# A topological Ramsey space of infinite polyhedra and the random polyhedron

José G. Mijares Pontificia Universidad Javeriana Bogotá - Colombia

#### STW 2013 In honour of Ofelia Alas São Sebastião, Brasil

August 15, 2013

▲□▶▲□▶▲□▶▲□▶ □ のQで

#### The pigeon hole principle

## The pigeon hole principle

For every partition  $\mathbb{N} = C_1 \cup \cdots \cup C_r$  there exists  $i \in \{1, \ldots, r\}$  such that  $C_i$  is infinite.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

**Notation:**  $A^{[n]} = \{B \subseteq A : |B| = n\},\$ 

**Notation:** 
$$A^{[n]} = \{B \subseteq A : |B| = n\}, A^{[<\infty]} = \bigcup_n A^{[n]}$$

**Notation:** 
$$A^{[n]} = \{B \subseteq A : |B| = n\}, A^{[<\infty]} = \bigcup_n A^{[n]}$$

$$A^{[\infty]} = \{B \subseteq A : |B| = \infty\}$$

**Notation:** 
$$A^{[n]} = \{B \subseteq A : |B| = n\}, A^{[<\infty]} = \bigcup_n A^{[n]}$$

$$A^{[\infty]} = \{ B \subseteq A : |B| = \infty \}$$

- コン・4回シュービン・4回シューレー

**Infinite version:** For every finite coloring of  $\mathbb{N}^{[2]}$  there is  $A \in \mathbb{N}^{[\infty]}$  such that  $A^{[2]}$  is monochromatic.

**Notation:** 
$$A^{[n]} = \{B \subseteq A : |B| = n\}, A^{[<\infty]} = \bigcup_n A^{[n]}$$

$$A^{[\infty]} = \{ B \subseteq A : |B| = \infty \}$$

**Infinite version:** For every finite coloring of  $\mathbb{N}^{[2]}$  there is  $A \in \mathbb{N}^{[\infty]}$  such that  $A^{[2]}$  is monochromatic.

**Finite version:** Given  $n, r \in \mathbb{N}$ , there exists  $M \in \mathbb{N}$  such that for every coloring  $c : M^{[2]} \to r$ , there is  $A \in M^{[n]}$  tal que  $A^{[2]}$  is monochromatic for c.

**Notation:** 
$$A^{[n]} = \{B \subseteq A : |B| = n\}, A^{[<\infty]} = \bigcup_n A^{[n]}$$

$$A^{[\infty]} = \{B \subseteq A : |B| = \infty\}$$

**Notation:** 
$$A^{[n]} = \{B \subseteq A : |B| = n\}, A^{[<\infty]} = \bigcup_n A^{[n]}$$

$$A^{[\infty]} = \{B \subseteq A : |B| = \infty\}$$

**Generalized infinite version:** Given  $n \in \mathbb{N}$ , for every finite coloring of  $\mathbb{N}^{[n]}$  there is  $A \in \mathbb{N}^{[\infty]}$  such that  $A^{[n]}$  is monochromatic.

Notation: 
$$A^{[n]} = \{B \subseteq A : |B| = n\}, A^{[<\infty]} = \bigcup_n A^{[n]}$$

$$A^{[\infty]} = \{B \subseteq A : |B| = \infty\}$$

**Generalized infinite version:** Given  $n \in \mathbb{N}$ , for every finite coloring of  $\mathbb{N}^{[n]}$  there is  $A \in \mathbb{N}^{[\infty]}$  such that  $A^{[n]}$  is monochromatic.

**Generalized finite version:** Given  $m, n, r \in \mathbb{N}$ , there exists  $M \in \mathbb{N}$  such that for every coloring  $c : M^{[n]} \to r$ , there is  $A \in M^{[m]}$  tal que  $A^{[n]}$  is monochromatic for c.

## **Ramsey property**

**Question:** Given  $X \subseteq \mathbb{N}^{[\infty]}$ , is there  $A \in \mathbb{N}^{[\infty]}$  such that  $A^{[\infty]} \subseteq X$  or  $A^{[\infty]} \cap X = \emptyset$ ?

**Question:** Given  $X \subseteq \mathbb{N}^{[\infty]}$ , is there  $A \in \mathbb{N}^{[\infty]}$  such that  $A^{[\infty]} \subseteq X$  or  $A^{[\infty]} \cap X = \emptyset$ ?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Answer: Not in general.

**Question:** Given  $X \subseteq \mathbb{N}^{[\infty]}$ , is there  $A \in \mathbb{N}^{[\infty]}$  such that  $A^{[\infty]} \subseteq X$  or  $A^{[\infty]} \cap X = \emptyset$ ?

Answer: Not in general.

**Example:** For  $A, B \in \mathbb{N}^{[\infty]}$ ,  $A \sim B$  iff  $|A \bigtriangleup B| < \infty$ 

**Question:** Given  $X \subseteq \mathbb{N}^{[\infty]}$ , is there  $A \in \mathbb{N}^{[\infty]}$  such that  $A^{[\infty]} \subseteq X$  or  $A^{[\infty]} \cap X = \emptyset$ ?

Answer: Not in general.

**Example:** For  $A, B \in \mathbb{N}^{[\infty]}$ ,  $A \sim B$  iff  $|A \bigtriangleup B| < \infty$ 

(AC) Pick an element  $B_x$  of each class  $x \in \mathbb{N}^{[\infty]} / \sim$ ,

**Question:** Given  $X \subseteq \mathbb{N}^{[\infty]}$ , is there  $A \in \mathbb{N}^{[\infty]}$  such that  $A^{[\infty]} \subseteq X$  or  $A^{[\infty]} \cap X = \emptyset$ ?

