Sigma)$ -structured space is Lindelöf.

Remark

Since a multivalued mapping $p: X \to Y$ is compact-valued upper semicontinuous iff it is a composition of the inverse of a perfect mapping and a continuous function, we have that the image of a $(\mathcal{P}, \mathcal{Q})$ -structured space under a compact-valued upper semicontinuous mapping is a $(\mathcal{P}, \mathcal{Q})$ -structured space.

Remark

The product X × K of a (P, Q)-structured space X and a compact space K is a (P, Q)-structured space.

Remark

- The product X × K of a (P, Q)-structured space X and a compact space K is a (P, Q)-structured space.
- If X is a (P, Q)-structured space, then the Alexandroff duplicate AD(X) of X is a (P, Q)-structured space.

Introduction 00	Some Results	$C_p(X)$ and $(L\Sigma, L\Sigma)$ -structured spaces	Some Questions
Countable			

If we assume that $\mathcal P$ and $\mathcal Q$ are closed under countable unions we have

Proposition

• Let $\{X_n : n \in \mathbb{N}\}$ be a family of $(\mathcal{P}, \mathcal{Q})$ -structured spaces. Then $X = \bigoplus \{X_n : n \in \mathbb{N}\}$ is $(\mathcal{P}, \mathcal{Q})$ -structured.

Countable...

If we assume that $\mathcal P$ and $\mathcal Q$ are closed under countable unions we have.

Proposition

- Let $\{X_n : n \in \mathbb{N}\}$ be a family of $(\mathcal{P}, \mathcal{Q})$ -structured spaces. Then $X = \bigoplus \{X_n : n \in \mathbb{N}\}$ is $(\mathcal{P}, \mathcal{Q})$ -structured.
- Let X be a space and {X_n : n ∈ N} a family of (P, Q)-structured subspaces of X. Then ∪{X_n : n ∈ N} is a (P, Q)-structured space.

Countable...

If we assume that $\mathcal P$ and $\mathcal Q$ are closed under countable unions we have.

Proposition

- Let $\{X_n : n \in \mathbb{N}\}$ be a family of $(\mathcal{P}, \mathcal{Q})$ -structured spaces. Then $X = \bigoplus \{X_n : n \in \mathbb{N}\}$ is $(\mathcal{P}, \mathcal{Q})$ -structured.
- 2 Let X be a space and {X_n : n ∈ N} a family of (P, Q)-structured subspaces of X. Then ∪{X_n : n ∈ N} is a (P, Q)-structured space.
- Let X be a (P, Q)-structured space. Then every F_σ subspace of X is a (P, Q)-structured space.

Countable...

Corollary

- Let $\{X_n : n \in \mathbb{N}\}$ be a family of $(L\Sigma, L\Sigma)$ -structured spaces. Then $X = \bigoplus \{X_n : n \in \mathbb{N}\}$ is $(L\Sigma, L\Sigma)$ -structured.
- ② Let *X* be a space and $\{X_n : n \in \mathbb{N}\}$ a family of $(L\Sigma, L\Sigma)$ -structured subspaces of *X*. Then $\bigcup \{X_n : n \in \mathbb{N}\}$ is a $(L\Sigma, L\Sigma)$ -structured space.
- Solution 2 Let X be a $(L\Sigma, L\Sigma)$ -structured space. Then every F_{σ} subspace of X is a $(L\Sigma, L\Sigma)$ -structured space.

Two examples

A $(\mathcal{M}, \mathcal{M})$ -structured no $L\Sigma$ space

Let $Y = L_{\kappa}$ (with $\kappa \ge \omega_1$) the Lindelöfication of the discrete space of cardinality κ , then Y is a $(\mathcal{M}, \mathcal{M})$ -structured space that is not $L\Sigma$.

Two examples

A $(\mathcal{M}, \mathcal{M})$ -structured no $L\Sigma$ space

Let $Y = L_{\kappa}$ (with $\kappa \ge \omega_1$) the Lindelöfication of the discrete space of cardinality κ , then Y is a $(\mathcal{M}, \mathcal{M})$ -structured space that is not $L\Sigma$.

A Lindelöf no $(L\Sigma, L\Sigma)$ -structured space

Let $Y = L_{\kappa} \times L_{\kappa}$ (with $\kappa \ge \omega_1$) the square of the Lindelöfication of the discrete space of cardinality κ , then Y is not a $(L\Sigma, L\Sigma)$ -structured space.

Introduction	Some Results	$C_p(X)$ and $(L\Sigma, L\Sigma)$ -structured spaces	Some Questions
Products			

Proposition

Let *X* be a $(\mathcal{P}, \mathcal{Q})$ -structured space and *Z* a σ -compact space. Then *X* × *Z* is a $(\mathcal{P}, \mathcal{Q})$ -structured space.

Products

Proposition

Let *X* be a $(\mathcal{P}, \mathcal{Q})$ -structured space and *Z* a σ -compact space. Then $X \times Z$ is a $(\mathcal{P}, \mathcal{Q})$ -structured space.

Proposition

Let X belong to \mathcal{P} and κ an infinite cardinal. Then $L_{\kappa} \times X$ is a $(\mathcal{P}, L\Sigma)$ -structured space.

