Tukey Domination

Ana Mamatelashvili

Graduate student at University of Pittsburgh

anm137@pitt.edu

Joint work with Paul Gartside

August 15, 2013

1 Tukey Order

- Examples and background
- Cardinals

3 Application

- $C_p(X)$
- More topological version

Examples and background Cardinals

Tukey Order

Definition

Let D and E be directed posets:

- $\psi: D \rightarrow E$ Tukey map iff ψ maps unbounded sets to unbounded sets;
- $\phi: E \to D$ cofinal map iff ϕ maps cofinal sets to cofinal sets.

Examples and background Cardinals

Tukey Order

Definition

Let D and E be directed posets:

- $\psi: D \rightarrow E$ Tukey map iff ψ maps unbounded sets to unbounded sets;
- $\phi: E \to D$ cofinal map iff ϕ maps cofinal sets to cofinal sets.

Lemma (Tukey)

 $\exists \text{ Tukey map } D \to E \quad \Longleftrightarrow \quad \exists \text{ cofinal map } E \to D.$

Examples and background Cardinals

Tukey Order

Definition

Let D and E be directed posets:

• $\psi: D \rightarrow E$ Tukey map iff ψ maps unbounded sets to unbounded sets;

• $\phi: E \to D$ cofinal map iff ϕ maps cofinal sets to cofinal sets.

Lemma (Tukey)

- $\exists \text{ Tukey map } D \to E \quad \Longleftrightarrow \quad \exists \text{ cofinal map } E \to D.$
 - Write: $E \geq_T D$.
 - Say: E Tukey-dominates D.
 - $\geq_{\mathcal{T}}$ is a partial order.

Examples and background Cardinals

Tukey Order – Examples

• $\mathbb{N} >_T 1$

Ana Mamatelashvili Tukey Domination

Examples and background Cardinals

Tukey Order – Examples

- $\mathbb{N} >_T 1$
- $\mathbb{N}^{\mathbb{N}} >_{\mathcal{T}} \mathbb{N}$

Ana Mamatelashvili Tukey Domination

Examples and background Cardinals

Tukey Order – Examples

- $\mathbb{N} >_T 1$
- $\mathbb{N}^{\mathbb{N}} >_{\mathcal{T}} \mathbb{N}$
- $\mathbb{N} \not\geq_T \omega_1$

Examples and background Cardinals

Tukey Order – Examples

- $\mathbb{N} >_T 1$
- $\mathbb{N}^{\mathbb{N}} >_{\mathcal{T}} \mathbb{N}$
- $\mathbb{N} \not\geq_T \omega_1$
- $\omega_1 \not\geq_T \mathbb{N}$

Examples and background Cardinals

Tukey Order – Background

First introduced by Tukey to deal with convergence via nets.

Examples and background Cardinals

Tukey Order – Background

First introduced by Tukey to deal with convergence via nets.

Theorem (Todorcevic)Consistent with MA:there are 5 Tukey classes of size $\leq \aleph_1$ 1, ω , ω_1 , $\omega \times \omega_1$, $[\omega_1]^{<\omega}$.

Examples and background Cardinals

Tukey Order – Background

First introduced by Tukey to deal with convergence via nets.

Theorem (Todorcevic)

Consistent with MA: th

there are 5 Tukey classes of size $\leq \aleph_1$

1,
$$\omega$$
, ω_1 , $\omega \times \omega_1$, $[\omega_1]^{<\omega}$.

Theorem (Todorcevic)

(CH) There are 2^{\aleph_1} Tukey classes of size $\leq \aleph_1$.

Examples and background Cardinals

Tukey Order – Background

- NULL Lebesgue measure zero subsets of [0, 1].
- MGR meagre subsets of $\mathbb{N}^{\mathbb{N}}$.

Examples and background Cardinals

Tukey Order – Background

NULL – Lebesgue measure zero subsets of [0, 1].

 $\mathsf{MGR} \quad - \qquad \mathsf{meagre subsets of } \mathbb{N}^{\mathbb{N}}.$

Theorem (Fremlin) $NULL \ge_T MGR$

Examples and background Cardinals

Tukey Order – Background

NULL – Lebesgue measure zero subsets of [0, 1].