Answer: Not in general.

**Example:** For  $A, B \in \mathbb{N}^{[\infty]}$ ,  $A \sim B$  iff  $|A \bigtriangleup B| < \infty$ (AC) Pick an element  $B_x$  of each class  $x \in \mathbb{N}^{[\infty]} / \sim$ ,

Let cl(A) denote the class of A and define

$$X = \{A \in \mathbb{N}^{[\infty]} : |A \bigtriangleup B_{cl(A)}| \text{ is even}\}$$

## **Ramsey property**

$$[a] = \{B \in \mathbb{N}^{[\infty]} : a \sqsubset B\}$$
 Metric, product topology

$$[a] = \{B \in \mathbb{N}^{[\infty]} : a \sqsubset B\} \text{ Metric, product topology} \\ [a, A] = \{B \in \mathbb{N}^{[\infty]} : a \sqsubset B \subseteq A\} \text{ Ellentuck's topology}$$

 $[a] = \{B \in \mathbb{N}^{[\infty]} : a \sqsubset B\} \text{ Metric, product topology}$  $[a, A] = \{B \in \mathbb{N}^{[\infty]} : a \sqsubset B \subseteq A\} \text{ Ellentuck's topology}$  $A \text{ set } X \subseteq \mathbb{N}^{[\infty]} \text{ has the Ramsey property}$ 

 $[a] = \{B \in \mathbb{N}^{[\infty]} : a \sqsubset B\}$  Metric, product topology  $[a, A] = \{B \in \mathbb{N}^{[\infty]} : a \sqsubset B \subseteq A\}$  Ellentuck's topology A set  $X \subseteq \mathbb{N}^{[\infty]}$  has the **Ramsey property** if for every nonempty [a, A]

 $[a] = \{B \in \mathbb{N}^{[\infty]} : a \sqsubset B\}$  Metric, product topology  $[a, A] = \{B \in \mathbb{N}^{[\infty]} : a \sqsubset B \subseteq A\}$  Ellentuck's topology A set  $X \subseteq \mathbb{N}^{[\infty]}$  has the **Ramsey property** if for every nonempty [a, A] there is  $B \in [a, A]$  such that

 $[a] = \{B \in \mathbb{N}^{[\infty]} : a \sqsubset B\}$  Metric, product topology  $[a, A] = \{B \in \mathbb{N}^{[\infty]} : a \sqsubset B \subseteq A\}$  Ellentuck's topology A set  $X \subseteq \mathbb{N}^{[\infty]}$  has the **Ramsey property** if for every nonempty [a, A] there is  $B \in [a, A]$  such that  $[a, B] \subseteq X$  or  $[a, B] \cap X = \emptyset$ . *X* is **Ramsey null** if for every nonempty [a, A]there is  $B \in [a, A]$  such that  $[a, B] \cap X = \emptyset$ .

 $[a] = \{B \in \mathbb{N}^{[\infty]} : a \sqsubset B\}$  Metric, product topology  $[a, A] = \{B \in \mathbb{N}^{[\infty]} : a \sqsubset B \subseteq A\}$  Ellentuck's topology A set  $X \subseteq \mathbb{N}^{[\infty]}$  has the **Ramsey property** if for every nonempty [a, A] there is  $B \in [a, A]$  such that  $[a, B] \subseteq X$  or  $[a, B] \cap X = \emptyset$ . *X* is **Ramsey null** if for every nonempty [a, A]there is  $B \in [a, A]$  such that  $[a, B] \cap X = \emptyset$ .

• (AC) There is a set without the Ramsey property.

 $[a] = \{B \in \mathbb{N}^{[\infty]} : a \sqsubset B\}$  Metric, product topology  $[a, A] = \{B \in \mathbb{N}^{[\infty]} : a \sqsubset B \subseteq A\}$  Ellentuck's topology A set  $X \subseteq \mathbb{N}^{[\infty]}$  has the **Ramsey property** if for every nonempty [a, A] there is  $B \in [a, A]$  such that  $[a, B] \subseteq X$  or  $[a, B] \cap X = \emptyset$ . *X* is **Ramsey null** if for every nonempty [a, A]there is  $B \in [a, A]$  such that  $[a, B] \cap X = \emptyset$ .

- (AC) There is a set without the Ramsey property.
- ► (Nash-Williams, 1965) clopen sets are Ramsey.

- (AC) There is a set without the Ramsey property.
- ► (Nash-Williams, 1965) clopen sets are Ramsey.
- ► (Galvin,1968) Open sets are Ramsey.

- (AC) There is a set without the Ramsey property.
- ► (Nash-Williams, 1965) clopen sets are Ramsey.
- ► (Galvin,1968) Open sets are Ramsey.
- ► (Galvin-Prikry, 1973) Borel sets are Ramsey.

- (AC) There is a set without the Ramsey property.
- ► (Nash-Williams, 1965) clopen sets are Ramsey.
- ► (Galvin,1968) Open sets are Ramsey.
- ► (Galvin-Prikry, 1973) Borel sets are Ramsey.
- ► (Silver, 1970) Analytic sets are Ramsey.

