A topological Ramsey space of infinite polyhedra and the random polyhedron

José G. Mijares
Pontificia Universidad Javeriana
Bogotá - Colombia

STW 2013
In honour of Ofelia Alas
São Sebastião, Brasil
August 15, 2013

The pigeon hole principle

The pigeon hole principle

For every partition $\mathbb{N}=\mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{r}$ there exists $i \in\{1, \ldots, r\}$ such that \mathcal{C}_{i} is infinite.

TRS of infinite polyhedra

\llcorner Pigeon hole principle

Ramsey's theorem 1929

Ramsey's theorem 1929

Notation: $\quad A^{[n]}=\{B \subseteq A:|B|=n\}$,

Ramsey's theorem 1929

Notation: $\quad A^{[n]}=\{B \subseteq A:|B|=n\}, \quad A^{[<\infty]}=\bigcup_{n} A^{[n]}$

Ramsey's theorem 1929

Notation: $\quad A^{[n]}=\{B \subseteq A:|B|=n\}, \quad A^{[<\infty]}=\bigcup_{n} A^{[n]}$

$$
A^{[\infty]}=\{B \subseteq A:|B|=\infty\}
$$

Ramsey's theorem 1929

Notation: $\quad A^{[n]}=\{B \subseteq A:|B|=n\}, \quad A^{[<\infty]}=\bigcup_{n} A^{[n]}$

$$
A^{[\infty]}=\{B \subseteq A:|B|=\infty\}
$$

Infinite version: For every finite coloring of $\mathbb{N}^{[2]}$ there is $A \in \mathbb{N}^{[\infty]}$ such that $A^{[2]}$ is monochromatic.

Ramsey's theorem 1929

Notation: $\quad A^{[n]}=\{B \subseteq A:|B|=n\}, \quad A^{[<\infty]}=\bigcup_{n} A^{[n]}$

$$
A^{[\infty]}=\{B \subseteq A:|B|=\infty\}
$$

Infinite version: For every finite coloring of $\mathbb{N}^{[2]}$ there is $A \in \mathbb{N}^{[\infty]}$ such that $A^{[2]}$ is monochromatic.

Finite version: Given $n, r \in \mathbb{N}$, there exists $M \in \mathbb{N}$ such that for every coloring $c: M^{[2]} \rightarrow r$, there is $A \in M^{[n]}$ tal que $A^{[2]}$ is monochromatic for c.

Ramsey's theorem 1929

Notation: $\quad A^{[n]}=\{B \subseteq A:|B|=n\}, \quad A^{[<\infty]}=\bigcup_{n} A^{[n]}$

$$
A^{[\infty]}=\{B \subseteq A:|B|=\infty\}
$$

Ramsey's theorem 1929

Notation: $\quad A^{[n]}=\{B \subseteq A:|B|=n\}, \quad A^{[<\infty]}=\bigcup_{n} A^{[n]}$

$$
A^{[\infty]}=\{B \subseteq A:|B|=\infty\}
$$

Generalized infinite version: Given $n \in \mathbb{N}$, for every finite coloring of $\mathbb{N}^{[n]}$ there is $A \in \mathbb{N}^{[\infty]}$ such that $A^{[n]}$ is monochromatic.

Ramsey's theorem 1929

Notation: $\quad A^{[n]}=\{B \subseteq A:|B|=n\}, \quad A^{[<\infty]}=\bigcup_{n} A^{[n]}$

$$
A^{[\infty]}=\{B \subseteq A:|B|=\infty\}
$$

Generalized infinite version: Given $n \in \mathbb{N}$, for every finite coloring of $\mathbb{N}^{[n]}$ there is $A \in \mathbb{N}^{[\infty]}$ such that $A^{[n]}$ is monochromatic.

Generalized finite version: Given $m, n, r \in \mathbb{N}$, there exists $M \in \mathbb{N}$ such that for every coloring $c: M^{[n]} \rightarrow r$, there is $A \in M^{[m]}$ tal que $A^{[n]}$ is monochromatic for c.

TRS of infinite polyhedra
Ramsey property

Ramsey property

Ramsey property

> Question: Given $X \subseteq \mathbb{N}^{[\infty]}$, is there $A \in \mathbb{N}^{[\infty]}$ such that $A^{[\infty]} \subseteq X$ or $A^{[\infty]} \cap X=\emptyset$?

Ramsey property

Question: Given $X \subseteq \mathbb{N}^{[\infty]}$, is there $A \in \mathbb{N}^{[\infty]}$ such that $A^{[\infty]} \subseteq X$ or $A^{[\infty]} \cap X=\emptyset$?

Answer: Not in general.

Ramsey property

Question: Given $X \subseteq \mathbb{N}^{[\infty]}$, is there $A \in \mathbb{N}^{[\infty]}$ such that $A^{[\infty]} \subseteq X$ or $A^{[\infty]} \cap X=\emptyset$?

Answer: Not in general.
Example: For $A, B \in \mathbb{N}^{[\infty]}, \quad A \sim B$ iff $|A \triangle B|<\infty$

Ramsey property

Question: Given $X \subseteq \mathbb{N}^{[\infty]}$, is there $A \in \mathbb{N}^{[\infty]}$ such that $A^{[\infty]} \subseteq X$ or $A^{[\infty]} \cap X=\emptyset$?

Answer: Not in general.
Example: For $A, B \in \mathbb{N}^{[\infty]}, \quad A \sim B$ iff $|A \triangle B|<\infty$
(AC) Pick an element B_{x} of each class $x \in \mathbb{N}^{[\infty]} / \sim$,

Ramsey property

Question: Given $X \subseteq \mathbb{N}^{[\infty]}$, is there $A \in \mathbb{N}^{[\infty]}$ such that $A^{[\infty]} \subseteq X$ or $A^{[\infty]} \cap X=\emptyset$?

