On universal topologicals groups

Brice Rodrigue Mbombo

IME-USP Joint work with Vladimir Pestov

August 14, 2013

Brice Rodrigue Mbombo On universal topologicals groups

- Let \mathcal{C} be a class of topologicals groups.
- G ∈ C is universal for C if for every H ∈ C there is an isomorphism between H and a subgroup of G

Ulam

Does there exist a universal topological group with a countable base?

Teleman

- Every topological group G has a topologically faithful representation on a Banach space B: embedding $G \longrightarrow Iso(B)$
- Every topological group G has a topologically faithful representation on a compact space X: embedding G → Homeo(X).

1st Proof

B = RUCB(G), X = the unit ball in B^* with w^* -topology.

RUCB(G)=Right Uniformly Continuous Bounded functions $f: G \longrightarrow \mathbb{C}$.

2nd Proof

 $X = \mathcal{S}(G)$ and B = C(X)

S(G) = the maximal ideal space of the abelian unital C^{*}-algebra RUCB(G) = the Samuel compactification of (G, U_R)

1st solution: Uspenskij, 1986

Homeo($[0,1]^{\aleph_0}$) contains all groups with a countable base.

 $G \hookrightarrow \operatorname{Homeo}(X) \hookrightarrow \operatorname{Homeo}(P(X)) = \operatorname{Homeo}([0,1]^{\aleph_0})$

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

1st solution: Uspenskij, 1986

 $\operatorname{Homeo}([0,1]^{\aleph_0})$ contains all groups with a countable base.

$$G \hookrightarrow \operatorname{Homeo}(X) \hookrightarrow \operatorname{Homeo}(P(X)) = \operatorname{Homeo}([0,1]^{\aleph_0})$$

2nd solution: Uspenkij, 1990

 $\mathit{Iso}(\mathbb{U})$ contains all groups with a countable base, where \mathbb{U} is the universal polish Urysohn space.

 $\mathbb{U}=$ the Urysohn universal metric space = the complete separable space, contains isometric copies of all separable spaces, and is ultrahomogeneous =that is every isometry between two finite metric subspace of \mathbb{U} extends to a global isometry of \mathbb{U} onto itself.

Let X be a polish space

Katětov

Construct
$$X = X_0 \hookrightarrow X_1 \hookrightarrow ...$$
, with $w(X) = w(X_0) = w(X_1) = ...$ and $X_{\omega} = \overline{\bigcup X_n} = \mathbb{U}$ is the Urysohn space.

Let X be a polish space

Katětov

Construct
$$X = X_0 \hookrightarrow X_1 \hookrightarrow ...$$
, with $w(X) = w(X_0) = w(X_1) = ...$ and $X_{\omega} = \overline{\bigcup X_n} = \mathbb{U}$ is the Urysohn space.

Uspenskij

$$lso(X) = lso(X_0) \hookrightarrow lso(X_1) \hookrightarrow ..., \text{ whence}$$

 $G \hookrightarrow lso(X) \hookrightarrow lso(X_{\omega}) = lso(\mathbb{U}).$

< ∃ →

э

3rd solution: Ben Yaacov, 2012

 $\mathit{Iso}(\mathbb{G})$ contains all groups with a countable base, where \mathbb{G} is the Gurarij space.

3rd solution: Ben Yaacov, 2012

 $\mathit{Iso}(\mathbb{G})$ contains all groups with a countable base, where \mathbb{G} is the Gurarij space.

A Gurarij space is a Banach space \mathbb{G} having the property that for any $\varepsilon > 0$, finite-dimensional Banach space $E \subseteq F$ and an isometric embedding $\varphi : E \longrightarrow \mathbb{G}$ there is a linear map $\psi : F \longrightarrow \mathbb{G}$ extending φ such that in addition, for all $x \in F$, $(1 - \varepsilon) ||x|| \le ||\psi(x)|| \le (1 + \varepsilon) ||x||$

Ben Yaacov

Let E be a separable Banach space,

• Construct $E = E_0 \hookrightarrow E_1 \hookrightarrow ...$, with $w(E) = w(E_0) = w(E_1) = ...$ and $E_{\omega} = \overline{\bigcup E_n} = \mathbb{G}$ is the Gurarij space.

Ben Yaacov

Let E be a separable Banach space,

• Construct $E = E_0 \hookrightarrow E_1 \hookrightarrow ...$, with $w(E) = w(E_0) = w(E_1) = ...$ and $E_{\omega} = \overline{\bigcup E_n} = \mathbb{G}$ is the Gurarij space.