- (AC) There is a set without the Ramsey property.
- ► (Nash-Williams, 1965) clopen sets are Ramsey.
- ► (Galvin,1968) Open sets are Ramsey.
- ► (Galvin-Prikry, 1973) Borel sets are Ramsey.
- ► (Silver, 1970) Analytic sets are Ramsey.

 $[a,A] = \{B \in \mathbb{N}^{[\infty]} : a \sqsubset B \subseteq A\}$  (Ellentuck's topology)

 $[a,A] = \{B \in \mathbb{N}^{[\infty]} : a \sqsubset B \subseteq A\}$  (Ellentuck's topology) A set  $X \subseteq \mathbb{N}^{[\infty]}$  has the **Ramsey property** if for every nonempty [a,A] there is  $B \in [a,A]$  such that  $[a,B] \subseteq X$  or  $[a,B] \cap X = \emptyset$ . *X* is **Ramsey null** if for every nonempty [a,A]there is  $B \in [a,A]$  such that  $[a,B] \cap X = \emptyset$ .

 $[a,A] = \{B \in \mathbb{N}^{[\infty]} : a \sqsubset B \subseteq A\}$  (Ellentuck's topology) A set  $X \subseteq \mathbb{N}^{[\infty]}$  has the **Ramsey property** if for every nonempty [a,A] there is  $B \in [a,A]$  such that  $[a,B] \subseteq X$  or  $[a,B] \cap X = \emptyset$ . *X* is **Ramsey null** if for every nonempty [a,A]there is  $B \in [a,A]$  such that  $[a,B] \cap X = \emptyset$ .

**Ellentuck's theorem, 1974** *X* is Ramsey iff *X* has the Baire property (in Ellentuck's topology). *X* is Ramsey null iff *X* is meager (in Ellentuck's topology).

#### **Topological Ramsey theory**
Pigeon hole principle

Pigeon hole principle

₩

#### Ramsey's theorem

Pigeon hole principle

₩

#### Ramsey's theorem

₩

#### Ellentuck's theorem

Different pigeon hole principle

#### Different pigeon hole principle

₩

#### Ramsey-like theorem

#### Different pigeon hole principle

₩

#### Ramsey-like theorem

∜

Ellentuck-like theorem

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Different PHP or Different R-like theorem

#### Different PHP or Different R-like theorem

 $\Downarrow$ 

Ellentuck-like theorem

#### Some Ellentuck-like theorems

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

#### Some Ellentuck-like theorems

Ellentuck / Classical PHP.

#### Some Ellentuck-like theorems

- Ellentuck / Classical PHP.
- Milliken / Hindman's thm.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

#### Some Ellentuck-like theorems

- Ellentuck / Classical PHP.
- Milliken / Hindman's thm.
- Carlson / Graham-Leeb-Rothschild thm.

▲□▶▲□▶▲□▶▲□▶ □ のQで

#### Some Ellentuck-like theorems

- Ellentuck / Classical PHP.
- Milliken / Hindman's thm.
- Carlson / Graham-Leeb-Rothschild thm.

▲□▶▲□▶▲□▶▲□▶ □ のQで

• Carlson-Smpson / Dual Ramsey thm.

#### Some Ellentuck-like theorems

- Ellentuck / Classical PHP.
- Milliken / Hindman's thm.
- Carlson / Graham-Leeb-Rothschild thm.

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Carlson-Smpson / Dual Ramsey thm.
- Todorcevic / Gowers' thm.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

#### $(\mathcal{R},\leq,r)$ $r:\mathbb{N}\times\mathcal{R}\to\mathcal{AR}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

$$(\mathcal{R}, \leq, r)$$
  $r : \mathbb{N} \times \mathcal{R} \to \mathcal{AR}$   
 $r_n(A) := r(n, A)$ 

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

$$(\mathcal{R}, \leq, r)$$
  $r: \mathbb{N} \times \mathcal{R} \to \mathcal{AR}$   
 $r_n(A) := r(n, A)$   $\mathcal{AR}_n := \{r_n(A) : A \in \mathcal{R}\}$ 

$$(\mathcal{R}, \leq, r) \qquad r : \mathbb{N} \times \mathcal{R} \to \mathcal{A}\mathcal{R}$$
$$r_n(A) := r(n, A) \qquad \mathcal{A}\mathcal{R}_n := \{r_n(A) : A \in \mathcal{R}\}$$
$$[a, A] = \{B \in \mathcal{R} : (\exists n)(a = r_n(B)) \text{ and } (B \leq A)\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

$$(\mathcal{R}, \leq, r) \qquad r : \mathbb{N} \times \mathcal{R} \to \mathcal{A}\mathcal{R}$$
$$r_n(A) := r(n, A) \qquad \mathcal{A}\mathcal{R}_n := \{r_n(A) : A \in \mathcal{R}\}$$
$$[a, A] = \{B \in \mathcal{R} : (\exists n)(a = r_n(B)) \text{ and } (B \leq A)\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

$$(\mathcal{R}, \leq, r) \qquad r : \mathbb{N} \times \mathcal{R} \to \mathcal{A}\mathcal{R}$$
$$r_n(A) := r(n, A) \qquad \mathcal{A}\mathcal{R}_n := \{r_n(A) : A \in \mathcal{R}\}$$
$$[a, A] = \{B \in \mathcal{R} : (\exists n)(a = r_n(B)) \text{ and } (B \leq A)\}$$

 $\mathcal{X} \subseteq \mathcal{R}$  is **Ramsey** if for every  $[a, A] \neq \emptyset$  there is  $B \in [a, A]$  such that  $[a, B] \subseteq \mathcal{X}$  or  $[a, B] \cap \mathcal{X} = \emptyset$ .

