Reflection theorems for cardinal functions and cardinal arithmetic

Alberto Marcelino Efigênio Levi alberto@ime.usp.br

IME-USP

12/08/2013

Alberto M. E. Levi (IME-USP)

Reflection for cardinal functions

12/08/2013 1 / 19

- Reflection of a topological property *P*: if *P* is satisfied by *X*, then *P* is satisfied by some "small" subspace of *X*.
- "Small" subspaces: cardinality, first category, closure of discrete subspaces.

Let ϕ be a cardinal function, κ an infinite cardinal and S a class of topological spaces.

Definition (ϕ reflects κ for the class S)

If $X \in S$ and $\phi(X) \ge \kappa$, then there exists $Y \subset X$ with $|Y| \le \kappa$ and $\phi(Y) \ge \kappa$.

If S is the class of all topological spaces, then we can say that " ϕ reflects κ ".

In the above definition, the "small" subspaces are those of cardinality $\leq \kappa$. If $S = \{X\}$, then we will say " ϕ reflects κ for X".

Theorem (Hajnal and Juhász, 1980)

w reflects all infinite cardinals.

In particular, w reflects ω_1 : if all subspaces of X of cardinality $\leq \omega_1$ are second-countable, then X is second-countable.

Definition

The Lindelöf degree of a space X(L(X)) is the least infinite cardinal κ for which every open cover of X has a subcover of cardinality $\leq \kappa$.

Definition

The linear Lindelöf degree of a space X (II(X)) is the least infinite cardinal κ for which every increasing open cover of X has a subcover of cardinality $\leq \kappa$.

A space X is linearly Lindelöf if and only if $II(X) = \omega$.

< □ > < □ > < □ > < □ >

Definition

The Lindelöf degree of a space X(L(X)) is the least infinite cardinal κ for which every open cover of X has a subcover of cardinality $\leq \kappa$.

Definition

The linear Lindelöf degree of a space X (II(X)) is the least infinite cardinal κ for which every increasing open cover of X has a subcover of cardinality $\leq \kappa$.

A space X is linearly Lindelöf if and only if $II(X) = \omega$.

Theorem (Hodel and Vaughan, 2000)

- L reflects every successor cardinal;
- L reflects every singular strong limit cardinal for the class of Hausdorff spaces;
- (GCH + there are no inaccessible cardinals) L reflects all infinite cardinals for the class of Hausdorff spaces.

Problem

Does L reflect the (strongly or weakly) inaccessible cardinals?

Theorem (Hodel and Vaughan, 2000)

- L reflects every successor cardinal;
- L reflects every singular strong limit cardinal for the class of Hausdorff spaces;
- (GCH + there are no inaccessible cardinals) L reflects all infinite cardinals for the class of Hausdorff spaces.

Problem

Does L reflect the (strongly or weakly) inaccessible cardinals?

An alternative definition for L

Definition

Given an open cover C of a space X, define $m(C) := \min \{ |S| : S \text{ is a subcover of } C \}.$

Definition

$$IS(X) := \{m(C) : C \text{ is an open cover of } X\}.$$

Theorem

•
$$L(X) = \omega + \sup IS(X);$$

• $II(X) = \omega + \sup (IS(X) \cap REG).$

イロト イヨト イヨト

An alternative definition for L

Definition

Given an open cover C of a space X, define $m(C) := \min \{ |S| : S \text{ is a subcover of } C \}.$

Definition

$$IS(X) := \{m(C) : C \text{ is an open cover of } X\}.$$

Theorem

•
$$L(X) = \omega + \sup IS(X);$$

• $II(X) = \omega + \sup (IS(X) \cap REG)$

Alberto M. E. Levi (IME-USP)

Image: Image:

• = • • =

Definition (Abraham and Magidor, 2010)

Given cardinals μ , η and λ , with $\mu \ge \eta \ge \lambda \ge \omega$, $cov(\mu, \eta, \lambda)$ is the least cardinality of a $X \subset [\mu]^{<\eta}$ such that, for every $a \in [\mu]^{<\lambda}$, there is a $b \in X$ with $a \subset b$.

Theorem

Let X be a topological space, and κ be a weakly inaccessible cardinal. L reflects κ for X, if for every infinite cardinal $\lambda < \kappa$, there is some $\mu \in IS(X)$, with $\mu > \lambda$, such that $cov(\mu, \mu, \lambda^+) \leq \kappa$.

