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José G. Mijares
Pontificia Universidad Javeriana
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Question: Given X ⊆ N[∞], is there A ∈ N[∞] such that
A[∞] ⊆ X or A[∞] ∩ X = ∅?

Answer: Not in general.

Example: For A,B ∈ N[∞], A ∼ B iff |A4 B| <∞

(AC) Pick an element Bx of each class x ∈ N[∞]/ ∼,

Let cl(A) denote the class of A and define

X = {A ∈ N[∞] : |A4 Bcl(A)| is even}
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[a] = {B ∈ N[∞] : a @ B} Metric, product topology

[a,A] = {B ∈ N[∞] : a @ B ⊆ A} Ellentuck’s topology

A set X ⊆ N[∞] has the Ramsey property if for every
nonempty [a,A] there is B ∈ [a,A] such that [a,B] ⊆ X or
[a,B] ∩ X = ∅. X is Ramsey null if for every nonempty [a,A]
there is B ∈ [a,A] such that [a,B] ∩ X = ∅.

I (AC) There is a set without the Ramsey property.
I (Nash-Williams, 1965) clopen sets are Ramsey.
I (Galvin,1968) Open sets are Ramsey.
I (Galvin-Prikry, 1973) Borel sets are Ramsey.
I (Silver, 1970) Analytic sets are Ramsey.
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nonempty [a,A] there is B ∈ [a,A] such that [a,B] ⊆ X or
[a,B] ∩ X = ∅. X is Ramsey null if for every nonempty [a,A]
there is B ∈ [a,A] such that [a,B] ∩ X = ∅.

Ellentuck’s theorem, 1974 X is Ramsey iff X has the Baire
property (in Ellentuck’s topology). X is Ramsey null iff X is
meager (in Ellentuck’s topology).
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Topological Ramsey Spaces – Todorcevic, 2010

(R,≤, r) r : N×R → AR

rn(A) := r(n,A) ARn := {rn(A) : A ∈ R}

[a,A] = {B ∈ R : (∃n)(a = rn(B)) and (B ≤ A)}

X ⊆ R is Ramsey if for every [a,A] 6= ∅ there is B ∈ [a,A]
such that [a,B] ⊆ X or [a,B] ∩ X = ∅.

(R,≤, r) is a topological Ramsey space if subsets ofR with
the Baire property are Ramsey and meager subsets ofR are
Ramsey null.
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AXIOMS

(A.1) [Metrization]
(A.1.1) For any A ∈ R, r0(A) = ∅.
(A.1.2) For any A,B ∈ R, if A 6= B then (∃n) (rn(A) 6= rn(B)).
(A.1.3) If rn(A) = rm(B) then n = m and (∀i < n) (ri(A) = ri(B)).

(A.2) [Finitization] There is a quasi order ≤fin on AR such
that:

(A.2.1) A ≤ B iff (∀n) (∃m) (rn(A) ≤fin rm(B)).
(A.2.2) {b ∈ AR : b ≤fin a} is finite, for every a ∈ AR.
(A.2.3) If a ≤fin b and c v a then there is d v b such that c ≤fin d.
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(A.3) [Amalgamation] Given a and A with depthA(a) = n, the
following holds:

(i) (∀B ∈ [n,A]) ([a,B] 6= ∅).
(ii) (∀B ∈ [a,A]) (∃A′ ∈ [n,A]) ([a,A′] ⊆ [a,B]).

(A.4) [Pigeonhole Principle] For every A ∈ R and every
O ⊆ AR1 there is B ≤ A such that AR1|B ⊆ O or
AR1|B ⊆ Oc.
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Abstract Ellentuck theorem

Abstract Ellentuck theorem. Any (R,≤, r) withR metrically
closed and satisfying (A.1)-(A.4) is a topological Ramsey
space.
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A topological Ramsey space of infinite polyhedra

TRS of of infinite polyhedra, Mijares - Padilla, 2012/2013

Elements: Let P be the collection of pairs (X, SX) such that:

1. X ∈ N[∞],
2. SX ⊆ X[<∞] is hereditary, i.e., u ⊆ v & v ∈ SX ⇒ u ∈ SX,

and
3.
⋃

SX =
⋃
{u : u ∈ SX} = X.

Pre-ordering: (Y, SY) ≤ (X, SX) ⇔ Y ⊆ X & SY ⊆ SX.

Approximations: r(n, (X, SX)) = rn(X, SX) = (X � n, SX � n).

Theorem: (M-Padilla, 2013+) (P ,≤, r) is a TRS.
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A topological Ramsey space of infinite polyhedra

Subspaces, Mijares - Padilla, 2012/2013

Elements: Given k ∈ N, let P(k) be the collection of pairs
(X, SX) such that:

1. X ∈ N[∞],
2. SX ⊆ X[≤k] is hereditary, i.e., u ⊆ v & v ∈ SX ⇒ u ∈ SX,

and
3.
⋃

SX =
⋃
{u : u ∈ SX} = X.