▲□▶▲□▶▲□▶▲□▶ □ のQで

$$(\mathcal{R}, \leq, r) \qquad r : \mathbb{N} \times \mathcal{R} \to \mathcal{A}\mathcal{R}$$
$$r_n(A) := r(n, A) \qquad \mathcal{A}\mathcal{R}_n := \{r_n(A) : A \in \mathcal{R}\}$$
$$[a, A] = \{B \in \mathcal{R} : (\exists n)(a = r_n(B)) \text{ and } (B \leq A)\}$$

 $\mathcal{X} \subseteq \mathcal{R}$  is **Ramsey** if for every  $[a, A] \neq \emptyset$  there is  $B \in [a, A]$  such that  $[a, B] \subseteq \mathcal{X}$  or  $[a, B] \cap \mathcal{X} = \emptyset$ .

 $(\mathcal{R}, \leq, r)$  is a **topological Ramsey space** if subsets of  $\mathcal{R}$  with the Baire property are Ramsey and meager subsets of  $\mathcal{R}$  are Ramsey null.

#### (A.1) [Metrization]

(A.1.1) For any  $A \in \mathcal{R}$ ,  $r_0(A) = \emptyset$ . (A.1.2) For any  $A, B \in \mathcal{R}$ , if  $A \neq B$  then  $(\exists n) (r_n(A) \neq r_n(B))$ . (A.1.3) If  $r_n(A) = r_m(B)$  then n = m and  $(\forall i < n) (r_i(A) = r_i(B))$ .

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

#### (A.1) [Metrization]

(A.1.1) For any  $A \in \mathcal{R}$ ,  $r_0(A) = \emptyset$ .

(A.1.2) For any  $A, B \in \mathcal{R}$ , if  $A \neq B$  then  $(\exists n) \ (r_n(A) \neq r_n(B))$ .

(A.1.3) If  $r_n(A) = r_m(B)$  then n = m and  $(\forall i < n) (r_i(A) = r_i(B))$ .

(A.2) [Finitization] There is a quasi order  $\leq_{fin}$  on  $\mathcal{AR}$  such that:

(A.2.1)  $A \leq B$  iff  $(\forall n) (\exists m) (r_n(A) \leq_{fin} r_m(B))$ . (A.2.2)  $\{b \in \mathcal{AR} : b \leq_{fin} a\}$  is finite, for every  $a \in \mathcal{AR}$ . (A.2.3) If  $a \leq_{fin} b$  and  $c \sqsubseteq a$  then there is  $d \sqsubseteq b$  such that  $c \leq_{fin} d$ .

(A.3) [Amalgamation] Given *a* and *A* with depth<sub>*A*</sub>(*a*) = *n*, the following holds:

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(i)  $(\forall B \in [n, A])$   $([a, B] \neq \emptyset)$ . (ii)  $(\forall B \in [a, A])$   $(\exists A' \in [n, A])$   $([a, A'] \subseteq [a, B])$ .

(A.3) [Amalgamation] Given *a* and *A* with depth<sub>*A*</sub>(*a*) = *n*, the following holds:

(i) 
$$(\forall B \in [n, A])$$
  $([a, B] \neq \emptyset)$ .  
(ii)  $(\forall B \in [a, A])$   $(\exists A' \in [n, A])$   $([a, A'] \subseteq [a, B])$ .

(A.4) [Pigeonhole Principle] For every  $A \in \mathcal{R}$  and every  $\mathcal{O} \subseteq \mathcal{AR}_1$  there is  $B \leq A$  such that  $\mathcal{AR}_1 | B \subseteq \mathcal{O}$  or  $\mathcal{AR}_1 | B \subseteq \mathcal{O}^c$ .

#### **Abstract Ellentuck theorem**

# Abstract Ellentuck theorem. Any $(\mathcal{R}, \leq, r)$ with $\mathcal{R}$ metrically closed and satisfying (A.1)-(A.4) is a topological Ramsey space.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

**Elements:** Let  $\mathcal{P}$  be the collection of pairs  $(X, S_X)$  such that:

- 1.  $X \in \mathbb{N}^{[\infty]}$ ,
- 2.  $S_X \subseteq X^{[<\infty]}$  is hereditary, i.e.,  $u \subseteq v \& v \in S_X \Rightarrow u \in S_X$ , and

3. 
$$\bigcup S_X = \bigcup \{u : u \in S_X\} = X.$$

**Elements:** Let  $\mathcal{P}$  be the collection of pairs  $(X, S_X)$  such that:

- 1.  $X \in \mathbb{N}^{[\infty]}$ ,
- 2.  $S_X \subseteq X^{[<\infty]}$  is hereditary, i.e.,  $u \subseteq v \& v \in S_X \Rightarrow u \in S_X$ , and

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3. 
$$\bigcup S_X = \bigcup \{u : u \in S_X\} = X.$$

**Pre-ordering:**  $(Y, S_Y) \leq (X, S_X) \Leftrightarrow Y \subseteq X \& S_Y \subseteq S_X.$ 

**Elements:** Let  $\mathcal{P}$  be the collection of pairs  $(X, S_X)$  such that:

- 1.  $X \in \mathbb{N}^{[\infty]}$ ,
- 2.  $S_X \subseteq X^{[<\infty]}$  is hereditary, i.e.,  $u \subseteq v \& v \in S_X \Rightarrow u \in S_X$ , and