Definition (Abraham and Magidor, 2010)

Given cardinals μ , η and λ , with $\mu \ge \eta \ge \lambda \ge \omega$, $cov(\mu, \eta, \lambda)$ is the least cardinality of a $X \subset [\mu]^{<\eta}$ such that, for every $a \in [\mu]^{<\lambda}$, there is a $b \in X$ with $a \subset b$.

Theorem

Let X be a topological space, and κ be a weakly inaccessible cardinal. L reflects κ for X, if for every infinite cardinal $\lambda < \kappa$, there is some $\mu \in IS(X)$, with $\mu > \lambda$, such that $cov(\mu, \mu, \lambda^+) \leq \kappa$.

Strongly inaccessible cardinals

Corollary

L reflects every strongly inaccessible cardinal.

$$\mathsf{Proof:} \ \textit{cov} \ \bigl(\mu,\mu,\lambda^+\bigr) \leq \textit{cov} \ \bigl(\mu,\lambda^+,\lambda^+\bigr) \leq \mu^\lambda \leq \kappa.$$

Theorem (Hodel and Vaughan, 2000)

 L reflects every singular strong limit cardinal for the class of Hausdorff spaces;

(GCH + there are no inaccessible cardinals) L reflects all infinite cardinals for the class of Hausdorff spaces.

Theorem

L reflects every strong limit cardinal for the class of Hausdorff spaces;
(GCH) L reflects all infinite cardinals for the class of Hausdorff spaces.

Strongly inaccessible cardinals

Corollary

L reflects every strongly inaccessible cardinal.

$$\mathsf{Proof:} \ \textit{cov} \ \bigl(\mu,\mu,\lambda^+\bigr) \leq \textit{cov} \ \bigl(\mu,\lambda^+,\lambda^+\bigr) \leq \mu^\lambda \leq \kappa.$$

Theorem (Hodel and Vaughan, 2000)

- L reflects every singular strong limit cardinal for the class of Hausdorff spaces;
- (GCH + there are no inaccessible cardinals) L reflects all infinite cardinals for the class of Hausdorff spaces.

Theorem

1 *L* reflects every strong limit cardinal for the class of Hausdorff spaces;

(GCH) L reflects all infinite cardinals for the class of Hausdorff spaces.

Alberto M. E. Levi (IME-USP)

Reflection for cardinal functions

Under GCH, L reflects every weakly inaccessible cardinal.

Definition (wH)

For every weakly inaccessible cardinal κ and every infinite cardinal $\lambda<\kappa,$ $|\Theta_{\lambda,\kappa}|<\kappa,$ where

$$\Theta_{\lambda,\kappa} = \left\{ \mu \in CARD : \lambda < \mu < \kappa, \operatorname{cov}(\mu, \mu, \lambda^+) > \kappa \right\}.$$

Under wH, *L* reflects every weakly inaccessible cardinal. wH follows from GCH, and we will see that the negation of wH (if consistent with ZFC) requires large cardinals. Weakly inaccessible cardinals - the combinatorial condition

Under GCH, L reflects every weakly inaccessible cardinal.

Definition (wH)

For every weakly inaccessible cardinal κ and every infinite cardinal $\lambda < \kappa$, $|\Theta_{\lambda,\kappa}| < \kappa$, where

$$\Theta_{\lambda,\kappa} = \left\{ \mu \in CARD : \lambda < \mu < \kappa, \operatorname{cov}(\mu, \mu, \lambda^+) > \kappa \right\}.$$

Under wH, L reflects every weakly inaccessible cardinal. wH follows from GCH, and we will see that the negation of wH (if consistent with ZFC) requires large cardinals. Denote by *FIX* the class of all infinite cardinals that are fixed points of the aleph function $(\aleph_{\kappa} = \kappa)$. If κ is a weakly inaccessible cardinal, then $\kappa \in FIX$ and $|\kappa \cap FIX| = \kappa$. By PCF Theory (Shelah), cardinal arithmetic is relatively "well-behaved" for cardinals that are not fixed points:

Lemma (easily follows from other results of the PCF Theory)

If \aleph_{δ} is a singular cardinal such that $\delta < \aleph_{\delta}$, then cov $(\aleph_{\delta}, \aleph_{\delta}, \lambda) < \aleph_{|\delta|^{++++}}$ for any $\lambda < \aleph_{\delta}$. Denote by *FIX* the class of all infinite cardinals that are fixed points of the aleph function $(\aleph_{\kappa} = \kappa)$.