MGR – meagre subsets of $\mathbb{N}^{\mathbb{N}}$.

Theorem (Fremlin) $NULL \ge_T MGR$

> $\mathsf{add}(\mathsf{NULL}) \le \mathsf{add}(\mathsf{MGR})$ $\mathsf{cof}(\mathsf{NULL}) \ge \mathsf{cof}(\mathsf{MGR})$

Examples and background Cardinals

$$(\mathcal{K}(X),\subseteq)$$

For a space X, $\mathcal{K}(X) = \{K \subseteq X : K \text{ is compact } \}$

Examples and background Cardinals

$$(\mathcal{K}(X),\subseteq)$$

For a space X, $\mathcal{K}(X) = \{K \subseteq X : K \text{ is compact } \}$

 $D = (\mathcal{K}(X), \subseteq)$ $E = (\mathcal{K}(M), \subseteq), M \text{ separable and metric.}$

Examples and background Cardinals

$$(\mathcal{K}(X),\subseteq)$$

For a space X, $\mathcal{K}(X) = \{K \subseteq X : K \text{ is compact } \}$

 $D = (\mathcal{K}(X), \subseteq)$ $E = (\mathcal{K}(M), \subseteq), M \text{ separable and metric.}$

Write $\mathcal{K}(M) \geq_{\mathcal{T}} \mathcal{K}(X)$ instead of $(\mathcal{K}(M), \subseteq) \geq_{\mathcal{T}} (\mathcal{K}(X), \subseteq)$.

Examples and background Cardinals

$$(\mathcal{K}(X),\subseteq)$$

For a space X, $\mathcal{K}(X) = \{K \subseteq X : K \text{ is compact } \}$

 $D = (\mathcal{K}(X), \subseteq)$ $E = (\mathcal{K}(M), \subseteq), M \text{ separable and metric.}$

Write $\mathcal{K}(M) \geq_{\mathcal{T}} \mathcal{K}(X)$ instead of $(\mathcal{K}(M), \subseteq) \geq_{\mathcal{T}} (\mathcal{K}(X), \subseteq)$.

Lemma

 $\mathcal{K}(M) \geq_{\mathcal{T}} \mathcal{K}(X)$ iff there is cofinal and order preserving $\phi : (\mathcal{K}(M), \subseteq) \to (\mathcal{K}(X), \subseteq).$

Examples and background Cardinals

Cardinals

What if X is a cardinal with order topology?

Examples and background Cardinals

Cardinals

What if X is a cardinal with order topology?

Lemma

 $\mathcal{K}(M) \geq_T \mathcal{K}(\kappa) \quad \Longleftrightarrow \quad \mathcal{K}(M) \geq_T \kappa.$

Examples and background Cardinals

Cardinals

What if X is a cardinal with order topology?

Lemma $\mathcal{K}(M) \geq_T \mathcal{K}(\kappa) \iff \mathcal{K}(M) \geq_T \kappa.$

Lemma

$$\mathcal{K}(M) \geq_T \kappa \quad \Longleftrightarrow \quad \mathcal{K}(M) \geq_T cof(\kappa).$$

Consider only regular uncountable cardinals.

Examples and background Cardinals

Cardinals

What if X is a cardinal with order topology?

Lemma $\mathcal{K}(M) \ge_T \mathcal{K}(\kappa) \iff \mathcal{K}(M) \ge_T \kappa.$

Lemma

$$\mathcal{K}(M) \geq_T \kappa \quad \Longleftrightarrow \quad \mathcal{K}(M) \geq_T cof(\kappa).$$

Consider only regular uncountable cardinals.

Lemma

If
$$\mathcal{K}(M) \geq_T \kappa$$
 and κ is regular, then $\kappa \leq \mathfrak{c}$.

Examples and background Cardinals

Cardinals continued...

Q: For which cardinals do we have $\mathcal{K}(M) \geq_T \kappa$ for some M?

Cardinals continued...

Q: For which cardinals do we have $\mathcal{K}(M) \geq_T \kappa$ for some M? A: For all $\kappa \leq \mathfrak{c}$:

Cardinals continued...