3. 
$$\bigcup S_X = \bigcup \{u : u \in S_X\} = X.$$

**Pre-ordering:**  $(Y, S_Y) \leq (X, S_X) \Leftrightarrow Y \subseteq X \& S_Y \subseteq S_X.$ **Approximations:**  $r(n, (X, S_X)) = r_n(X, S_X) = (X \upharpoonright n, S_X \upharpoonright n).$ 

**Elements:** Let  $\mathcal{P}$  be the collection of pairs  $(X, S_X)$  such that:

- 1.  $X \in \mathbb{N}^{[\infty]}$ ,
- 2.  $S_X \subseteq X^{[<\infty]}$  is hereditary, i.e.,  $u \subseteq v \& v \in S_X \Rightarrow u \in S_X$ , and

3. 
$$\bigcup S_X = \bigcup \{u : u \in S_X\} = X.$$

**Pre-ordering:**  $(Y, S_Y) \leq (X, S_X) \Leftrightarrow Y \subseteq X \& S_Y \subseteq S_X.$  **Approximations:**  $r(n, (X, S_X)) = r_n(X, S_X) = (X \upharpoonright n, S_X \upharpoonright n).$ **Theorem:** (M-Padilla, 2013+)  $(\mathcal{P}, \leq, r)$  is a TRS.

**Elements:** Given  $k \in \mathbb{N}$ , let  $\mathcal{P}(k)$  be the collection of pairs  $(X, S_X)$  such that:

- 1.  $X \in \mathbb{N}^{[\infty]}$ ,
- 2.  $S_X \subseteq X^{[\leq k]}$  is hereditary, i.e.,  $u \subseteq v \& v \in S_X \Rightarrow u \in S_X$ , and

3. 
$$\bigcup S_X = \bigcup \{u : u \in S_X\} = X.$$

**Elements:** Given  $k \in \mathbb{N}$ , let  $\mathcal{P}(k)$  be the collection of pairs  $(X, S_X)$  such that:

- 1.  $X \in \mathbb{N}^{[\infty]}$ ,
- 2.  $S_X \subseteq X^{[\leq k]}$  is hereditary, i.e.,  $u \subseteq v \& v \in S_X \Rightarrow u \in S_X$ , and

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3. 
$$\bigcup S_X = \bigcup \{u : u \in S_X\} = X.$$

**Pre-ordering:**  $(Y, S_Y) \leq (X, S_X) \Leftrightarrow Y \subseteq X \& S_Y \subseteq S_X.$ 

**Elements:** Given  $k \in \mathbb{N}$ , let  $\mathcal{P}(k)$  be the collection of pairs  $(X, S_X)$  such that:

- 1.  $X \in \mathbb{N}^{[\infty]}$ ,
- 2.  $S_X \subseteq X^{[\leq k]}$  is hereditary, i.e.,  $u \subseteq v \& v \in S_X \Rightarrow u \in S_X$ , and

3. 
$$\bigcup S_X = \bigcup \{u : u \in S_X\} = X.$$

**Pre-ordering:**  $(Y, S_Y) \leq (X, S_X) \Leftrightarrow Y \subseteq X \& S_Y \subseteq S_X.$ **Approximations:**  $r(n, (X, S_X)) = r_n(X, S_X) = (X \upharpoonright n, S_X \upharpoonright n).$ 

**Elements:** Given  $k \in \mathbb{N}$ , let  $\mathcal{P}(k)$  be the collection of pairs  $(X, S_X)$  such that:

- 1.  $X \in \mathbb{N}^{[\infty]}$ ,
- 2.  $S_X \subseteq X^{[\leq k]}$  is hereditary, i.e.,  $u \subseteq v \& v \in S_X \Rightarrow u \in S_X$ , and

3. 
$$\bigcup S_X = \bigcup \{u : u \in S_X\} = X.$$

**Pre-ordering:**  $(Y, S_Y) \leq (X, S_X) \Leftrightarrow Y \subseteq X \& S_Y \subseteq S_X$ . **Approximations:**  $r(n, (X, S_X)) = r_n(X, S_X) = (X \upharpoonright n, S_X \upharpoonright n)$ . **Theorem:** (M-Padilla, 2013+) For each k,  $(\mathcal{P}(k), \leq, r)$  is a TRS.

## **Ramsey classes**

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥
# A signature: $L = \langle (R_i)_{i \in I}, (F_j)_{j \in J} \rangle$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

# A signature: $L = \langle (R_i)_{i \in I}, (F_j)_{j \in J} \rangle$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

#### $(R_i)_{i \in I}$ is a set relation symbols

# A signature: $L = \langle (R_i)_{i \in I}, (F_j)_{j \in J} \rangle$

 $(R_i)_{i \in I}$  is a set relation symbols  $(F_j)_{j \in J}$  is a set of function symbols

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### **Structures**

*L*-structure, 
$$\mathbb{A} = \langle A, (R_i^{\mathbb{A}})_{i \in I}, (F_j^{\mathbb{A}})_{j \in J} \rangle$$
:

- A non empty set  $A \neq \emptyset$  called the **universe** of the structure;
- a set of relations  $(R_i^{\mathbb{A}})_{i \in I}$  where  $R_i^{\mathbb{A}} \subseteq A^{n(i)}$  for each  $i \in I$ ; and
- a set of functions  $(F_j^{\mathbb{A}})_{j\in J}$  where  $F_j^{\mathbb{A}} : A^{m(j)} \longrightarrow A$  for each  $j \in J$ .