If κ is a weakly inaccessible cardinal, then $\kappa \in FIX$ and $|\kappa \cap FIX| = \kappa$. By PCF Theory (Shelah), cardinal arithmetic is relatively "well-behaved" for cardinals that are not fixed points:

Lemma (easily follows from other results of the PCF Theory)

If \aleph_{δ} is a singular cardinal such that $\delta < \aleph_{\delta}$, then cov $(\aleph_{\delta}, \aleph_{\delta}, \lambda) < \aleph_{|\delta|^{++++}}$ for any $\lambda < \aleph_{\delta}$.

Weakly inaccessible cardinals - fixed points

Theorem

 $\Theta_{\lambda,\kappa} \subset FIX \setminus REG.$

Corollary

If X is a consistent counterexample (reflection for L and a inaccessible cardinal), then "almost all" elements of IS(X) are singular fixed points.

Corollary

If X is a consistent counterexample, then II(X) < L(X).

Reflection theorems for L (Lindelöf degree) Hypothesis from PCF Theory

Definition (SSH (Shelah's strong hypothesis))

For all singular cardinals μ , $pp(\mu) = \mu^+$.

Definition (SWH (Shelah's weak hypothesis))

For every infinite cardinal κ , $|\{\mu < \kappa : cf(\mu) < \mu, pp(\mu) \ge \kappa\}| \le \aleph_0$.

SSH implies SWH and SCH (Singular Cardinal Hypothesis). SSH is implied by GCH, and also by $"0^{\ddagger}$ does not exist".

SSH and covering numbers

Theorem (Shelah)

SSH is equivalent to the following: given cardinals μ and λ , with $\mu \geq \lambda = cf(\lambda) \geq \aleph_1$,

• cov
$$(\mu, \lambda, \lambda) = \mu$$
 if cf $(\mu) \ge \lambda$;

• cov
$$(\mu, \lambda, \lambda) = \mu^+$$
, otherwise.

Theorem

SSH implies wH (because $\Theta_{\lambda,\kappa} = \emptyset$ under SSH).

To have any $\Theta_{\lambda,\kappa} \neq \emptyset$, we need "0[#] exists".

→ ∃ →

SSH and covering numbers

Theorem (Shelah)

SSH is equivalent to the following: given cardinals μ and λ , with $\mu \geq \lambda = cf(\lambda) \geq \aleph_1$,

• cov
$$(\mu, \lambda, \lambda) = \mu$$
 if cf $(\mu) \ge \lambda$;

• cov
$$(\mu,\lambda,\lambda)=\mu^+$$
, otherwise.

Theorem

SSH implies wH (because $\Theta_{\lambda,\kappa} = \emptyset$ under SSH).

To have any $\Theta_{\lambda,\kappa} \neq \emptyset$, we need "0[#] exists".

Lemma (follows from other results of Shelah)

If μ is a singular strong limit cardinal, then $2^{\mu} = cov \left(\mu, \mu, (cf(\mu))^+\right)$.

Theorem (Gitik, 2005)

Let μ be the first fixed point of the aleph function:

$$\mu = \mathsf{sup}\left\{ leph_{0}, leph_{leph_{0}}, leph_{leph_{leph_{0}}}, \ldots
ight\}$$
 .

Assuming some large cardinals, we can have GCH below $\mu,$ and 2^{μ} arbitrarily large.

Corollary

Let κ be a weakly inaccessible cardinal, and $\lambda < \mu$. It is consistent (assuming large cardinals) that $\mu \in \Theta_{\lambda,\kappa}$.

Alberto M. E. Levi (IME-USP)

Reflection for cardinal functions

Lemma (follows from other results of Shelah)

If μ is a singular strong limit cardinal, then $2^{\mu} = cov \left(\mu, \mu, (cf(\mu))^+\right)$.

Theorem (Gitik, 2005)

Let μ be the first fixed point of the aleph function:

$$\mu = \mathsf{sup}\left\{ leph_{0}, leph_{leph_{0}}, leph_{leph_{leph_{0}}}, \ldots
ight\}$$
 .

Assuming some large cardinals, we can have GCH below $\mu,$ and 2^{μ} arbitrarily large.

Corollary

Let κ be a weakly inaccessible cardinal, and $\lambda < \mu$. It is consistent (assuming large cardinals) that $\mu \in \Theta_{\lambda,\kappa}$.