Q: For which cardinals do we have $\mathcal{K}(M) \geq_T \kappa$ for some M? A: For all $\kappa \leq \mathfrak{c}$:

 $B \subseteq \mathbb{R} \text{ Bernstein set iff } \forall \text{ compact uncountable } C \subseteq \mathbb{R}, \\ C \cap B \neq \emptyset \neq \mathbb{R} \backslash C \cap B$

Cardinals continued...

Q: For which cardinals do we have $\mathcal{K}(M) \geq_T \kappa$ for some M? A: For all $\kappa \leq \mathfrak{c}$:

 $B \subseteq \mathbb{R} \text{ Bernstein set iff } \forall \text{ compact uncountable } C \subseteq \mathbb{R},$ $C \cap B \neq \emptyset \neq \mathbb{R} \backslash C \cap B$

Let *B* be Bernstein set of size \mathfrak{c} , $B = \{x_{\alpha} : \alpha < \mathfrak{c}\}$. Let $B_{\kappa} = \{x_{\alpha} : \alpha < \kappa\}$.

Cardinals continued...

Q: For which cardinals do we have $\mathcal{K}(M) \geq_T \kappa$ for some M? A: For all $\kappa \leq \mathfrak{c}$:

$$\begin{split} B \subseteq \mathbb{R} \text{ Bernstein set iff } \forall \text{ compact uncountable } C \subseteq \mathbb{R}, \\ C \cap B \neq \emptyset \neq \mathbb{R} \backslash C \cap B \end{split}$$

Let *B* be Bernstein set of size \mathfrak{c} , $B = \{x_{\alpha} : \alpha < \mathfrak{c}\}$. Let $B_{\kappa} = \{x_{\alpha} : \alpha < \kappa\}$.

Lemma

 $\mathcal{K}(B_{\kappa}) \geq_T \kappa.$

 $\phi : \mathcal{K}(B_{\kappa}) \to \kappa$ defined by $\phi(\mathcal{K}) = \sup\{\alpha : x_{\alpha} \in \mathcal{K}\}$ works.

Cardinals continued...

Q: For which cardinals do we have $\mathcal{K}(M) \geq_T \kappa$ for some M? A: For all $\kappa \leq \mathfrak{c}$:

 $B \subseteq \mathbb{R} \text{ Bernstein set iff } \forall \text{ compact uncountable } C \subseteq \mathbb{R},$ $C \cap B \neq \emptyset \neq \mathbb{R} \backslash C \cap B$

Let *B* be Bernstein set of size \mathfrak{c} , $B = \{x_{\alpha} : \alpha < \mathfrak{c}\}$. Let $B_{\kappa} = \{x_{\alpha} : \alpha < \kappa\}$.

Lemma

 $\mathcal{K}(B_{\kappa}) \geq_T \kappa.$

 $\phi : \mathcal{K}(B_{\kappa}) \to \kappa$ defined by $\phi(\mathcal{K}) = \sup\{\alpha : x_{\alpha} \in \mathcal{K}\}$ works.

We can also arrange for all $\mathcal{K}(B_{\kappa}) \geq_{\mathcal{T}} \omega_1$.

Examples and background Cardinals

Definition

 $Spec(M) = set of all regular uncountable cardinals s.t. <math>\mathcal{K}(M) \geq_T \kappa$.

Examples and background Cardinals

Definition

 $Spec(M) = set of all regular uncountable cardinals s.t. <math>\mathcal{K}(M) \geq_T \kappa$.

Example: $\omega_1, \kappa \in Spec(B_{\kappa})$.

Examples and background Cardinals

$$Spec(\mathbb{N}^{\mathbb{N}})$$

- $\mathfrak{b} \in Spec(\mathbb{N}^{\mathbb{N}})$ $\mathfrak{d} \in Spec(\mathbb{N}^{\mathbb{N}})$

Examples and background Cardinals

$$Spec(\mathbb{N}^{\mathbb{N}})$$

- $\mathfrak{b} \in Spec(\mathbb{N}^{\mathbb{N}})$
- $\mathfrak{d} \in Spec(\mathbb{N}^{\mathbb{N}})$
- $Spec(\mathbb{N}^{\mathbb{N}}) \subseteq [\mathfrak{b}, cof(\mathfrak{d})]^{reg}$