Answer: Not in general.
Example: For $A, B \in \mathbb{N}^{[\infty]}, \quad A \sim B$ iff $|A \triangle B|<\infty$ (AC) Pick an element B_{x} of each class $x \in \mathbb{N}^{[\infty]} / \sim$, Let $c l(A)$ denote the class of A and define

$$
X=\left\{A \in \mathbb{N}^{[\infty]}:\left|A \triangle B_{c l(A)}\right| \text { is even }\right\}
$$

TRS of infinite polyhedra
Ramsey property

Ramsey property

Ramsey property

$$
[a]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B\right\} \quad \text { Metric, product topology }
$$

Ramsey property

$$
\begin{aligned}
& {[a]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B\right\} \text { Metric, product topology }} \\
& {[a, A]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B \subseteq A\right\} \text { Ellentuck's topology }}
\end{aligned}
$$

Ramsey property

$[a]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B\right\} \quad$ Metric, product topology
$[a, A]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B \subseteq A\right\} \quad$ Ellentuck's topology
A set $X \subseteq \mathbb{N}^{[\infty]}$ has the Ramsey property

Ramsey property

$$
[a]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B\right\} \quad \text { Metric, product topology }
$$

$$
[a, A]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B \subseteq A\right\} \quad \text { Ellentuck's topology }
$$

A set $X \subseteq \mathbb{N}^{[\infty]}$ has the Ramsey property if for every nonempty $[a, A]$

Ramsey property

$$
[a]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B\right\} \quad \text { Metric, product topology }
$$

$$
[a, A]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B \subseteq A\right\} \quad \text { Ellentuck's topology }
$$

A set $X \subseteq \mathbb{N}^{[\infty]}$ has the Ramsey property if for every
nonempty $[a, A]$ there is $B \in[a, A]$ such that

Ramsey property

$$
[a]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B\right\} \quad \text { Metric, product topology }
$$

$$
[a, A]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B \subseteq A\right\} \quad \text { Ellentuck's topology }
$$

A set $X \subseteq \mathbb{N}^{[\infty]}$ has the Ramsey property if for every nonempty $[a, A]$ there is $B \in[a, A]$ such that $[a, B] \subseteq X$ or $[a, B] \cap X=\emptyset . X$ is Ramsey null if for every nonempty $[a, A]$ there is $B \in[a, A]$ such that $[a, B] \cap X=\emptyset$.

Ramsey property

$$
[a]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B\right\} \quad \text { Metric, product topology }
$$

$$
[a, A]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B \subseteq A\right\} \quad \text { Ellentuck's topology }
$$

A set $X \subseteq \mathbb{N}^{[\infty]}$ has the Ramsey property if for every nonempty $[a, A]$ there is $B \in[a, A]$ such that $[a, B] \subseteq X$ or $[a, B] \cap X=\emptyset . X$ is Ramsey null if for every nonempty $[a, A]$ there is $B \in[a, A]$ such that $[a, B] \cap X=\emptyset$.

- (AC) There is a set without the Ramsey property.

Ramsey property

$$
[a]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B\right\} \quad \text { Metric, product topology }
$$

$$
[a, A]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B \subseteq A\right\} \quad \text { Ellentuck's topology }
$$

A set $X \subseteq \mathbb{N}^{[\infty]}$ has the Ramsey property if for every nonempty $[a, A]$ there is $B \in[a, A]$ such that $[a, B] \subseteq X$ or $[a, B] \cap X=\emptyset . X$ is Ramsey null if for every nonempty $[a, A]$ there is $B \in[a, A]$ such that $[a, B] \cap X=\emptyset$.

- (AC) There is a set without the Ramsey property.
- (Nash-Williams, 1965) clopen sets are Ramsey.

Ramsey property

$[a]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B\right\} \quad$ Metric, product topology
$[a, A]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B \subseteq A\right\}$ Ellentuck's topology
A set $X \subseteq \mathbb{N}^{[\infty]}$ has the Ramsey property if for every nonempty $[a, A]$ there is $B \in[a, A]$ such that $[a, B] \subseteq X$ or $[a, B] \cap X=\emptyset \cdot X$ is Ramsey null if for every nonempty $[a, A]$ there is $B \in[a, A]$ such that $[a, B] \cap X=\emptyset$.

- (AC) There is a set without the Ramsey property.
- (Nash-Williams, 1965) clopen sets are Ramsey.
- (Galvin,1968) Open sets are Ramsey.

Ramsey property

$[a]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B\right\}$ Metric, product topology
$[a, A]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B \subseteq A\right\}$ Ellentuck's topology
A set $X \subseteq \mathbb{N}^{[\infty]}$ has the Ramsey property if for every nonempty $[a, A]$ there is $B \in[a, A]$ such that $[a, B] \subseteq X$ or $[a, B] \cap X=\emptyset \cdot X$ is Ramsey null if for every nonempty $[a, A]$ there is $B \in[a, A]$ such that $[a, B] \cap X=\emptyset$.

- (AC) There is a set without the Ramsey property.
- (Nash-Williams, 1965) clopen sets are Ramsey.
- (Galvin,1968) Open sets are Ramsey.
- (Galvin-Prikry, 1973) Borel sets are Ramsey.

Ramsey property

$[a]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B\right\} \quad$ Metric, product topology
$[a, A]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B \subseteq A\right\}$ Ellentuck's topology
A set $X \subseteq \mathbb{N}^{[\infty]}$ has the Ramsey property if for every nonempty $[a, A]$ there is $B \in[a, A]$ such that $[a, B] \subseteq X$ or $[a, B] \cap X=\emptyset \cdot X$ is Ramsey null if for every nonempty $[a, A]$ there is $B \in[a, A]$ such that $[a, B] \cap X=\emptyset$.

- (AC) There is a set without the Ramsey property.
- (Nash-Williams, 1965) clopen sets are Ramsey.
- (Galvin,1968) Open sets are Ramsey.
- (Galvin-Prikry, 1973) Borel sets are Ramsey.
- (Silver, 1970) Analytic sets are Ramsey.

Ramsey property

$[a]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B\right\} \quad$ Metric, product topology
$[a, A]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B \subseteq A\right\}$ Ellentuck's topology
A set $X \subseteq \mathbb{N}^{[\infty]}$ has the Ramsey property if for every nonempty $[a, A]$ there is $B \in[a, A]$ such that $[a, B] \subseteq X$ or $[a, B] \cap X=\emptyset \cdot X$ is Ramsey null if for every nonempty $[a, A]$ there is $B \in[a, A]$ such that $[a, B] \cap X=\emptyset$.