Alberto M. E. Levi (IME-USP)

Reflection for cardinal functions

Definition (SWH $_{\lambda}$)

For every infinite cardinal κ , $|\{\mu < \kappa : cf(\mu) < \mu, pp(\mu) \ge \kappa\}| \le \lambda$.

Theorem (Gitik 2013)

The negation of SWH (SWH_{\aleph_0}) is consistent with ZFC.

In the same paper, there is a problem that can be expressed in this way:

Problem

Is the negation of SWH_{λ} consistent with ZFC, when $\lambda > \aleph_0$?

- 4 回 ト 4 回 ト 4

Definition (SWH_{λ})

For every infinite cardinal κ , $|\{\mu < \kappa : cf(\mu) < \mu, pp(\mu) \ge \kappa\}| \le \lambda$.

Theorem (Gitik 2013)

The negation of SWH (SWH_{\aleph_0}) is consistent with ZFC.

In the same paper, there is a problem that can be expressed in this way:

Problem

Is the negation of SWH_{λ} consistent with ZFC, when $\lambda > \aleph_0$?

- 本間 と 本語 と 本語 と

Reflection theorems for L (Lindelöf degree) "cov vs pp" problem

Theorem (Shelah)

$$pp(\mu) \leq cov(\mu, \mu, (cf(\mu))^+)$$
 for every singular cardinal μ ; and $pp(\mu) = cov(\mu, \mu, (cf(\mu))^+)$ if μ is not a fixed point.

Problem (Shelah)

$$pp(\mu) = cov(\mu, \mu, (cf(\mu))^+)$$
 for every singular cardinal μ ?

< ∃ >

Reflection theorems for L (Lindelöf degree) $_{\text{SWH and wH}}$

Definition (SWH_{cov, λ})

For every infinite cardinal κ ,

$$\left\{\mu < \kappa : \textit{cf} \ (\mu) < \mu, \textit{cov} \ \left(\mu, \mu, (\textit{cf} \ (\mu))^+\right) \geq \kappa\right\} \right| \leq \lambda.$$

For every λ , SSH \Rightarrow SWH_{cov, λ} \Rightarrow SWH_{λ}. SWH_{cov, λ} and SWH_{λ} may be equivalent.

Theorem

SWH_{cov, λ} implies wH for every λ smaller than the first weakly inaccessible cardinal.

Considering the problems above, SWH_{cov, λ} may be a theorem in ZFC for $\lambda > \aleph_0$.

イロト イ理ト イヨト イヨト

Reflection theorems for L (Lindelöf degree) $_{\text{SWH and wH}}$

Definition (SWH_{cov, λ})

For every infinite cardinal κ ,

$$\left\{\mu < \kappa : \textit{cf} \ (\mu) < \mu, \textit{cov} \ \Big(\mu, \mu, (\textit{cf} \ (\mu))^+\Big) \geq \kappa\right\} \Big| \leq \lambda.$$

For every λ , SSH \Rightarrow SWH_{cov, λ} \Rightarrow SWH_{λ}. SWH_{cov, λ} and SWH_{λ} may be equivalent.

Theorem

 $SWH_{cov,\lambda}$ implies wH for every λ smaller than the first weakly inaccessible cardinal.

Considering the problems above, $SWH_{cov,\lambda}$ may be a theorem in ZFC for $\lambda>\aleph_0.$

References

- U. Abraham e M. Magidor, Cardinal Arithmetic, Handbook of Set Theory, Springer, 2010, 1149-1227.
- F. W. Eckertson, Images of not Lindelöf spaces and their squares, Topology and its Applications 62 (1995), 255-261.
- M. Gitik, No bound for the first fixed point, Journal of Mathematical Logic 5 (2005), 193-246.
- M. Gitik, Short Extenders Forcings II (2013).
- R. E. Hodel e J. E. Vaughan, Reflection theorems for cardinal functions, Topology and its Applications 100 (2000), 47-66.
- P. Matet, Large cardinals and covering numbers, Fundamenta Mathematicae 205 (2009), 45-75.
- S. Shelah, Cardinal Arithmetic for skeptics, Bulletin of the American Mathematical Society 26 (1992), 197-210.
- S. Shelah. Cardinal Arithmetic, volume 29 of Oxford Logic Guides. Oxford University Press, New York, 1994.

Alberto M. E. Levi (IME-USP)

12/08/2013 19 / 19