Examples and background Cardinals

$$Spec(\mathbb{N}^{\mathbb{N}})$$

- $\mathfrak{b} \in Spec(\mathbb{N}^{\mathbb{N}})$
- $\mathfrak{d} \in Spec(\mathbb{N}^{\mathbb{N}})$
- $Spec(\mathbb{N}^{\mathbb{N}}) \subseteq [\mathfrak{b}, cof(\mathfrak{d})]^{reg}$
- consistently $Spec(\mathbb{N}^{\mathbb{N}}) = \{\omega_1, \omega_2, \omega_3\}$
- consistently $Spec(\mathbb{N}^{\mathbb{N}}) = \{\omega_1, \omega_3\}$

Examples and background Cardinals

$$Spec(\mathbb{N}^{\mathbb{N}})$$

- $\mathfrak{b} \in Spec(\mathbb{N}^{\mathbb{N}})$
- $\mathfrak{d} \in Spec(\mathbb{N}^{\mathbb{N}})$
- $Spec(\mathbb{N}^{\mathbb{N}}) \subseteq [\mathfrak{b}, cof(\mathfrak{d})]^{reg}$
- consistently $Spec(\mathbb{N}^{\mathbb{N}}) = \{\omega_1, \omega_2, \omega_3\}$
- consistently $Spec(\mathbb{N}^{\mathbb{N}}) = \{\omega_1, \omega_3\}$

•
$$Spec(\mathbb{Q}) = \{\omega_1\} \bigcup Spec(\mathbb{N}^{\mathbb{N}})$$

Examples and background Cardinals

$$Spec(\mathbb{N}^{\mathbb{N}})$$

- $\mathfrak{b} \in Spec(\mathbb{N}^{\mathbb{N}})$
- $\mathfrak{d} \in Spec(\mathbb{N}^{\mathbb{N}})$
- $Spec(\mathbb{N}^{\mathbb{N}}) \subseteq [\mathfrak{b}, cof(\mathfrak{d})]^{reg}$
- consistently $Spec(\mathbb{N}^{\mathbb{N}}) = \{\omega_1, \omega_2, \omega_3\}$
- consistently $Spec(\mathbb{N}^{\mathbb{N}}) = \{\omega_1, \omega_3\}$

•
$$Spec(\mathbb{Q}) = \{\omega_1\} \bigcup Spec(\mathbb{N}^{\mathbb{N}})$$

Q: What are possible consistent versions of $Spec(\mathbb{N}^{\mathbb{N}})$?

Definition

Caliber κ – κ -sized subsets have κ -sized bounded subsets.

Definition

Caliber κ – κ -sized subsets have κ -sized bounded subsets.

Caliber- internal \geq_T - relative

Tukey Order
Calibers
Application

Definition	
Caliber κ	– κ -sized subsets have κ -sized bounded subsets.
Caliber $\geq \tau$	– internal – relative
Lemma	
$\mathcal{K}(M)$ does	s not have caliber $\kappa \iff \mathcal{K}(M) \geq_T \kappa$.

Tukey Order
Calibers
Application

Definition			
Caliber κ	- κ -sized subsets have κ -sized bounded subsets.		
Caliber	– internal		
\geq_{T}	– relative		
Lemma			
$\mathcal{K}(M)$ does not have caliber $\kappa \iff \mathcal{K}(M) \geq_T \kappa$.			
Lemma			
$\mathcal{K}(\mathbb{N}^{\mathbb{N}})$ has caliber $\omega_1 \iff \omega_1 < \mathfrak{b}.$			

Calibers - general

Definition

A poset P has caliber $(\theta, \lambda, \kappa)$ iff any $S \subseteq P$ of size θ can be refined to S' of size λ so that any $S'' \subseteq S'$ of size κ is bounded in P.

Calibers - general

Definition

A poset P has caliber $(\theta, \lambda, \kappa)$ iff any $S \subseteq P$ of size θ can be refined to S' of size λ so that any $S'' \subseteq S'$ of size κ is bounded in P.

Lemma

If $E \geq_T D$ and E has caliber $(\theta, \lambda, \kappa)$, then so does D.

Calibers – general

Definition

A poset P has caliber $(\theta, \lambda, \kappa)$ iff any $S \subseteq P$ of size θ can be refined to S' of size λ so that any $S'' \subseteq S'$ of size κ is bounded in P.