- (AC) There is a set without the Ramsey property.
- (Nash-Williams, 1965) clopen sets are Ramsey.
- (Galvin,1968) Open sets are Ramsey.
- (Galvin-Prikry, 1973) Borel sets are Ramsey.
- (Silver, 1970) Analytic sets are Ramsey.

Ellentuck's theorem - Topological Ramsey theory

Ellentuck's theorem - Topological Ramsey theory

$$
[a, A]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B \subseteq A\right\} \quad \text { (Ellentuck's topology) }
$$

Ellentuck's theorem - Topological Ramsey theory
$[a, A]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B \subseteq A\right\} \quad$ (Ellentuck's topology)
A set $X \subseteq \mathbb{N}^{[\infty]}$ has the Ramsey property if for every nonempty $[a, A]$ there is $B \in[a, A]$ such that $[a, B] \subseteq X$ or $[a, B] \cap X=\emptyset . X$ is Ramsey null if for every nonempty $[a, A]$ there is $B \in[a, A]$ such that $[a, B] \cap X=\emptyset$.

Ellentuck's theorem - Topological Ramsey theory

$[a, A]=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B \subseteq A\right\} \quad$ (Ellentuck's topology)
A set $X \subseteq \mathbb{N}^{[\infty]}$ has the Ramsey property if for every nonempty $[a, A]$ there is $B \in[a, A]$ such that $[a, B] \subseteq X$ or $[a, B] \cap X=\emptyset . X$ is Ramsey null if for every nonempty $[a, A]$ there is $B \in[a, A]$ such that $[a, B] \cap X=\emptyset$.

Ellentuck's theorem, $1974 X$ is Ramsey iff X has the Baire property (in Ellentuck's topology). X is Ramsey null iff X is meager (in Ellentuck's topology).

TRS of infinite polyhedra
$\left\llcorner_{\text {Ramsey property }}\right.$

Topological Ramsey theory

Topological Ramsey theory

Pigeon hole principle

Topological Ramsey theory

Pigeon hole principle

$$
\Downarrow
$$

Ramsey's theorem

Topological Ramsey theory

Pigeon hole principle

$$
\Downarrow
$$

Ramsey's theorem

$$
\Downarrow
$$

Ellentuck's theorem

Topological Ramsey theory

Different pigeon hole principle

Topological Ramsey theory

Different pigeon hole principle

$$
\Downarrow
$$

Ramsey-like theorem

Topological Ramsey theory

Different pigeon hole principle

$$
\Downarrow
$$

Ramsey-like theorem

$$
\Downarrow
$$

Ellentuck-like theorem

Topological Ramsey theory

Different PHP or Different R-like theorem

Topological Ramsey theory

Different PHP or Different R-like theorem

\Downarrow

Ellentuck-like theorem

Topological Ramsey theory

Some Ellentuck-like theorems

Topological Ramsey theory

Some Ellentuck-like theorems
- Ellentuck / Classical PHP.

Topological Ramsey theory

Some Ellentuck-like theorems

- Ellentuck / Classical PHP.
- Milliken / Hindman's thm.

Topological Ramsey theory

Some Ellentuck-like theorems

- Ellentuck / Classical PHP.
- Milliken / Hindman's thm.
- Carlson / Graham-Leeb-Rothschild thm.

Topological Ramsey theory

Some Ellentuck-like theorems

- Ellentuck / Classical PHP.
- Milliken / Hindman's thm.
- Carlson / Graham-Leeb-Rothschild thm.
- Carlson-Smpson / Dual Ramsey thm.

Topological Ramsey theory

Some Ellentuck-like theorems

- Ellentuck / Classical PHP.
- Milliken / Hindman's thm.
- Carlson / Graham-Leeb-Rothschild thm.
- Carlson-Smpson / Dual Ramsey thm.
- Todorcevic / Gowers' thm.

Topological Ramsey Spaces - Todorcevic, 2010

Topological Ramsey Spaces - Todorcevic, 2010

$$
(\mathcal{R}, \leq, r) \quad r: \mathbb{N} \times \mathcal{R} \rightarrow \mathcal{A} \mathcal{R}
$$

Topological Ramsey Spaces - Todorcevic, 2010

$$
\begin{aligned}
& (\mathcal{R}, \leq, r) \quad r: \mathbb{N} \times \mathcal{R} \rightarrow \mathcal{A R} \\
& r_{n}(A):=r(n, A)
\end{aligned}
$$

Topological Ramsey Spaces - Todorcevic, 2010

$$
\begin{aligned}
& (\mathcal{R}, \leq, r) \quad r: \mathbb{N} \times \mathcal{R} \rightarrow \mathcal{A R} \\
& r_{n}(A):=r(n, A) \quad \mathcal{A R}_{n}:=\left\{r_{n}(A): A \in \mathcal{R}\right\}
\end{aligned}
$$

Topological Ramsey Spaces - Todorcevic, 2010

$$
\begin{aligned}
& (\mathcal{R}, \leq, r) \quad r: \mathbb{N} \times \mathcal{R} \rightarrow \mathcal{A R} \\
& r_{n}(A):=r(n, A) \quad \mathcal{A} \mathcal{R}_{n}:=\left\{r_{n}(A): A \in \mathcal{R}\right\} \\
& {[a, A]=\left\{B \in \mathcal{R}:(\exists n)\left(a=r_{n}(B)\right) \text { and }(B \leq A)\right\}}
\end{aligned}
$$

Topological Ramsey Spaces - Todorcevic, 2010

$$
\begin{aligned}
& (\mathcal{R}, \leq, r) \quad r: \mathbb{N} \times \mathcal{R} \rightarrow \mathcal{A R} \\
& r_{n}(A):=r(n, A) \quad \mathcal{A} \mathcal{R}_{n}:=\left\{r_{n}(A): A \in \mathcal{R}\right\} \\
& {[a, A]=\left\{B \in \mathcal{R}:(\exists n)\left(a=r_{n}(B)\right) \text { and }(B \leq A)\right\}}
\end{aligned}
$$

Topological Ramsey Spaces - Todorcevic, 2010

$(\mathcal{R}, \leq, r) \quad r: \mathbb{N} \times \mathcal{R} \rightarrow \mathcal{A R}$
$r_{n}(A):=r(n, A) \quad \mathcal{A R}_{n}:=\left\{r_{n}(A): A \in \mathcal{R}\right\}$
$[a, A]=\left\{B \in \mathcal{R}:(\exists n)\left(a=r_{n}(B)\right)\right.$ and $\left.(B \leq A)\right\}$
$\mathcal{X} \subseteq \mathcal{R}$ is Ramsey if for every $[a, A] \neq \emptyset$ there is $B \in[a, A]$ such that $[a, B] \subseteq \mathcal{X}$ or $[a, B] \cap \mathcal{X}=\emptyset$.