Pre-ordering: (Y, SY) ≤ (X, SX) ⇔ Y ⊆ X & SY ⊆ SX.

Approximations: r(n, (X, SX)) = rn(X, SX) = (X � n, SX � n).

Theorem: (M-Padilla, 2013+) For each k, (P(k),≤, r) is a
TRS.
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(Ri)i∈I is a set relation symbols

(Fj)j∈J is a set of function symbols
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Ramsey classes

Structures

L-structure, A =< A, (RA
i )i∈I, (FA

j )j∈J >:

• A non empty set A 6= ∅ called the universe of the structure;
• a set of relations (RA

i )i∈I where RA
i ⊆ An(i) for each i ∈ I; and

• a set of functions (FA
j )j∈J where FA

j : Am(j) -A for each
j ∈ J.
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Structures

A morphism of L-structures A π -B is a map A π -B
•
(
a1, . . . , an(i)

)
∈ RA

i iff
(
π (a1) , . . . , π

(
an(i)

))
∈ RB

i ; for all
a1, . . . , an(i) ∈ A.
• π
(
FA

j

(
a1, . . . am(j)

))
= FB

j

(
π (a1) , . . . , π

(
am(j)

))
for all

a1, . . . , am(j) ∈ A.
When π is injective we say that it is an embedding. In
particular, we say that A is a substructure of B, and write
A ≤ B whenever A ⊆ B and the inclusion map is an embedding.
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Ramsey classes

Fraı̈ssé class of finite structure
A non empty class of finite relational L-structures C is a
Fraı̈ssé class if it satisfies the following:

1. C is closed under isomorphisms: If A ∈ C and A ∼= B then
B ∈ C.

2. C is hereditary: If A ∈ C and B ≤ A then B ∈ C.
3. C contains structures with arbitrarily high finite cardinality.
4. Joint embedding property: If A,B ∈ C then there is D ∈ C

such that A ≤ D and B ≤ D.
5. Amalgamation property: Given A,B1,B2 ∈ C and

embeddings A fi -Bi, i ∈ {1, 2}, there is D ∈ C and

embeddings Bi
gi -D such that g1 ◦ f1 = g2 ◦ f2.
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Fraı̈ssé limit

IIf C is Fraı̈ssé , then there is a unique (up to isomorphism)
countably infinite ultrahomogeneous structure F such that

C = the class of finite substructures of F

=: Age(F).

This F is the Fraı̈ssé limit of C and we write F = FLim(C).
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IIf C is Fraı̈ssé , then there is a unique (up to isomorphism)
countably infinite ultrahomogeneous structure F such that

C = the class of finite substructures of F =: Age(F).
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Ramsey class of finite structures

A Fraı̈ssé class C has the Ramsey property iff, for every
integer r > 1 and every A,B ∈ C such that A ≤ B, there is
C ∈ C such that for each r-coloring

c :

(
C
A

)
- r

of the set
(

C
A

)
, there exists B′ ∈

(
C
B

)
such that

(
B′
A

)
is monochromatic.
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Extreme amenability

A topological group G is extremely amenable or has the fixed
point on compacta property, if for every continuous action of
G on a compact space X there exists x ∈ X such that for every
g ∈ G, g · x = x.

Theorem
(Pestov 2006) Let F be a countably infinite ultrahomogeneous
structure and C = Age(F). The polish group Aut(F) is
extremely amenable if and only if C has the Ramsey property
and all the structures of C are rigid.



TRS of infinite polyhedra

Ramsey classes

Extreme amenability

A topological group G is extremely amenable or has the fixed
point on compacta property, if for every continuous action of
G on a compact space X there exists x ∈ X such that for every
g ∈ G, g · x = x.

Theorem
(Pestov 2006) Let F be a countably infinite ultrahomogeneous
structure and C = Age(F). The polish group Aut(F) is
extremely amenable if and only if C has the Ramsey property
and all the structures of C are rigid.



TRS of infinite polyhedra

Ramsey classes

Extreme amenability

A topological group G is extremely amenable or has the fixed
point on compacta property, if for every continuous action of
G on a compact space X there exists x ∈ X such that for every
g ∈ G, g · x = x.

Theorem
(Pestov 2006) Let F be a countably infinite ultrahomogeneous
structure and C = Age(F). The polish group Aut(F) is
extremely amenable if and only if C has the Ramsey property
and all the structures of C are rigid.
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Consider L =< (Ri)i∈N\{0} >, a signature with an infinite
number of relational symbols such that for each i ∈ N the arity
of Ri is n(i) = i.