Lemma

If $E \geq_T D$ and E has caliber $(\theta, \lambda, \kappa)$, then so does D.

Lemma (caliber $(\omega_1, \omega, \omega)$)

For any M, $\mathcal{K}(M)$ has caliber $(\omega_1, \omega, \omega)$.

Let X be Tychonoff. Then $C_p(X)$ is the set of all continuous real-valued functions on X with pointwise convergence topology.

Let X be Tychonoff. Then $C_p(X)$ is the set of all continuous real-valued functions on X with pointwise convergence topology.

 $\mathcal{K}(M) \geq_T \mathcal{K}(C_p(X))$ extensively studied by Cascales, Orihuela, Tkachuk.

Reconciling terminology:

- " $\mathcal{K}(M) \geq_{\mathcal{T}} \mathcal{K}(Y)$ " corresponds to "Y is M-strongly dominated".

 $C_p(X)$ More topological version

$C_p(X)$ – COT theorems

Theorem (Tkachuk)

If $\mathcal{K}(\mathbb{N}^{\mathbb{N}}) \geq_{T} \mathcal{K}(C_{p}(X))$ then X is countable and discrete.

Theorem (Cascales, Orihuela, Tkachuk)

Under CH, if X is compact and $\mathcal{K}(M) \geq_T \mathcal{K}(C_p(X))$, then X is countable.

 $C_p(X)$ More topological version

$C_p(X)$ – COT theorems

Theorem (Tkachuk)

If $\mathcal{K}(\mathbb{N}^{\mathbb{N}}) \geq_{T} \mathcal{K}(C_{p}(X))$ then X is countable and discrete.

Theorem (Cascales, Orihuela, Tkachuk)

Under CH, if X is compact and $\mathcal{K}(M) \geq_T \mathcal{K}(C_p(X))$, then X is countable.

Question (COT): Is it true in ZFC that if X is compact and $\mathcal{K}(M) \ge_T \mathcal{K}(C_p(X))$, then X is countable?

 $C_p(X)$ More topological version

$C_p(X)$ – COT theorems

Theorem (Tkachuk)

If $\mathcal{K}(\mathbb{N}^{\mathbb{N}}) \geq_{T} \mathcal{K}(C_{p}(X))$ then X is countable and discrete.

Theorem (Cascales, Orihuela, Tkachuk)

Under CH, if X is compact and $\mathcal{K}(M) \geq_T \mathcal{K}(C_p(X))$, then X is countable.

Question (COT): Is it true in ZFC that if X is compact and $\mathcal{K}(M) \geq_{\mathcal{T}} \mathcal{K}(C_p(X))$, then X is countable?

Lemma (COT)

Suppose X is compact and $\mathcal{K}(M) \geq_T \mathcal{K}(C_p(X))$. If X is not countable then $\Sigma_*(\mathbb{R}^{\kappa})$ is closely embedded into $C_p(X)$ for some uncountable κ and therefore $\mathcal{K}(M) \geq_T \mathcal{K}(\Sigma_*(\mathbb{R}^{\kappa}))$.

 $C_p(X)$ More topological version

"Yes" to Q (COT)

Theorem

In ZFC, if X is compact and $\mathcal{K}(M) \ge_T \mathcal{K}(C_p(X))$, then X is countable.

 $C_p(X)$ More topological version

"Yes" to Q (COT)

Theorem

In ZFC, if X is compact and $\mathcal{K}(M) \geq_T \mathcal{K}(C_p(X))$, then X is countable.

Proof.

Suppose not and X is uncountable. Then by the last lemma $\mathcal{K}(M) \geq_T \mathcal{K}(\Sigma_*(\mathbb{R}^{\kappa})).$

 $C_{p}(X)$ More topological version

"Yes" to Q (COT)

Theorem

In ZFC, if X is compact and $\mathcal{K}(M) \geq_T \mathcal{K}(C_p(X))$, then X is countable.

Proof.