Topological Ramsey Spaces - Todorcevic, 2010

$(\mathcal{R}, \leq, r) \quad r: \mathbb{N} \times \mathcal{R} \rightarrow \mathcal{A R}$
$r_{n}(A):=r(n, A) \quad \mathcal{A R}_{n}:=\left\{r_{n}(A): A \in \mathcal{R}\right\}$
$[a, A]=\left\{B \in \mathcal{R}:(\exists n)\left(a=r_{n}(B)\right)\right.$ and $\left.(B \leq A)\right\}$
$\mathcal{X} \subseteq \mathcal{R}$ is Ramsey if for every $[a, A] \neq \emptyset$ there is $B \in[a, A]$ such that $[a, B] \subseteq \mathcal{X}$ or $[a, B] \cap \mathcal{X}=\emptyset$.
(\mathcal{R}, \leq, r) is a topological Ramsey space if subsets of \mathcal{R} with the Baire property are Ramsey and meager subsets of \mathcal{R} are Ramsey null.

AXIOMS

(A.1) [Metrization]

(A.1.1) For any $A \in \mathcal{R}, r_{0}(A)=\emptyset$.
(A.1.2) For any $A, B \in \mathcal{R}$, if $A \neq B$ then $(\exists n)\left(r_{n}(A) \neq r_{n}(B)\right)$.
(A.1.3) If $r_{n}(A)=r_{m}(B)$ then $n=m$ and $(\forall i<n)\left(r_{i}(A)=r_{i}(B)\right)$.

AXIOMS

(A.1) [Metrization]

(A.1.1) For any $A \in \mathcal{R}, r_{0}(A)=\emptyset$.
(A.1.2) For any $A, B \in \mathcal{R}$, if $A \neq B$ then $(\exists n)\left(r_{n}(A) \neq r_{n}(B)\right)$.
(A.1.3) If $r_{n}(A)=r_{m}(B)$ then $n=m$ and $(\forall i<n)\left(r_{i}(A)=r_{i}(B)\right)$.
(A.2) [Finitization] There is a quasi order $\leq_{f n}$ on $\mathcal{A R}$ such that:
(A.2.1) $A \leq B$ iff $(\forall n)(\exists m) \quad\left(r_{n}(A) \leq_{f i n} r_{m}(B)\right)$.
(A.2.2) $\left\{b \in \mathcal{A R}: b \leq_{\text {fin }} a\right\}$ is finite, for every $a \in \mathcal{A R}$.
(A.2.3) If $a \leq_{f i n} b$ and $c \sqsubseteq a$ then there is $d \sqsubseteq b$ such that $c \leq_{f n} d$.

AXIOMS

(A.3) [Amalgamation] Given a and A with $\operatorname{depth}_{A}(a)=n$, the following holds:
(i) $(\forall B \in[n, A])([a, B] \neq \emptyset)$.
(ii) $(\forall B \in[a, A])\left(\exists A^{\prime} \in[n, A]\right)\left(\left[a, A^{\prime}\right] \subseteq[a, B]\right)$.

AXIOMS

(A.3) $\left[\right.$ Amalgamation] Given a and A with $\operatorname{depth}_{A}(a)=n$, the following holds:
(i) $(\forall B \in[n, A])([a, B] \neq \emptyset)$.
(ii) $(\forall B \in[a, A])\left(\exists A^{\prime} \in[n, A]\right)\left(\left[a, A^{\prime}\right] \subseteq[a, B]\right)$.
(A.4) [Pigeonhole Principle] For every $A \in \mathcal{R}$ and every
$\mathcal{O} \subseteq \mathcal{A R}_{1}$ there is $B \leq A$ such that $\mathcal{A R}_{1} \mid B \subseteq \mathcal{O}$ or $\mathcal{A R} \mid B \subseteq \mathcal{O}^{c}$.

Abstract Ellentuck theorem

Abstract Ellentuck theorem. Any (\mathcal{R}, \leq, r) with \mathcal{R} metrically closed and satisfying (A.1)-(A.4) is a topological Ramsey space.

TRS of of infinite polyhedra, Mijares - Padilla, 2012/2013

Elements: Let \mathcal{P} be the collection of pairs $\left(X, S_{X}\right)$ such that:

1. $X \in \mathbb{N}^{[\infty]}$,
2. $S_{X} \subseteq X^{[<\infty]}$ is hereditary, i.e., $u \subseteq v \& v \in S_{X} \Rightarrow u \in S_{X}$, and
3. $\bigcup S_{X}=\bigcup\left\{u: u \in S_{X}\right\}=X$.

TRS of of infinite polyhedra, Mijares - Padilla, 2012/2013

Elements: Let \mathcal{P} be the collection of pairs $\left(X, S_{X}\right)$ such that:

1. $X \in \mathbb{N}^{[\infty]}$,
2. $S_{X} \subseteq X^{[<\infty]}$ is hereditary, i.e., $u \subseteq v \& v \in S_{X} \Rightarrow u \in S_{X}$, and
3. $\bigcup S_{X}=\bigcup\left\{u: u \in S_{X}\right\}=X$.

Pre-ordering: $\left(Y, S_{Y}\right) \leq\left(X, S_{X}\right) \Leftrightarrow Y \subseteq X \& S_{Y} \subseteq S_{X}$.