•
$$Iso(E) = Iso(E_0) \hookrightarrow Iso(E_1) \hookrightarrow ...$$
, whence
 $G \hookrightarrow Iso(E) \hookrightarrow Iso(E_{\omega}) = Iso(\mathbb{G}).$

The question of existence of a universal topological group of a given uncountable weight \mathfrak{m} remains open to the day. In fact, it is open for *any* given cardinal $\mathfrak{m} > \aleph_0$.

Let ${\mathfrak m}$ be an infinite cardinal such that

$$\sup \{\mathfrak{m}^{\mathfrak{n}} \colon \mathfrak{n} < \mathfrak{m}\} = \mathfrak{m}, \tag{1}$$

there exists a unique up to an isometry complete metric space $\mathbb{U}_\mathfrak{m}$ of weight $\mathfrak{m},$ such that

- $\mathbb{U}_\mathfrak{m}$ contains an isometric copy of every other metric space of weight $\leq \mathfrak{m}$
- $\mathbb{U}_{\mathfrak{m}}$ is $< \mathfrak{m}$ -homogeneous, that is, an isometry between any two metric subspaces of density $< \mathfrak{m}$ extends to a global self-isometry of $\mathbb{U}_{\mathfrak{m}}$.

In particular, \mathbb{U}_{\aleph_0} is just the classical Urysohn space $\mathbb{U}.$

The topological group $Iso(\mathbb{U}_{\mathfrak{m}})$, equipped with the topology of simple convergence, has weight \mathfrak{m} , and was a candidate for a universal topological group of weight \mathfrak{m} .

SIN and FSIN groups

• A topological group *G* is call SIN (Small Invariant Neighbourhoods) if it admits a base at the identity consisting of invariant neighborhoods.

★ Ξ →

SIN and FSIN groups

- A topological group *G* is call SIN (Small Invariant Neighbourhoods)if it admits a base at the identity consisting of invariant neighborhoods.
- A topological group *G* is called functionally balanced, or sometimes FSIN ("Functionally SIN") if every right uniformly continuous bounded function on *G* is left uniformly continuous.

- A topological group *G* is call SIN (Small Invariant Neighbourhoods) if it admits a base at the identity consisting of invariant neighborhoods.
- A topological group *G* is called functionally balanced, or sometimes FSIN ("Functionally SIN") if every right uniformly continuous bounded function on *G* is left uniformly continuous.
- Every SIN group is FSIN. The converse implication has been established for:
 - locally compact groups (ltzkowitz),
 - metrizable groups (Protasov),
 - locally connected groups (Megreslishvili, Nickolas and Pestov), among others
- It remains an open problem in the general case.

- A topological group G has property (OB) if whenever G acts by isometries on a metric space (X; d) every orbit is bounded.
- Examples of such groups include, among others:
 - the infinite permutation group S_∞ (Bergman),
 - the unitary group $U(\ell^2)$ with the strong opererator topology (Atkin),
 - the isometry group of the Urysohn sphere (that is, a sphere in the Urysohn space) (Rosendal)
 - Homeo($[0,1]^{\aleph_0}$) (Rosendal).

Theorem

If G is a topological subgroup of $Iso(\mathbb{U}_m)$ of density $< \mathfrak{m}$, having property (OB), then G is FSIN.

э

글 🕨 🔺 글 🕨 👘

Theorem

If G is a topological subgroup of $Iso(\mathbb{U}_m)$ of density $< \mathfrak{m}$, having property (OB), then G is FSIN.

Corollary

If G is a topological subgroup of $Iso(\mathbb{U}_m)$ of density $< \mathfrak{m}$ having property (OB) which is either metrizable or locally connected, then G is a SIN group.

Some groups with no-embeddings in $Iso(\mathbb{U}_m)$

- Denote U[○] the unit sphere in the Urysohn metric space. The group *Iso*(U[○]) is both metrizable and locally connected (Melleray), has property (*OB*) (Rosendal) and is not SIN.
- The group S_{∞} is Polish and has the property (*OB*) (Bergman).
- Some of the group Homeo([0, 1]^{ℵ0}) is a non-SIN Polish group with property (OB)(Rosendal).
- In particular the group *Iso*(U) admits no embedding into *Iso*(U_m) as a topological subgroup.

- Let κ be an uncountable cardinal. Does there exist a universal topological group of weight κ ?
- Is Homeo([0,1]^{κ}) such a group?

Theorem

Every metrizable SIN group of weight $\leq \mathfrak{m}$ embeds into $\mathsf{Iso}(\mathbb{U}_{\mathfrak{m}})$

Theorem

Every $P_{\mathfrak{m}}$ -groups of weight \mathfrak{m} embeds into $Iso(\mathbb{U}_{\mathfrak{m}})$.

A B M A B M

A D