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

#### Structures

A morphism of *L*-structures  $\mathbb{A} \xrightarrow{\pi} \mathbb{B}$  is a map  $A \xrightarrow{\pi} B$ •  $(a_1, \ldots, a_{n(i)}) \in R_i^{\mathbb{A}}$  iff  $(\pi(a_1), \ldots, \pi(a_{n(i)})) \in R_i^{\mathbb{B}}$ ; for all  $a_1, \ldots, a_{n(i)} \in A$ . •  $\pi(F_j^{\mathbb{A}}(a_1, \ldots, a_{m(j)})) = F_j^{\mathbb{B}}(\pi(a_1), \ldots, \pi(a_{m(j)}))$  for all  $a_1, \ldots, a_{m(j)} \in A$ . When  $\pi$  is injective we say that it is an **embedding**. In particular, we say that  $\mathbb{A}$  is a **substructure** of  $\mathbb{B}$ , and write  $\mathbb{A} \leq \mathbb{B}$  whenever  $A \subseteq B$  and the inclusion map is an embedding.

A non empty class of finite relational *L*-structures C is a *Fraïssé class* if it satisfies the following:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

A non empty class of finite relational *L*-structures C is a *Fraïssé class* if it satisfies the following:

1. C is closed under isomorphisms: If  $\mathbb{A} \in C$  and  $\mathbb{A} \cong \mathbb{B}$  then  $\mathbb{B} \in C$ .

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A non empty class of finite relational *L*-structures C is a *Fraïssé class* if it satisfies the following:

1. C is closed under isomorphisms: If  $\mathbb{A} \in C$  and  $\mathbb{A} \cong \mathbb{B}$  then  $\mathbb{B} \in C$ .

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2. C is hereditary: If  $\mathbb{A} \in C$  and  $\mathbb{B} \leq \mathbb{A}$  then  $\mathbb{B} \in C$ .

A non empty class of finite relational *L*-structures C is a *Fraïssé class* if it satisfies the following:

- 1. C is closed under isomorphisms: If  $\mathbb{A} \in C$  and  $\mathbb{A} \cong \mathbb{B}$  then  $\mathbb{B} \in C$ .
- 2. C is hereditary: If  $\mathbb{A} \in C$  and  $\mathbb{B} \leq \mathbb{A}$  then  $\mathbb{B} \in C$ .
- 3. C contains structures with arbitrarily high finite cardinality.

▲□▶▲□▶▲□▶▲□▶ □ のQで

A non empty class of finite relational *L*-structures C is a *Fraïssé class* if it satisfies the following:

- 1. C is closed under isomorphisms: If  $\mathbb{A} \in C$  and  $\mathbb{A} \cong \mathbb{B}$  then  $\mathbb{B} \in C$ .
- 2. C is hereditary: If  $\mathbb{A} \in C$  and  $\mathbb{B} \leq \mathbb{A}$  then  $\mathbb{B} \in C$ .
- 3. C contains structures with arbitrarily high finite cardinality.
- 4. Joint embedding property: If  $\mathbb{A}, \mathbb{B} \in \mathcal{C}$  then there is  $\mathbb{D} \in \mathcal{C}$  such that  $\mathbb{A} \leq \mathbb{D}$  and  $\mathbb{B} \leq \mathbb{D}$ .

A non empty class of finite relational *L*-structures C is a *Fraïssé class* if it satisfies the following:

- 1. C is closed under isomorphisms: If  $\mathbb{A} \in C$  and  $\mathbb{A} \cong \mathbb{B}$  then  $\mathbb{B} \in C$ .
- 2. C is hereditary: If  $\mathbb{A} \in C$  and  $\mathbb{B} \leq \mathbb{A}$  then  $\mathbb{B} \in C$ .
- 3. C contains structures with arbitrarily high finite cardinality.
- 4. Joint embedding property: If  $\mathbb{A}, \mathbb{B} \in \mathcal{C}$  then there is  $\mathbb{D} \in \mathcal{C}$  such that  $\mathbb{A} \leq \mathbb{D}$  and  $\mathbb{B} \leq \mathbb{D}$ .
- 5. Amalgamation property: Given  $\mathbb{A}, \mathbb{B}_1, \mathbb{B}_2 \in \mathcal{C}$  and

embeddings  $\mathbb{A} \xrightarrow{f_i} \mathbb{B}_i$ ,  $i \in \{1, 2\}$ , there is  $\mathbb{D} \in \mathcal{C}$  and

embeddings  $\mathbb{B}_i \xrightarrow{g_i} \mathbb{D}$  such that  $g_1 \circ f_1 = g_2 \circ f_2$ .

IIf C is Fraïssé, then there is a unique (up to isomorphism) countably infinite *ultrahomogeneous* structure  $\mathbb{F}$  such that

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\mathcal{C} =$  the class of finite substructures of  $\mathbb{F}$ 

IIf C is Fraïssé, then there is a unique (up to isomorphism) countably infinite *ultrahomogeneous* structure  $\mathbb{F}$  such that

C = the class of finite substructures of  $\mathbb{F}$  =: Age( $\mathbb{F}$ ).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

IIf C is Fraïssé, then there is a unique (up to isomorphism) countably infinite *ultrahomogeneous* structure  $\mathbb{F}$  such that

C = the class of finite substructures of  $\mathbb{F}$  =: Age( $\mathbb{F}$ ).