TRS of of infinite polyhedra, Mijares - Padilla, 2012/2013

Elements: Let \mathcal{P} be the collection of pairs $\left(X, S_{X}\right)$ such that:

1. $X \in \mathbb{N}^{[\infty]}$,
2. $S_{X} \subseteq X^{[<\infty]}$ is hereditary, i.e., $u \subseteq v \& v \in S_{X} \Rightarrow u \in S_{X}$, and
3. $\bigcup S_{X}=\bigcup\left\{u: u \in S_{X}\right\}=X$.

Pre-ordering: $\left(Y, S_{Y}\right) \leq\left(X, S_{X}\right) \Leftrightarrow Y \subseteq X \& S_{Y} \subseteq S_{X}$.
Approximations: $r\left(n,\left(X, S_{X}\right)\right)=r_{n}\left(X, S_{X}\right)=\left(X \upharpoonright n, S_{X} \upharpoonright n\right)$.

TRS of of infinite polyhedra, Mijares - Padilla, 2012/2013

Elements: Let \mathcal{P} be the collection of pairs $\left(X, S_{X}\right)$ such that:

1. $X \in \mathbb{N}^{[\infty]}$,
2. $S_{X} \subseteq X^{[<\infty]}$ is hereditary, i.e., $u \subseteq v \& v \in S_{X} \Rightarrow u \in S_{X}$, and
3. $\bigcup S_{X}=\bigcup\left\{u: u \in S_{X}\right\}=X$.

Pre-ordering: $\left(Y, S_{Y}\right) \leq\left(X, S_{X}\right) \Leftrightarrow Y \subseteq X \& S_{Y} \subseteq S_{X}$.
Approximations: $r\left(n,\left(X, S_{X}\right)\right)=r_{n}\left(X, S_{X}\right)=\left(X \upharpoonright n, S_{X} \upharpoonright n\right)$.
Theorem: (M-Padilla, 2013+) (\mathcal{P}, \leq, r) is a TRS.

Subspaces, Mijares - Padilla, 2012/2013

Elements: Given $k \in \mathbb{N}$, let $\mathcal{P}(k)$ be the collection of pairs $\left(X, S_{X}\right)$ such that:

1. $X \in \mathbb{N}^{[\infty]}$,
2. $S_{X} \subseteq X^{[\leq k]}$ is hereditary, i.e., $u \subseteq v \& v \in S_{X} \Rightarrow u \in S_{X}$, and
3. $\bigcup S_{X}=\bigcup\left\{u: u \in S_{X}\right\}=X$.

Subspaces, Mijares - Padilla, 2012/2013

Elements: Given $k \in \mathbb{N}$, let $\mathcal{P}(k)$ be the collection of pairs $\left(X, S_{X}\right)$ such that:

1. $X \in \mathbb{N}^{[\infty]}$,
2. $S_{X} \subseteq X^{[\leq k]}$ is hereditary, i.e., $u \subseteq v \& v \in S_{X} \Rightarrow u \in S_{X}$, and
3. $\bigcup S_{X}=\bigcup\left\{u: u \in S_{X}\right\}=X$.

Pre-ordering: $\left(Y, S_{Y}\right) \leq\left(X, S_{X}\right) \Leftrightarrow Y \subseteq X \& S_{Y} \subseteq S_{X}$.

Subspaces, Mijares - Padilla, 2012/2013

Elements: Given $k \in \mathbb{N}$, let $\mathcal{P}(k)$ be the collection of pairs $\left(X, S_{X}\right)$ such that:

1. $X \in \mathbb{N}^{[\infty]}$,
2. $S_{X} \subseteq X^{[\leq k]}$ is hereditary, i.e., $u \subseteq v \& v \in S_{X} \Rightarrow u \in S_{X}$, and
3. $\bigcup S_{X}=\bigcup\left\{u: u \in S_{X}\right\}=X$.

Pre-ordering: $\left(Y, S_{Y}\right) \leq\left(X, S_{X}\right) \Leftrightarrow Y \subseteq X \& S_{Y} \subseteq S_{X}$.
Approximations: $r\left(n,\left(X, S_{X}\right)\right)=r_{n}\left(X, S_{X}\right)=\left(X \upharpoonright n, S_{X} \upharpoonright n\right)$.

Subspaces, Mijares - Padilla, 2012/2013

Elements: Given $k \in \mathbb{N}$, let $\mathcal{P}(k)$ be the collection of pairs (X, S_{X}) such that:

1. $X \in \mathbb{N}^{[\infty]}$,
2. $S_{X} \subseteq X^{[\leq k]}$ is hereditary, i.e., $u \subseteq v \& v \in S_{X} \Rightarrow u \in S_{X}$, and
3. $\bigcup S_{X}=\bigcup\left\{u: u \in S_{X}\right\}=X$.

Pre-ordering: $\left(Y, S_{Y}\right) \leq\left(X, S_{X}\right) \Leftrightarrow Y \subseteq X \& S_{Y} \subseteq S_{X}$.
Approximations: $r\left(n,\left(X, S_{X}\right)\right)=r_{n}\left(X, S_{X}\right)=\left(X \upharpoonright n, S_{X} \upharpoonright n\right)$.
Theorem: (M-Padilla, 2013+) For each $k,(\mathcal{P}(k), \leq, r)$ is a TRS.

TRS of infinite polyhedra
Ramsey classes

Ramsey classes

Ramsey classes

A signature: $L=<\left(R_{i}\right)_{i \in I},\left(F_{j}\right)_{j \in J}>$

TRS of infinite polyhedra
$\left\llcorner_{\text {Ramsey classes }}\right.$

Ramsey classes

A signature: $L=<\left(R_{i}\right)_{i \in I},\left(F_{j}\right)_{j \in J}>$
$\left(R_{i}\right)_{i \in I}$ is a set relation symbols

Ramsey classes

A signature: $L=<\left(R_{i}\right)_{i \in I},\left(F_{j}\right)_{j \in J}>$
$\left(R_{i}\right)_{i \in I}$ is a set relation symbols
$\left(F_{j}\right)_{j \in J}$ is a set of function symbols

Structures

L-structure, $\mathbb{A}=<A,\left(R_{i}^{\mathbb{A}}\right)_{i \in I},\left(F_{j}^{\mathbb{A}}\right)_{j \in J}>$:

- A non empty set $A \neq \emptyset$ called the universe of the structure;
- a set of relations $\left(R_{i}^{\mathbb{A}}\right)_{i \in I}$ where $R_{i}^{\mathbb{A}} \subseteq A^{n(i)}$ for each $i \in I$; and
\bullet a set of functions $\left(F_{j}^{\mathbb{A}}\right)_{j \in J}$ where $F_{j}^{\mathbb{A}}: A^{m(j)} \longrightarrow A$ for each $j \in J$.

