On the Lindelöf Property of Products of Spaces $C_{\rho}(X)$

Oleg Okunev

Benemérita Universidad Autónoma de Puebla

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

All spaces are assumed to be Tychonoff.

 $C_p(X,Z) = \{f : f \text{ is a continuous function from } X \text{ to } Z\}$ with the topology of pointwise convergence.

 $C_p(X,Z) \subset Z^X.$ $C_p(X,\mathbb{R}) = C_p(X)$ All spaces are assumed to be Tychonoff.

 $C_p(X, Z) = \{f : f \text{ is a continuous function from } X \text{ to } Z\}$ with the topology of pointwise convergence.

 $C_p(X,Z) \subset Z^X.$

All spaces are assumed to be Tychonoff.

 $C_p(X, Z) = \{f : f \text{ is a continuous function from } X \text{ to } Z\}$ with the topology of pointwise convergence.

 $C_p(X,Z) \subset Z^X.$ $C_p(X,\mathbb{R}) = C_p(X)$

 $C_{\rho}(X) \times C_{\rho}(Y) = C_{\rho}(X \oplus Y)$ $C_{\rho}(X) \times C_{\rho}(X) = C_{\rho}(X \oplus X) = C_{\rho}(X, \mathbb{R}^{2}).$

 $C_p(X)$ always has *ccc*, so $C_p(X)$ is Lindelöf $\iff C_p(X)$ is paracompact.

Still unknown:

If G is a Lindelöf topological group, must G × G be Lindelöf?

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

If G is a paracompact topological group, must G × G be paracompact?

 $egin{aligned} & C_{
ho}(X) imes C_{
ho}(Y) = C_{
ho}(X \oplus Y) \ & C_{
ho}(X) imes C_{
ho}(X) = C_{
ho}(X \oplus X) = C_{
ho}(X, \mathbb{R}^2). \end{aligned}$

 $C_{\rho}(X)$ always has *ccc*, so $C_{\rho}(X)$ is Lindelöf $\iff C_{\rho}(X)$ is paracompact.

Still unknown:

If G is a Lindelöf topological group, must $G \times G$ be Lindelöf?

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

If G is a paracompact topological group, must $G \times G$ be paracompact?

$$C_p(X) imes C_p(Y) = C_p(X \oplus Y)$$

 $C_p(X) imes C_p(X) = C_p(X \oplus X) = C_p(X, \mathbb{R}^2).$
 $C_p(X)$ always has *ccc*, so

 $C_p(X)$ is Lindelöf $\iff C_p(X)$ is paracompact.

Still unknown:

If G is a Lindelöf topological group, must $G \times G$ be Lindelöf?

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

If G is a paracompact topological group, must $G \times G$ be paracompact?

$$egin{aligned} & C_{
ho}(X) imes C_{
ho}(Y) = C_{
ho}(X \oplus Y) \ & C_{
ho}(X) imes C_{
ho}(X) = C_{
ho}(X \oplus X) = C_{
ho}(X, \mathbb{R}^2). \ & C_{
ho}(X) ext{ always has } ccc, ext{ so} \end{aligned}$$

 $C_p(X)$ is Lindelöf $\iff C_p(X)$ is paracompact.

Still unknown:

If G is a Lindelöf topological group, must $G \times G$ be Lindelöf?

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

If G is a paracompact topological group, must $G \times G$ be paracompact?

There are spaces X and Y such that $C_p(X)$ and $C_p(Y)$ are Lindelöf, but $C_p(X) \times C_p(Y)$ is not.

First example by A. Leiderman and V. Malykhin (1988); both *X* and *Y* with one non-isolated point, forcing.

K. Tamano, OO (1996): There are a separable, scattered, σ -compact X and a countable Y such that $C_p(X)$ is Lindelöf, and $C_p(X) \times C_p(Y)$ is not.

 $w(C_p(Y)) = |Y|,$

so in this example $C_p(Y)$ is second-countable.

There are spaces X and Y such that $C_p(X)$ and $C_p(Y)$ are Lindelöf, but $C_p(X) \times C_p(Y)$ is not.

First example by A. Leiderman and V. Malykhin (1988);

both X and Y with one non-isolated point, forcing.

K. Tamano, OO (1996): There are a separable, scattered, σ -compact X and a countable Y such that $C_p(X)$ is Lindelöf, and $C_p(X) \times C_p(Y)$ is not.