This  $\mathbb{F}$  is the **Fraïssé limit** of  $\mathcal{C}$  and we write  $\mathbb{F} = FLim(\mathcal{C})$ .

IIf C is Fraïssé, then there is a unique (up to isomorphism) countably infinite *ultrahomogeneous* structure  $\mathbb{F}$  such that

C = the class of finite substructures of  $\mathbb{F}$  =: Age( $\mathbb{F}$ ).

This  $\mathbb{F}$  is the **Fraïssé limit** of  $\mathcal{C}$  and we write  $\mathbb{F} = FLim(\mathcal{C})$ .

A Fraïssé class C has the **Ramsey property** iff, for every integer r > 1 and every  $\mathbb{A}, \mathbb{B} \in C$  such that  $\mathbb{A} \leq \mathbb{B}$ ,

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A Fraïssé class C has the **Ramsey property** iff, for every integer r > 1 and every  $\mathbb{A}, \mathbb{B} \in C$  such that  $\mathbb{A} \leq \mathbb{B}$ , there is  $\mathbb{C} \in C$  such that

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

A Fraïssé class C has the **Ramsey property** iff, for every integer r > 1 and every  $\mathbb{A}, \mathbb{B} \in C$  such that  $\mathbb{A} \leq \mathbb{B}$ , there is  $\mathbb{C} \in C$  such that for each *r*-coloring

$$c: \left(\begin{array}{c} \mathbb{C} \\ \mathbb{A} \end{array}\right) \longrightarrow r$$

of the set  $\begin{pmatrix} \mathbb{C} \\ \mathbb{A} \end{pmatrix}$ ,

A Fraïssé class C has the **Ramsey property** iff, for every integer r > 1 and every  $\mathbb{A}, \mathbb{B} \in C$  such that  $\mathbb{A} \leq \mathbb{B}$ , there is  $\mathbb{C} \in C$  such that for each *r*-coloring

$$c: \left(\begin{array}{c} \mathbb{C} \\ \mathbb{A} \end{array}\right) \longrightarrow r$$

of the set  $\begin{pmatrix} \mathbb{C} \\ \mathbb{A} \end{pmatrix}$ , there exists  $\mathbb{B}' \in \begin{pmatrix} \mathbb{C} \\ \mathbb{B} \end{pmatrix}$  such that  $\begin{pmatrix} \mathbb{B}' \\ \mathbb{A} \end{pmatrix}$  is monochromatic.

### **Extreme amenability**

# **Extreme amenability**

A topological group *G* is **extremely amenable** or has **the fixed point on compacta property**, if for every continuous action of *G* on a compact space *X* there exists  $x \in X$  such that for every  $g \in G, g \cdot x = x$ .

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# **Extreme amenability**

A topological group *G* is **extremely amenable** or has **the fixed point on compacta property**, if for every continuous action of *G* on a compact space *X* there exists  $x \in X$  such that for every  $g \in G, g \cdot x = x$ .

#### Theorem

(Pestov 2006) Let  $\mathbb{F}$  be a countably infinite ultrahomogeneous structure and  $C = Age(\mathbb{F})$ . The polish group  $Aut(\mathbb{F})$  is extremely amenable if and only if C has the Ramsey property and all the structures of C are rigid.

Consider  $L = \langle (R_i)_{i \in \mathbb{N} \setminus \{0\}} \rangle$ , a signature with an infinite number of relational symbols such that for each  $i \in \mathbb{N}$  the arity of  $R_i$  is n(i) = i.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Consider  $L = \langle (R_i)_{i \in \mathbb{N} \setminus \{0\}} \rangle$ , a signature with an infinite number of relational symbols such that for each  $i \in \mathbb{N}$  the arity of  $R_i$  is n(i) = i.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let  $\mathcal{KP}$  the class of finite ordered polyhedra.

Consider  $L = \langle (R_i)_{i \in \mathbb{N} \setminus \{0\}} \rangle$ , a signature with an infinite number of relational symbols such that for each  $i \in \mathbb{N}$  the arity of  $R_i$  is n(i) = i.

Let  $\mathcal{KP}$  the class of finite ordered polyhedra.  $\mathcal{KP}$  is a class of  $L \cup \{<\}$ -structures.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consider  $L = \langle (R_i)_{i \in \mathbb{N} \setminus \{0\}} \rangle$ , a signature with an infinite number of relational symbols such that for each  $i \in \mathbb{N}$  the arity of  $R_i$  is n(i) = i.

Let  $\mathcal{KP}$  the class of finite ordered polyhedra.  $\mathcal{KP}$  is a class of  $L \cup \{<\}$ -structures.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Facts:

• 
$$\mathcal{AP} \subseteq \mathcal{KP}$$
.

Consider  $L = \langle (R_i)_{i \in \mathbb{N} \setminus \{0\}} \rangle$ , a signature with an infinite number of relational symbols such that for each  $i \in \mathbb{N}$  the arity of  $R_i$  is n(i) = i.

Let  $\mathcal{KP}$  the class of finite ordered polyhedra.  $\mathcal{KP}$  is a class of  $L \cup \{<\}$ -structures.

Facts:

•  $\mathcal{AP} \subseteq \mathcal{KP}$ .

For every A ∈ KP there is (a, S<sub>a</sub>) ∈ AP such that A ≅ (a, S<sub>a</sub>). Actually, KP is the closure of AP under isomorphisms.