Structures

A morphism of L-structures $\mathbb{A} \xrightarrow{\pi} \mathbb{B}$ is a map $A \xrightarrow{\pi} B$

- $\left(a_{1}, \ldots, a_{n(i)}\right) \in R_{i}^{\mathbb{A}}$ iff $\left(\pi\left(a_{1}\right), \ldots, \pi\left(a_{n(i)}\right)\right) \in R_{i}^{\mathbb{B}}$; for all $a_{1}, \ldots, a_{n(i)} \in A$.
- $\pi\left(F_{j}^{\mathbb{A}}\left(a_{1}, \ldots a_{m(j)}\right)\right)=F_{j}^{\mathbb{B}}\left(\pi\left(a_{1}\right), \ldots, \pi\left(a_{m(j)}\right)\right)$ for all $a_{1}, \ldots, a_{m(j)} \in A$.
When π is injective we say that it is an embedding. In particular, we say that \mathbb{A} is a substructure of \mathbb{B}, and write $\mathbb{A} \leq \mathbb{B}$ whenever $A \subseteq B$ and the inclusion map is an embedding.

Fraïssé class of finite structure

A non empty class of finite relational L-structures \mathcal{C} is a Fraïssé class if it satisfies the following:

Fraïssé class of finite structure

A non empty class of finite relational L-structures \mathcal{C} is a Fraïssé class if it satisfies the following:

1. \mathcal{C} is closed under isomorphisms: If $\mathbb{A} \in \mathcal{C}$ and $\mathbb{A} \cong \mathbb{B}$ then $\mathbb{B} \in \mathcal{C}$.

Fraïssé class of finite structure

A non empty class of finite relational L-structures \mathcal{C} is a Fraïssé class if it satisfies the following:

1. \mathcal{C} is closed under isomorphisms: If $\mathbb{A} \in \mathcal{C}$ and $\mathbb{A} \cong \mathbb{B}$ then $\mathbb{B} \in \mathcal{C}$.
2. \mathcal{C} is hereditary: If $\mathbb{A} \in \mathcal{C}$ and $\mathbb{B} \leq \mathbb{A}$ then $\mathbb{B} \in \mathcal{C}$.

Fraïssé class of finite structure

A non empty class of finite relational L-structures \mathcal{C} is a Fraïssé class if it satisfies the following:

1. \mathcal{C} is closed under isomorphisms: If $\mathbb{A} \in \mathcal{C}$ and $\mathbb{A} \cong \mathbb{B}$ then $\mathbb{B} \in \mathcal{C}$.
2. \mathcal{C} is hereditary: If $\mathbb{A} \in \mathcal{C}$ and $\mathbb{B} \leq \mathbb{A}$ then $\mathbb{B} \in \mathcal{C}$.
3. \mathcal{C} contains structures with arbitrarily high finite cardinality.

Fraïssé class of finite structure

A non empty class of finite relational L-structures \mathcal{C} is a Fraïssé class if it satisfies the following:

1. \mathcal{C} is closed under isomorphisms: If $\mathbb{A} \in \mathcal{C}$ and $\mathbb{A} \cong \mathbb{B}$ then $\mathbb{B} \in \mathcal{C}$.
2. \mathcal{C} is hereditary: If $\mathbb{A} \in \mathcal{C}$ and $\mathbb{B} \leq \mathbb{A}$ then $\mathbb{B} \in \mathcal{C}$.
3. \mathcal{C} contains structures with arbitrarily high finite cardinality.
4. Joint embedding property: If $\mathbb{A}, \mathbb{B} \in \mathcal{C}$ then there is $\mathbb{D} \in \mathcal{C}$ such that $\mathbb{A} \leq \mathbb{D}$ and $\mathbb{B} \leq \mathbb{D}$.

Fraïssé class of finite structure

A non empty class of finite relational L-structures \mathcal{C} is a Fraïssé class if it satisfies the following:

1. \mathcal{C} is closed under isomorphisms: If $\mathbb{A} \in \mathcal{C}$ and $\mathbb{A} \cong \mathbb{B}$ then $\mathbb{B} \in \mathcal{C}$.
2. \mathcal{C} is hereditary: If $\mathbb{A} \in \mathcal{C}$ and $\mathbb{B} \leq \mathbb{A}$ then $\mathbb{B} \in \mathcal{C}$.
3. \mathcal{C} contains structures with arbitrarily high finite cardinality.
4. Joint embedding property: If $\mathbb{A}, \mathbb{B} \in \mathcal{C}$ then there is $\mathbb{D} \in \mathcal{C}$ such that $\mathbb{A} \leq \mathbb{D}$ and $\mathbb{B} \leq \mathbb{D}$.
5. Amalgamation property: Given $\mathbb{A}, \mathbb{B}_{1}, \mathbb{B}_{2} \in \mathcal{C}$ and embeddings $\mathbb{A} \xrightarrow{f_{i}} \mathbb{B}_{i}, i \in\{1,2\}$, there is $\mathbb{D} \in \mathcal{C}$ and embeddings $\mathbb{B}_{i} \xrightarrow{g_{i}} \mathbb{D}$ such that $g_{1} \circ f_{1}=g_{2} \circ f_{2}$.

Fraïssé limit

IIf \mathcal{C} is Fraïssé , then there is a unique (up to isomorphism) countably infinite ultrahomogeneous structure \mathbb{F} such that
$\mathcal{C}=$ the class of finite substructures of \mathbb{F}

Fraïssé limit

IIf \mathcal{C} is Fraïssé , then there is a unique (up to isomorphism) countably infinite ultrahomogeneous structure \mathbb{F} such that
$\mathcal{C}=$ the class of finite substructures of $\mathbb{F}=: \operatorname{Age}(\mathbb{F})$.

