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Tukey Order

Definition
Let D and E be directed posets:

@ v : D — E Tukey map iff 1) maps unbounded sets to unbounded sets;

@ ¢: E — D cofinal map iff ¢ maps cofinal sets to cofinal sets.
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Tukey Order

Definition
Let D and E be directed posets:

@ v : D — E Tukey map iff 1) maps unbounded sets to unbounded sets;

@ ¢: E — D cofinal map iff ¢ maps cofinal sets to cofinal sets.

Lemma (Tukey)
3 Tukey map D — E <= d cofinal map E — D.
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Tukey Order

Definition
Let D and E be directed posets:

@ v : D — E Tukey map iff 1) maps unbounded sets to unbounded sets;

@ ¢: E — D cofinal map iff ¢ maps cofinal sets to cofinal sets.

Lemma (Tukey)
3 Tukey map D — E <= d cofinal map E — D.

- Write: E >+ D.
- Say: E Tukey-dominates D.
- > is a partial order.
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First introduced by Tukey to deal with convergence via nets.
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Tukey Order — Background

First introduced by Tukey to deal with convergence via nets.

Theorem (Todorcevic)

Consistent with MA: there are 5 Tukey classes of size < Ny

1, w, w;, wXwy, [wi]¥.
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First introduced by Tukey to deal with convergence via nets.

Theorem (Todorcevic)
Consistent with MA: there are 5 Tukey classes of size < Ny

1, w, w;, wXwy, [wi]¥.

Theorem (Todorcevic)
(CH) There are 2%t Tukey classes of size < Ni.
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NULL - Lebesgue measure zero subsets of [0, 1].
MGR - meagre subsets of NV
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App(lziila”:izs Cardinals
Tukey Order — Background
NULL - Lebesgue measure zero subsets of [0, 1].
MGR - meagre subsets of NV

Theorem (Fremlin)
NULL >7 MGR
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Tukey Order

Calibers Examples and background

Application Cardinals
Tukey Order — Background
NULL - Lebesgue measure zero subsets of [0, 1].
MGR - meagre subsets of NV

Theorem (Fremlin)
NULL >7 MGR

add(NULL) < add(MGR)
cof(NULL) > cof(MGR)
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For a space X, K£(X) = {K C X : K is compact }



For a space X, K£(X) = {K C X : K is compact }

D = (K(X), <)
E = (K(M),C), M separable and metric.



Tuke()éa(ﬁ’::z Examples and background

Aeplieston Cardinals

(K(X), <)

For a space X, K(X) ={K C X : K is compact }

D = (K(X), <)
E = (K(M),C), M separable and metric.

Write IC(M) >1 K(X) instead of (K(M),C) > (K(X), Q).
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(K(X), <)

For a space X, K(X) ={K C X : K is compact }

D = (K(X), <)
E = (K(M),C), M separable and metric.

Write IC(M) >1 K(X) instead of (K(M),C) > (K(X), Q).
Lemma

K(M) >1 KC(X) iff there is cofinal and order preserving
¢ (K(M), ) = (K(X), ).
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What if X is a cardinal with order topology?



What if X is a cardinal with order topology?

K(M) 271 K(k) < K(M)>T1 k. l
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Cardinals

What if X is a cardinal with order topology?

Lemma
KM)>1 K(k) <= K(M)>71&.

Lemma
KM)>1k <<= K(M)>71 cof(k).

Consider only regular uncountable cardinals.
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Apliesifen Cardinals

Cardinals
What if X is a cardinal with order topology?

Lemma
KM)>1 K(k) <= K(M)>71&.

Lemma
KM)>1k <<= K(M)>71 cof(k).

Consider only regular uncountable cardinals.

Lemma
If K(M) >71 K and k is regular, then k < c.
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Q: For which cardinals do we have (M) >t k for some M?



Q: For which cardinals do we have (M) >t k for some M?
A: For all k <¢:



Tuley Qrder Examples and background
Calibers o
S Cardinals
Application

Cardinals continued...

Q: For which cardinals do we have IC(M) >  for some M?
A: Forallk <

B C R Bernstein set iff ¥V compact uncountable C C R,
CNB#0#R\CNB
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Cardinals continued...