ション 小田 マイビット ビックタン

 $w(C_p(Y)) = |Y|,$

so in this example $C_{\rho}(Y)$ is second-countable.

Still unknown:

Let X and Y be compact. Suppose $C_p(X)$ and $C_p(Y)$ are Lindelöf. Must $C_p(X) \times C_p(Y)$ be Lindelöf?

Let X be compact and Y countable. If $C_p(X)$ is Lindelöf, must $C_p(X) \times C_p(Y)$ be Lindelöf?

If $C_p(X)$ is Lindelöf, must $C_p(X) \times \omega^{\omega}$ be Lindelöf?

(equivalent: if $C_p(X)$ is Lindelöf, must $C_p(X \oplus \omega)$ be Lindelöf?)

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Still unknown:

Let X and Y be compact. Suppose $C_p(X)$ and $C_p(Y)$ are Lindelöf. Must $C_p(X) \times C_p(Y)$ be Lindelöf?

Let X be compact and Y countable. If $C_p(X)$ is Lindelöf, must $C_p(X) \times C_p(Y)$ be Lindelöf?

If $C_p(X)$ is Lindelöf, must $C_p(X) \times \omega^{\omega}$ be Lindelöf? (equivalent: if $C_p(X)$ is Lindelöf, must $C_p(X \oplus \omega)$ be Lindelöf?)

ション 小田 マイビット ビックタン

Still unknown:

- Let X and Y be compact. Suppose $C_p(X)$ and $C_p(Y)$ are Lindelöf. Must $C_p(X) \times C_p(Y)$ be Lindelöf?
- Let X be compact and Y countable. If $C_p(X)$ is Lindelöf, must $C_p(X) \times C_p(Y)$ be Lindelöf?
- If $C_p(X)$ is Lindelöf, must $C_p(X) \times \omega^{\omega}$ be Lindelöf?
- (equivalent: if $C_p(X)$ is Lindelöf, must $C_p(X \oplus \omega)$ be Lindelöf?)

Theorem (A. Arhangel'skii, E. Reznichenko, 198?). Let X be compact zero-dimensional. If $C_p(X)$ is Lindelöf, then $C_p(X)^{\omega}$ is Lindelöf.

Theorem (OO, 2011). If dim X = 0 and Z is a locally compact second-countable space, then $C_p(X, Z)$ is a continuous image of a closed subspace of $C_p(X)$.

 $C_{\rho}(X)^n = C_{\rho}(X, \mathbb{R}^n)$, so

Corllary (OO, 2011). If dim X = 0 and $C_p(X)$ is Lindelöf, then for every $n \in \omega$, $C_p(X)^n$ is Lindelöf.

Theorem (A. Arhangel'skii, E. Reznichenko, 198?). Let X be compact zero-dimensional. If $C_p(X)$ is Lindelöf, then $C_p(X)^{\omega}$ is Lindelöf.

Theorem (OO, 2011). If dim X = 0 and Z is a locally compact second-countable space, then $C_p(X, Z)$ is a continuous image of a closed subspace of $C_p(X)$.

 $C_{\rho}(X)^n = C_{\rho}(X, \mathbb{R}^n)$, so

Corllary (OO, 2011). If dim X = 0 and $C_p(X)$ is Lindelöf, then for every $n \in \omega$, $C_p(X)^n$ is Lindelöf.

Theorem (A. Arhangel'skii, E. Reznichenko, 198?). Let X be compact zero-dimensional. If $C_p(X)$ is Lindelöf, then $C_p(X)^{\omega}$ is Lindelöf.

Theorem (OO, 2011). If dim X = 0 and Z is a locally compact second-countable space, then $C_p(X, Z)$ is a continuous image of a closed subspace of $C_p(X)$.

 $C_p(X)^n = C_p(X, \mathbb{R}^n)$, so

Corllary (OO, 2011). If dim X = 0 and $C_p(X)$ is Lindelöf, then for every $n \in \omega$, $C_p(X)^n$ is Lindelöf.

Open questions.

If dim X = 0 and $C_p(X)$ is Lindelöf, must $C_p(X)^{\omega}$ be Lindelöf? If ind X = 0 and $C_p(X)$ is Lindelöf, must $C_p(X) \times C_p(X)$ be Lindelöf?

If ind X = 0 and $C_p(X)$ is Lindelöf, must dim X = 0?

Thank you!