Products

Remark

The previous proposition let us construct $(L\Sigma, L\Sigma)$ -structured spaces that are not $L\Sigma$ -spaces. In fact, given a Lindelöf- Σ space X, we have that $L_{\omega_1} \times X$ is a $(L\Sigma, L\Sigma)$ -structured space that is not $L\Sigma$ and there is a $L\Sigma$ -kernel of $L_{\omega_1} \times X$ homeomorphic to X.

Introduction	Some Results	$C_{\mathcal{P}}(X)$ and $(L\Sigma, L\Sigma)$ -structured spaces	Some Questions
Stability			

An important property of the $L\Sigma$ -spaces is that they are stable.

Introduction 00	Some Results	$C_p(X)$ and $(L\Sigma, L\Sigma)$ -structured spaces	Some
Stability			

Questions

An important property of the $L\Sigma$ -spaces is that they are stable.

Recall that a topological space *X* is κ -stable if for every continuous image *Y* of *X*, if *Y* condenses onto a space *Z* with $w(Z) \leq \kappa$ we have that $nw(Y) \leq \kappa$. A space is *stable* if it is κ -stable for every infinite cardinal κ .

Introduction 00	Some Results	$C_p(X)$ and $(L\Sigma, L\Sigma)$ -structured spaces	Some Questions
Stability			

We can give a partial result of stability for $(L\Sigma, L\Sigma)$ -structured spaces.

Proposition

Let *X* be a (\mathcal{K} , $L\Sigma$)-structured space. Then *X* is stable.

Introduction	Some Results	$C_p(X)$ and $(L\Sigma, L\Sigma)$ -structured spaces

Stability

Proposition

Let *X* be a (\mathcal{K} , $L\Sigma$)-structured space. Then *X* is stable.

Corollary

Let *X* be a (\mathcal{K} , $L\Sigma$)-structured space. Then $C_p(X)$ is monolithic.

Proposition

Let X be a Tychonoff space. Then $C_{\rho}(X)$ is a $(\mathcal{K}, L\Sigma)$ -structured space if and only if $C_{\rho}(X)$ is a Lindelöf- Σ space.

Theorem

Let X be a Tychonoff space. Then $C_p(X)$ is a $(\mathcal{K}, L\Sigma)$ -structured space if and only if $C_p(X)$ is a Lindelöf- Σ space.

Proposition

Let \mathcal{P} and \mathcal{Q} subclasses of $L\Sigma$. If \mathcal{Q} is closed under countable unions and $C_p(X)$ is a $(\mathcal{P}, \mathcal{Q})$ -structured space with a non dense \mathcal{P} -kernel, then $C_p(X)$ is a $L\Sigma$ -space.

Theorem

Let \mathcal{P} be a subclass of $L\Sigma$ that includes \mathcal{M} . Let X be a compact space. Then $C_p(X)$ is $(\mathcal{P}, L\Sigma)$ -structured space if and only if $C_p(X)$ is a Lindelöf Σ -space.

Theorem (Guerrero-Tkachuk)

Given a space *X* and a closed-hereditary property \mathcal{P} , if $C_{\rho}(X, \mathcal{I})$ has a closed clousure-preserving cover \mathcal{C} such that every $C \in \mathcal{C}$ has \mathcal{P} , then $C_{\rho}(X, \mathcal{I})$ also has the property \mathcal{P} .

Given that the property of be a $(\mathcal{P}, \mathcal{Q})$ -structured space is preserved by closed subspaces, we have the next result.

Given that the property of be a $(\mathcal{P}, \mathcal{Q})$ -structured space is preserved by closed subspaces, we have the next result.

Corollary

Let X be a Tychonoff space and suppose that $C_p(X, \mathcal{I})$ has a clousure preserving closed cover \mathcal{C} such that every element of it is a $(\mathcal{P}, \mathcal{Q})$ -structured space, then $C_p(X, \mathcal{I})$ is a $(\mathcal{P}, \mathcal{Q})$ -structured space.

Corollary

Let X be a Tychonoff space and suppose that $C_p(X, \mathcal{I})$ has a clousure preserving closed cover \mathcal{C} such that every element of it is a $(\mathcal{P}, \mathcal{Q})$ -structured space, then $C_p(X, \mathcal{I})$ is a $(\mathcal{P}, \mathcal{Q})$ -structured space.

Corollary

Let *X* be a pseudocompact Tychonoff space. Suppose that $C_p(X, \mathcal{I})$ has a clousure preserving closed cover \mathcal{C} such that every element of it is a $(\mathcal{P}, \mathcal{Q})$ -structured space, then $C_p(X)$ is a $(\mathcal{P}, \mathcal{Q})$ -structured space.

Some questions...

- Are the $(\mathcal{P}, \mathcal{Q})$ -structured spaces stable?
- **2** If $C_p(X)$ is a $(\mathcal{P}, \mathcal{Q})$ -structured space must be a $L\Sigma$ space?
- Is the product of a (P, Q)-structured space and a LΣ space a (P, Q)-structured space?

Obrigado!