Q: For which cardinals do we have IC(M) >  for some M?
A: Forallk <

B C R Bernstein set iff ¥V compact uncountable C C R,
CNB#0#R\CNB

Let B be Bernstein set of size ¢, B = {x, : o < c}.
Let By = {x» : @ < K}.
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Cardinals continued...

Q: For which cardinals do we have IC(M) >  for some M?
A: Forallk <

B C R Bernstein set iff ¥V compact uncountable C C R,
CNB#0#R\CNB

Let B be Bernstein set of size ¢, B = {x, : o < c}.
Let By = {x» : @ < K}.

Lemma
’C(BH) ZT K.

¢ : K(B.) — k defined by ¢(K) = sup{c : xo € K} works.
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Cardinals continued...

Q: For which cardinals do we have IC(M) >  for some M?
A: Forallk <

B C R Bernstein set iff ¥V compact uncountable C C R,
CNB#0#R\CNB

Let B be Bernstein set of size ¢, B = {x, : o < c}.
Let By = {x» : @ < K}.

Lemma
’C(BH) ZT K.

¢ : K(B.) — k defined by ¢(K) = sup{c : xo € K} works.

We can also arrange for all K£(B,;) >1 wi.
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Spec(M) = set of all regular uncountable cardinals s.t. (M) >7 k. l




Spec(M) = set of all regular uncountable cardinals s.t. (M) >7 k. l

Example: w1,k € Spec(By).



o b € Spec(NY)
e 0 € Spec(NY)



o b € Spec(NY)
e 0 € Spec(NY)
o Spec(NN) C [b, cof (d)]™8
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Spec(NY)

b € Spec(NV)
2 € Spec(NY)
Spec(NY) C [b, cof (0)]"€

consistently Spec(NY) = {wy,wo,ws}

consistently Spec(NY) = {wy, w3}

Ana Mamatelashvili Tukey Domination



Tukey Order
Calibers
Application

Examples and background
Cardinals

Spec(NY)

b € Spec(NV)
2 € Spec(NY)
Spec(NY) C [b, cof (0)]"€

consistently Spec(NY) = {wy,wo,ws}

consistently Spec(NY) = {wy, w3}

Spec(Q) = {w1}U Spec(N")
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Spec(NY)

b € Spec(NV)
2 € Spec(NY)
Spec(NY) C [b, cof (0)]"€

consistently Spec(NY) = {wy,wo,ws}

consistently Spec(NY) = {wy, w3}

Spec(Q) = {w1}U Spec(N")

Q: What are possible consistent versions of Spec(NY)?
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Caliber k —  k-sized subsets have k-sized bounded subsets. l




Caliber k —  k-sized subsets have k-sized bounded subsets. l

Caliber — internal
>7r — relative
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Calibers
Application
Calibers
Definition
Caliber k —  k-sized subsets have k-sized bounded subsets.
Caliber — internal
>T — relative
Lemma

IC(M) does not have caliber = K(M) >1 k.
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Calibers
Definition
Caliber k —  k-sized subsets have k-sized bounded subsets.
Caliber — internal
>T — relative
Lemma

IC(M) does not have caliber = K(M) >1 k.

Lemma

IC(NN) has caliber w1 <= w1 <b.
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Calibers — general

Definition
A poset P has caliber (6, \, k) iff any S C P of size 6 can be refined to S’
of size A so that any S” C S’ of size k is bounded in P.
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Calibers — general

Definition

A poset P has caliber (6, \, k) iff any S C P of size 6 can be refined to S’
of size A so that any S” C S’ of size k is bounded in P.

Lemma

If E>1 D and E has caliber (0, \, k), then so does D.
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Calibers — general

Definition
A poset P has caliber (6, \, k) iff any S C P of size 6 can be refined to S’
of size A so that any S” C S’ of size k is bounded in P.

Lemma
If E>1 D and E has caliber (0, \, k), then so does D.

Lemma (caliber (wq,w,w))
For any M, (M) has caliber (w1, w,w).
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Cp(X)
More topological version

Go(X)

Let X be Tychonoff. Then C,(X) is the set of all continuous real-valued
funtions on X with pointwise convergence topology.
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Co(X)

Let X be Tychonoff. Then C,(X) is the set of all continuous real-valued
funtions on X with pointwise convergence topology.

K(M) >1 K(Cp(X)) extensively studied by Cascales, Orihuela, Tkachuk.