Fraïssé limit

IIf \mathcal{C} is Fraïssé , then there is a unique (up to isomorphism) countably infinite ultrahomogeneous structure \mathbb{F} such that

$$
\mathcal{C}=\text { the class of finite substructures of } \mathbb{F}=: \operatorname{Age}(\mathbb{F}) .
$$

This \mathbb{F} is the Fraïssé limit of \mathcal{C} and we write $\mathbb{F}=\operatorname{FLim}(\mathcal{C})$.

Fraïssé limit

IIf \mathcal{C} is Fraïssé , then there is a unique (up to isomorphism) countably infinite ultrahomogeneous structure \mathbb{F} such that

$$
\mathcal{C}=\text { the class of finite substructures of } \mathbb{F}=: \operatorname{Age}(\mathbb{F}) .
$$

This \mathbb{F} is the Fraïssé limit of \mathcal{C} and we write $\mathbb{F}=\operatorname{FLim}(\mathcal{C})$.

Ramsey class of finite structures

Ramsey class of finite structures

A Fraïssé class \mathcal{C} has the Ramsey property iff, for every integer $r>1$ and every $\mathbb{A}, \mathbb{B} \in \mathcal{C}$ such that $\mathbb{A} \leq \mathbb{B}$,

Ramsey class of finite structures

A Fraïssé class \mathcal{C} has the Ramsey property iff, for every integer $r>1$ and every $\mathbb{A}, \mathbb{B} \in \mathcal{C}$ such that $\mathbb{A} \leq \mathbb{B}$, there is
$\mathbb{C} \in \mathcal{C}$ such that

Ramsey class of finite structures

A Fraïssé class \mathcal{C} has the Ramsey property iff, for every integer $r>1$ and every $\mathbb{A}, \mathbb{B} \in \mathcal{C}$ such that $\mathbb{A} \leq \mathbb{B}$, there is
$\mathbb{C} \in \mathcal{C}$ such that for each r-coloring

$$
c:\binom{\mathbb{C}}{\mathbb{A}} \longrightarrow r
$$

of the $\operatorname{set}\binom{\mathbb{C}}{\mathbb{A}}$,

Ramsey class of finite structures

A Fraïssé class \mathcal{C} has the Ramsey property iff, for every integer $r>1$ and every $\mathbb{A}, \mathbb{B} \in \mathcal{C}$ such that $\mathbb{A} \leq \mathbb{B}$, there is
$\mathbb{C} \in \mathcal{C}$ such that for each r-coloring

$$
c:\binom{\mathbb{C}}{\mathbb{A}} \longrightarrow r
$$

of the set $\binom{\mathbb{C}}{\mathbb{A}}$, there exists $\mathbb{B}^{\prime} \in\binom{\mathbb{C}}{\mathbb{B}}$ such that $\binom{\mathbb{B}^{\prime}}{\mathbb{A}}$
is monochromatic.

TRS of infinite polyhedra
$\left\llcorner_{\text {Ramsey classes }}\right.$

Extreme amenability

Extreme amenability

A topological group G is extremely amenable or has the fixed point on compacta property, if for every continuous action of G on a compact space X there exists $x \in X$ such that for every $g \in G, g \cdot x=x$.

Extreme amenability

A topological group G is extremely amenable or has the fixed point on compacta property, if for every continuous action of G on a compact space X there exists $x \in X$ such that for every $g \in G, g \cdot x=x$.

Theorem

(Pestov 2006) Let \mathbb{F} be a countably infinite ultrahomogeneous structure and $\mathcal{C}=\operatorname{Age}(\mathbb{F})$. The polish group $\operatorname{Aut}(\mathbb{F})$ is extremely amenable if and only if \mathcal{C} has the Ramsey property and all the structures of \mathcal{C} are rigid.

Finite polyhedra as a Ramsey class

Consider $L=<\left(R_{i}\right)_{i \in \mathbb{N} \backslash\{0\}}>$, a signature with an infinite number of relational symbols such that for each $i \in \mathbb{N}$ the arity of R_{i} is $n(i)=i$.

Finite polyhedra as a Ramsey class

Consider $L=<\left(R_{i}\right)_{i \in \mathbb{N}\{\{0\}}>$, a signature with an infinite number of relational symbols such that for each $i \in \mathbb{N}$ the arity of R_{i} is $n(i)=i$.
Let $\mathcal{K P}$ the class of finite ordered polyhedra.

Finite polyhedra as a Ramsey class

Consider $L=<\left(R_{i}\right)_{i \in \mathbb{N}\{\{0\}}>$, a signature with an infinite number of relational symbols such that for each $i \in \mathbb{N}$ the arity of R_{i} is $n(i)=i$.

Let $\mathcal{K P}$ the class of finite ordered polyhedra. $\mathcal{K P}$ is a class of $L \cup\{<\}$-structures.

Finite polyhedra as a Ramsey class

Consider $L=<\left(R_{i}\right)_{i \in \mathbb{N}\{\{0\}}>$, a signature with an infinite number of relational symbols such that for each $i \in \mathbb{N}$ the arity of R_{i} is $n(i)=i$.
Let $\mathcal{K P}$ the class of finite ordered polyhedra. $\mathcal{K} \mathcal{P}$ is a class of $L \cup\{<\}$-structures.

Facts:

- $\mathcal{A P} \subseteq \mathcal{K} \mathcal{P}$.

Finite polyhedra as a Ramsey class

Consider $L=<\left(R_{i}\right)_{i \in \mathbb{N}\{\{0\}}>$, a signature with an infinite number of relational symbols such that for each $i \in \mathbb{N}$ the arity of R_{i} is $n(i)=i$.
Let $\mathcal{K P}$ the class of finite ordered polyhedra. $\mathcal{K P}$ is a class of $L \cup\{<\}$-structures.
Facts:

- $\mathcal{A P} \subseteq \mathcal{K} \mathcal{P}$.
- For every $\mathbb{A} \in \mathcal{K} \mathcal{P}$ there is $\left(a, S_{a}\right) \in \mathcal{A P}$ such that $\mathbb{A} \cong\left(a, S_{a}\right)$. Actually, $\mathcal{K P}$ is the closure of $\mathcal{A P}$ under isomorphisms.