Suppose not and X is uncountable. Then by the last lemma $\mathcal{K}(M) \geq_{\mathcal{T}} \mathcal{K}(\Sigma_*(\mathbb{R}^{\kappa})).$

We know that $\mathcal{K}(M)$ has caliber $(\omega_1, \omega, \omega)$, so $\mathcal{K}(\Sigma_*(\mathbb{R}^{\kappa}))$ should also have caliber $(\omega_1, \omega, \omega)$.

 $C_{\rho}(X)$ More topological version

"Yes" to Q (COT)

Theorem

In ZFC, if X is compact and $\mathcal{K}(M) \geq_T \mathcal{K}(C_p(X))$, then X is countable.

Proof.

Suppose not and X is uncountable. Then by the last lemma $\mathcal{K}(M) \geq_T \mathcal{K}(\Sigma_*(\mathbb{R}^{\kappa}))$.

We know that $\mathcal{K}(M)$ has caliber $(\omega_1, \omega, \omega)$, so $\mathcal{K}(\Sigma_*(\mathbb{R}^{\kappa}))$ should also have caliber $(\omega_1, \omega, \omega)$.

But it does not: we can assume $\kappa = \omega_1$ and construct an uncountable collection of compact sets in $\Sigma_*(\mathbb{R}^{\omega_1})$ so that no countable subcollection is contained in a compact set of \mathbb{R}^{ω_1} .

 $C_{\rho}(X)$ More topological version

More topological version

Y Lindelöf $\Sigma \iff$

countable network \mathcal{N} modulo compact cover \mathcal{C} .

 $C_{\rho}(X)$ More topological version

More topological version

$Y \text{ Lindelöf } \Sigma \quad \Longleftrightarrow \quad$

countable network ${\mathcal N}$ modulo compact cover ${\mathcal C}.$

Y Lindelöf cofinally $\Sigma \iff$ countable network \mathcal{N} modulo compact cover \mathcal{C} that is cofinal in $\mathcal{K}(Y)$.

 $C_p(X)$ More topological version

More topological version

$Y \text{ Lindelöf } \Sigma \quad \Longleftrightarrow \quad$

countable network \mathcal{N} modulo compact cover \mathcal{C} .

Y Lindelöf cofinally $\Sigma \iff$ countable network \mathcal{N} modulo compact cover \mathcal{C} that is cofinal in $\mathcal{K}(Y)$.

 $\begin{array}{ll} C_p(X) \text{ Lindelöf cofinally } \Sigma \\ \iff & \mathcal{K}(M) \geq_T \mathcal{K}(C_p(X)). \end{array}$

 $C_{\rho}(X)$ More topological version

More topological version

$Y \text{ Lindelöf } \Sigma \quad \Longleftrightarrow \quad$

countable network ${\mathcal N}$ modulo compact cover ${\mathcal C}.$

Y Lindelöf cofinally $\Sigma \iff$ countable network \mathcal{N} modulo compact cover \mathcal{C} that is cofinal in $\mathcal{K}(Y)$.

$$\begin{array}{ll} C_p(X) \text{ Lindelöf cofinally } \Sigma \\ \iff & \mathcal{K}(M) \geq_T \mathcal{K}(C_p(X)). \end{array}$$

 $\begin{array}{l} \mathsf{X} \text{ compact:} \\ \mathcal{C}_{\rho}(X) \text{ Lindelöf cofinally } \Sigma \\ \Longleftrightarrow \quad X \text{ countable.} \end{array}$

 $C_{\rho}(X)$ More topological version

More topological version

$Y \text{ Lindelöf } \Sigma \iff$

countable network \mathcal{N} modulo compact cover \mathcal{C} .

Y Lindelöf cofinally $\Sigma \iff$ countable network \mathcal{N} modulo compact cover \mathcal{C} that is cofinal in $\mathcal{K}(Y)$.

 $\begin{array}{ll} C_p(X) \text{ Lindelöf cofinally } \Sigma \\ \iff & \mathcal{K}(M) \geq_T \mathcal{K}(C_p(X)). \end{array}$

X compact: $C_p(X)$ Lindelöf Σ $\iff X$ Gul'ko compact. $\begin{array}{l} \mathsf{X} \text{ compact:} \\ \mathcal{C}_{\rho}(X) \text{ Lindelöf cofinally } \Sigma \\ \Longleftrightarrow \quad X \text{ countable.} \end{array}$

Thank You!