Reconciling terminology:
- "KK(M) =7 K(Y)" corresponds to "Y is M-strongly dominated".
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Calibers Gp(X)

Apliezifen More topological version

Cp(X) = COT theorems

Theorem (Tkachuk)
If K(NN) > K(Cp(X)) then X is countable and discrete.

Theorem (Cascales, Orihuela, Tkachuk)
Under CH, if X is compact and KC(M) >1 K(Cp(X)), then X is countable.
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Cp(X) = COT theorems

Gp(X) _ _
More topological version

Theorem (Tkachuk)
If K(NN) >1 K(Cp(X)) then X is countable and discrete.

Theorem (Cascales, Orihuela, Tkachuk)
Under CH, if X is compact and KC(M) >1 K(Cp(X)), then X is countable.

v

Question (COT): Is it true in ZFC that if X is compact and
IK(M) >1 K(Cp(X)), then X is countable?
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Cp(X) ; :
More topological version

Theorem (Tkachuk)
If K(NN) >1 K(Cp(X)) then X is countable and discrete.

Theorem (Cascales, Orihuela, Tkachuk)
Under CH, if X is compact and KC(M) >1 K(Cp(X)), then X is countable.

Question (COT): Is it true in ZFC that if X is compact and
IK(M) >1 K(Cp(X)), then X is countable?
Lemma (COT)

Suppose X is compact and IC(M) > 1 IC(Cp(X)). If X is not countable
then ¥,(R") is closely embedded into C,(X) for some uncountable x and
therefore IC(M) >1 KC(X.(R")).
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In ZFC, if X is compact and K(M) >1 K(Cp(X)), then X is countable. '
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Gp(X) _ _
More topological version

“Yes” to Q (COT)

Theorem
In ZFC, if X is compact and KK(M) >1 K(Cp(X)), then X is countable.

Proof.

Suppose not and X is uncountable.
Then by the last lemma (M) >7 K(X.(R")).
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“Yes” to Q (COT)

Theorem
In ZFC, if X is compact and KK(M) >1 K(Cp(X)), then X is countable.

Proof.

Suppose not and X is uncountable.
Then by the last lemma (M) >7 K(X.(R")).

We know that (M) has caliber(wy,w,w),
so K(X.(R")) should also have caliber(w1,w,w).

Ana Mamatelashvili Tukey Domination




Tukey Order
Calibers
Application

Cp(X) ; :
More topological version

“Yes” to Q (COT)

Theorem
In ZFC, if X is compact and KK(M) >1 K(Cp(X)), then X is countable.

Proof.

Suppose not and X is uncountable.
Then by the last lemma (M) >7 K(X.(R")).

We know that (M) has caliber(wy,w,w),
so K(X.(R")) should also have caliber(w1,w,w).

But it does not: we can assume Kk = w; and construct an uncountable
collection of compact sets in X (R“?) so that no countable subcollection is

contained in a compact set of R“1, O
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Y Lindelof ¥ <«
countable network A modulo
compact cover C.
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More topological version

Y Lindelof cofinally ¥ <=
countable network N' modulo
compact cover C that is cofinal

in K(Y).

Y Lindelof ¥ <=
countable network A/ modulo

compact cover C.
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Application poiog

More topological version

Y Lindelof ¥ <=
countable network A/ modulo
compact cover C.

Y Lindelof cofinally ¥ <=
countable network N' modulo
compact cover C that is cofinal

in K(Y).

Cp(X) Lindelof cofinally X
= K(M)>1 K(Cp(X)).
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ox)
More topological version

More topological version

Y Lindelof ¥ <= Y Lindelof cofinally ¥ <=

countable network N' modulo countable network N' modulo

compact cover C. compact cover C that is cofinal
in K(Y).

Cp(X) Lindelof cofinally X
= K(M)>1 K(Cp(X)).

X compact:
Cp(X) Lindelof cofinally X
<= X countable.
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More topological version

Y Lindelof ¥ <«—
countable network N' modulo
compact cover C.

X compact:
Cp(X) Lindelof X
<= X Gul'ko compact.
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More topological version

Y Lindelof cofinally ¥ <=
countable network N modulo
compact cover C that is cofinal

in C(Y).

Cp(X) Lindelof cofinally X
=  K(M) >1 K(Cp(X)).

X compact:
Cp(X) Lindelof cofinally X
<= X countable.
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