Let KP the class of finite ordered polyhedra. KP is a class of
L ∪ {<}-structures.

Facts:
I AP ⊆ KP .
I For every A ∈ KP there is (a, Sa) ∈ AP such that

A ∼= (a, Sa). Actually, KP is the closure of AP under
isomorphisms.
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Finite polyhedra as a Ramsey class

Theorem
The class KP of all finite ordered polyhedra is Ramsey.

Corollary

Let P = FLim(KP), the Fraı̈ssé limit of KP . Then, Aut(P) with
the Polish topology inherited from S∞ is extremely amenable.
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The random polyhedron

Consider a countably infinite set ω. Define a family
Sω ⊆ ω[<∞], as follows:

Hold a coin. Define a family Tω ⊆ ω[<∞] probabilistically in the
following way: for every u ∈ ω[<∞] such that |u| > 1 flip the
coin, and say that u is in Tω if and only if you get heads. Set

Sω := ω[1] ∪ {v : (∃u ∈ Tω) v ⊆ u} (1)

(ω, Sω) is an infinite random polyhedron.



TRS of infinite polyhedra

The random polyhedron

The random polyhedron

Consider a countably infinite set ω.

Define a family
Sω ⊆ ω[<∞], as follows:

Hold a coin. Define a family Tω ⊆ ω[<∞] probabilistically in the
following way: for every u ∈ ω[<∞] such that |u| > 1 flip the
coin, and say that u is in Tω if and only if you get heads. Set

Sω := ω[1] ∪ {v : (∃u ∈ Tω) v ⊆ u} (1)

(ω, Sω) is an infinite random polyhedron.



TRS of infinite polyhedra

The random polyhedron

The random polyhedron

Consider a countably infinite set ω. Define a family
Sω ⊆ ω[<∞], as follows:

Hold a coin. Define a family Tω ⊆ ω[<∞] probabilistically in the
following way: for every u ∈ ω[<∞] such that |u| > 1 flip the
coin, and say that u is in Tω if and only if you get heads. Set

Sω := ω[1] ∪ {v : (∃u ∈ Tω) v ⊆ u} (1)

(ω, Sω) is an infinite random polyhedron.



TRS of infinite polyhedra

The random polyhedron

The random polyhedron

Consider a countably infinite set ω. Define a family
Sω ⊆ ω[<∞], as follows:

Hold a coin.

Define a family Tω ⊆ ω[<∞] probabilistically in the
following way: for every u ∈ ω[<∞] such that |u| > 1 flip the
coin, and say that u is in Tω if and only if you get heads. Set

Sω := ω[1] ∪ {v : (∃u ∈ Tω) v ⊆ u} (1)

(ω, Sω) is an infinite random polyhedron.



TRS of infinite polyhedra

The random polyhedron

The random polyhedron

Consider a countably infinite set ω. Define a family
Sω ⊆ ω[<∞], as follows:

Hold a coin. Define a family Tω ⊆ ω[<∞] probabilistically in the
following way: for every u ∈ ω[<∞] such that |u| > 1 flip the
coin, and say that u is in Tω if and only if you get heads.

Set

Sω := ω[1] ∪ {v : (∃u ∈ Tω) v ⊆ u} (1)

(ω, Sω) is an infinite random polyhedron.



TRS of infinite polyhedra

The random polyhedron

The random polyhedron

Consider a countably infinite set ω. Define a family
Sω ⊆ ω[<∞], as follows:

Hold a coin. Define a family Tω ⊆ ω[<∞] probabilistically in the
following way: for every u ∈ ω[<∞] such that |u| > 1 flip the
coin, and say that u is in Tω if and only if you get heads. Set

Sω := ω[1] ∪ {v : (∃u ∈ Tω) v ⊆ u} (1)

(ω, Sω) is an infinite random polyhedron.



TRS of infinite polyhedra

The random polyhedron

The random polyhedron

Consider a countably infinite set ω. Define a family
Sω ⊆ ω[<∞], as follows:

Hold a coin. Define a family Tω ⊆ ω[<∞] probabilistically in the
following way: for every u ∈ ω[<∞] such that |u| > 1 flip the
coin, and say that u is in Tω if and only if you get heads. Set

Sω := ω[1] ∪ {v : (∃u ∈ Tω) v ⊆ u} (1)

(ω, Sω) is an infinite random polyhedron.



TRS of infinite polyhedra

The random polyhedron

The random polyhedron

Lemma
Each finite polyhedron can be embedded in the infinite random
polyhedron.

Theorem
Let P = FLim(KP), the Fraı̈ssé limit of KP . Then P is an
infinite ordered polyhedron which is isomorphic to (ω, Sω), as a
polyhedron, and to (Q,≤), as an ordered set.
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