Finite polyhedra as a Ramsey class

Theorem

The class $\mathcal{K P}$ of all finite ordered polyhedra is Ramsey.

Corollary

Let $\mathbb{P}=\operatorname{FLim}(\mathcal{K P})$, the Fraïssé limit of $\mathcal{K} \mathcal{P}$. Then, $\operatorname{Aut}(\mathbb{P})$ with the Polish topology inherited from S_{∞} is extremely amenable.

TRS of infinite polyhedra
$\left\llcorner_{\text {The random polyhedron }}\right.$

The random polyhedron

The random polyhedron

Consider a countably infinite set ω.

The random polyhedron

Consider a countably infinite set ω. Define a family $S_{\omega} \subseteq \omega^{[<\infty]}$, as follows:

The random polyhedron

Consider a countably infinite set ω. Define a family
$S_{\omega} \subseteq \omega^{[<\infty]}$, as follows:
Hold a coin.

The random polyhedron

Consider a countably infinite set ω. Define a family
$S_{\omega} \subseteq \omega^{[<\infty]}$, as follows:
Hold a coin. Define a family $T_{\omega} \subseteq \omega^{[<\infty]}$ probabilistically in the following way: for every $u \in \omega^{[<\infty]}$ such that $|u|>1$ flip the coin, and say that u is in T_{ω} if and only if you get heads.

The random polyhedron

Consider a countably infinite set ω. Define a family
$S_{\omega} \subseteq \omega^{[<\infty]}$, as follows:
Hold a coin. Define a family $T_{\omega} \subseteq \omega^{[<\infty]}$ probabilistically in the following way: for every $u \in \omega^{[<\infty]}$ such that $|u|>1$ flip the coin, and say that u is in T_{ω} if and only if you get heads. Set

$$
\begin{equation*}
S_{\omega}:=\omega^{[1]} \cup\left\{v:\left(\exists u \in T_{\omega}\right) v \subseteq u\right\} \tag{1}
\end{equation*}
$$

The random polyhedron

Consider a countably infinite set ω. Define a family
$S_{\omega} \subseteq \omega^{[<\infty]}$, as follows:
Hold a coin. Define a family $T_{\omega} \subseteq \omega^{[<\infty]}$ probabilistically in the following way: for every $u \in \omega^{[<\infty]}$ such that $|u|>1$ flip the coin, and say that u is in T_{ω} if and only if you get heads. Set

$$
\begin{equation*}
S_{\omega}:=\omega^{[1]} \cup\left\{v:\left(\exists u \in T_{\omega}\right) v \subseteq u\right\} \tag{1}
\end{equation*}
$$

$\left(\omega, S_{\omega}\right)$ is an infinite random polyhedron.

The random polyhedron

Lemma

Each finite polyhedron can be embedded in the infinite random polyhedron.

The random polyhedron

Lemma

Each finite polyhedron can be embedded in the infinite random polyhedron.

Theorem

Let $\mathbb{P}=\operatorname{FLim}(\mathcal{K P})$, the Fraïssé limit of $\mathcal{K P}$. Then \mathbb{P} is an infinite ordered polyhedron which is isomorphic to $\left(\omega, S_{\omega}\right)$, as a polyhedron, and to (\mathbb{Q}, \leq), as an ordered set.

References

囲 Carlson T. J., Simpson S. G., Topological Ramsey theory. In: Neŝetr̂il, J., Rödl (eds.) Mathematics of Ramsey Theory, pp. 172-183, Springer, Berlin, 1990.

R Carlson T. J., Simpson S. G., A dual form of Ramsey's theorem. Advan. in Math. 53, 265-290 (1984).
(Dobrinen, N., Todorcevic, S., A new class of Ramsey-classification theorems and their applications in the Tukey theory of ultrafilters. Parts 1 and 2. To appear in TAMS.
Ellentuck E., A new proof that analytic sets are Ramsey. J. Symbol. Logic 39, 163-165 (1974).

References

目 Galvin F．，Prikry K．，Borel sets and Ramsey＇s theorem．J． Symbol．Logic 38，193－198（1973）．

囯 Hindman，N．，The existence of certain ultrafilters on \mathbb{N} and a conjecture of Graham and Rothschild，Proc．Amer．Math． Soc．，36（1973），341－346．

圊 Kechris A．S．，Pestov V．G．and Todorcevic S．， Fraïssé Limits，Ramsey Theory，and topological dynamics of automorphism groups，Geom．and Funct．Analysis， Volume 15，Number 1，106－189（2005）．

國 Milliken K．，Ramsey＇s theorem with sums or unions．J． Combin．Theory Ser．A 18，276－290（1975）．

References

囯 Mijares，J．G．，A notion of selective ultrafilter corresponding to topological Ramsey spaces，Math．Log． Quart．53（3），255－267（2007）．

围 Mijares，J．G．，Parametrizing the abstract Ellentuck theorem，Discrete Mathematics 307 （2007），216－225．
R－Mijares J．G．，On Galvin＇s lemma and Ramsey spaces． Ann．Comb． 16 （2012），no．2，319－330．

雷 Mijares J．G．，Nieto J．，A parametrization of the abstract Ramsey theorem．Divulgaciones Matemáticas．Vol．16，No． 2，（2008），259－274

References

囯 Mijares J．，Padilla，G．A Ramsey space of infnite polyhedra and the random polyhedron．arXiv：1209．6421（2013）

囯 Pestov，V．Dynamics of infinite－dimensional groups．The Ramsey－Dvoretzky－Milman Phenomenon，ULECT 40， AMS（2006）．
（ Ramsey F．P．，On a problem of formal logic．Proc．London Math．Soc．Ser．2．30，264－286（1929）．

圊 Todorcevic S．，Introduction to Ramsey spaces．Princeton University Press，Princeton，New Jersey， 2010.