Finite polyhedra as a Ramsey class

# Finite polyhedra as a Ramsey class

#### Theorem

The class  $\mathcal{KP}$  of all finite ordered polyhedra is Ramsey.

#### Corollary

Let  $\mathbb{P} = \text{FLim}(\mathcal{KP})$ , the Fraissé limit of  $\mathcal{KP}$ . Then,  $\text{Aut}(\mathbb{P})$  with the Polish topology inherited from  $S_{\infty}$  is extremely amenable.

Consider a countably infinite set  $\omega$ .



Consider a countably infinite set  $\omega$ . Define a family  $S_{\omega} \subseteq \omega^{[<\infty]}$ , as follows:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Consider a countably infinite set  $\omega$ . Define a family  $S_{\omega} \subseteq \omega^{[<\infty]}$ , as follows:

Hold a coin.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Consider a countably infinite set  $\omega$ . Define a family  $S_{\omega} \subseteq \omega^{[<\infty]}$ , as follows:

Hold a coin. Define a family  $T_{\omega} \subseteq \omega^{[<\infty]}$  probabilistically in the following way: for every  $u \in \omega^{[<\infty]}$  such that |u| > 1 flip the coin, and say that u is in  $T_{\omega}$  if and only if you get heads.

Consider a countably infinite set  $\omega$ . Define a family  $S_{\omega} \subseteq \omega^{[<\infty]}$ , as follows:

Hold a coin. Define a family  $T_{\omega} \subseteq \omega^{[<\infty]}$  probabilistically in the following way: for every  $u \in \omega^{[<\infty]}$  such that |u| > 1 flip the coin, and say that u is in  $T_{\omega}$  if and only if you get heads. Set

$$S_{\omega} := \omega^{[1]} \cup \{ v : (\exists u \in T_{\omega}) \ v \subseteq u \}$$
(1)

Consider a countably infinite set  $\omega$ . Define a family  $S_{\omega} \subseteq \omega^{[<\infty]}$ , as follows:

Hold a coin. Define a family  $T_{\omega} \subseteq \omega^{[<\infty]}$  probabilistically in the following way: for every  $u \in \omega^{[<\infty]}$  such that |u| > 1 flip the coin, and say that u is in  $T_{\omega}$  if and only if you get heads. Set

$$S_{\omega} := \omega^{[1]} \cup \{ v : (\exists u \in T_{\omega}) \ v \subseteq u \}$$
(1)

 $(\omega, S_{\omega})$  is an infinite *random* polyhedron.
# The random polyhedron

#### Lemma

*Each finite polyhedron can be embedded in the infinite random polyhedron.* 

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

# The random polyhedron

### Lemma

*Each finite polyhedron can be embedded in the infinite random polyhedron.* 

### Theorem

Let  $\mathbb{P} = \operatorname{FLim}(\mathcal{KP})$ , the Fraissé limit of  $\mathcal{KP}$ . Then  $\mathbb{P}$  is an infinite ordered polyhedron which is isomorphic to  $(\omega, S_{\omega})$ , as a polyhedron, and to  $(\mathbb{Q}, \leq)$ , as an ordered set.

- Carlson T. J., Simpson S. G., *Topological Ramsey theory*. In: Neŝetfil, J., Rödl (eds.) Mathematics of Ramsey Theory, pp. 172–183, Springer, Berlin, 1990.
- Carlson T. J., Simpson S. G., *A dual form of Ramsey's theorem*. Advan. in Math. 53, 265–290 (1984).
- Dobrinen, N., Todorcevic, S., A new class of Ramsey-classification theorems and their applications in the Tukey theory of ultrafilters. Parts 1 and 2. To appear in TAMS.
- Ellentuck E., *A new proof that analytic sets are Ramsey*. J. Symbol. Logic 39, 163–165 (1974).

- Galvin F., Prikry K., *Borel sets and Ramsey's theorem*. J. Symbol. Logic 38, 193–198 (1973).
- Hindman, N., *The existence of certain ultrafilters on* ℕ *and a conjecture of Graham and Rothschild*, Proc. Amer. Math. Soc., **36**(1973), 341–346.
- Kechris A. S., Pestov V. G. and Todorcevic S., Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups, Geom. and Funct. Analysis, Volume 15, Number 1, 106-189 (2005).
- Milliken K., *Ramsey's theorem with sums or unions*. J. Combin. Theory Ser. A 18, 276–290 (1975).

- Mijares, J. G., A notion of selective ultrafilter corresponding to topological Ramsey spaces, Math. Log. Quart. 53(3), 255–267 (2007).
- Mijares, J. G., Parametrizing the abstract Ellentuck theorem, Discrete Mathematics 307 (2007), 216-225.
- Mijares J. G., On Galvin's lemma and Ramsey spaces. Ann. Comb. 16 (2012), no. 2, 319-330.
- Mijares J. G., Nieto J., A parametrization of the abstract Ramsey theorem. Divulgaciones Matemáticas. Vol. 16, No. 2, (2008) ,259-274

- Mijares J., Padilla, G. A Ramsey space of infnite polyhedra and the random polyhedron. arXiv:1209.6421 (2013)
- Pestov, V. Dynamics of infinite-dimensional groups. The Ramsey-Dvoretzky-Milman Phenomenon, ULECT 40, AMS (2006).
- Ramsey F. P., On a problem of formal logic. Proc. London Math. Soc. Ser. 2. 30, 264-286 (1929).
- Todorcevic S., *Introduction to Ramsey spaces*. Princeton University Press, Princeton, New Jersey, 2010.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <