Brazilian Conference on

General Topology and Set Theory – STW 2013 Sao Sebastiao, Brazil August 12–16, 2013

On some Lindelöf-like properties

Ljubiša D.R. Kočinac Serbia

lkocinac@gmail.com

(A part with S. Özçağ)

1. Introduction

- S a set. $\mathfrak{S} \subseteq \mathcal{P}(S)$ is a **texturing** of S (and S is said to be textured by \mathfrak{S}) if
- (1) $(\mathfrak{S}, \subseteq)$ is a complete lattice containing Sand \emptyset , and $\bigwedge_{j \in J} A_j = \bigcap_{j \in J} A_j$, $(A_j \in \mathfrak{S}, j \in J)$

 $\bigvee_{j\in J} A_j = \bigcup_{j\in J} A_j$, $(A_j \in \mathfrak{S}, j \in J)$ for all finite J.

- (2) \mathfrak{S} is completely distributive.
- (3) \mathfrak{S} separates the points of S (i.e. given $s_1 \neq s_2$ in S there is $A \in \mathfrak{S}$ containing only one of these two points).

We call (S, \mathfrak{S}) a **texture space** (M. Brown, 1980)

- In a texture, arbitrary joins need not coincide with unions, and clearly this will be so if and only if S is closed under arbitrary unions. In this case (S,S) is said to be plain.
- A mapping σ : S → S satisfying σ(σ(A)) = A, ∀A ∈ S and A ⊆ B ⇒ σ(B) ⊆ σ(A), ∀A, B ∈ S is called a complementation on (S,S) and (S,S,σ) is then said to be a complemented texture.

Examples

- 1. For any set X, $(X, \mathcal{P}(X), \pi_X)$ is the complemented discrete texture representing the usual set structure of X. Here the complementation $\pi_X(Y) = X \setminus Y$, $Y \subseteq X$, is the usual set complementation.
- 2. For I = [0, 1] define $\mathfrak{I} = \{[0, t] \mid t \in [0, 1]\} \cup \{[0, t) \mid t \in [0, 1]\}$. (I, \mathfrak{I}, ι) is a complemented texture, called the *unit interval texture*.
- 3. The texture (L, \mathfrak{L}) is defined by L = (0, 1]and $\mathfrak{L} = \{(0, r] \mid r \in [0, 1]\}.$

Two classical selection principles

 \mathcal{A} and \mathcal{B} – sets of families of subsets of an infinite set X.

 $S_{fin}(\mathcal{A},\mathcal{B})$:

For each sequence $(A_n : n \in \mathbb{N})$ in \mathcal{A} there is a sequence $(B_n : n \in \mathbb{N})$ of finite sets such that for each $n, B_n \subset A_n$, and $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B}$.

 $S_1(\mathcal{A},\mathcal{B})$:

For each sequence $(A_n : n \in \mathbb{N})$ in \mathcal{A} there is a sequence $(b_n : n \in \mathbb{N})$ such that for each n, $b_n \in A_n$, and $\{b_n : n \in \mathbb{N}\}$ is an element of \mathcal{B} .

Game Theory

 $G_{fin}(\mathcal{A}, \mathcal{B})$: in the *n*-th round ONE chooses a set $A_n \in \mathcal{A}$; TWO responds by a finite $B_n \subset$ A_n . The play $(A_1, B_1, \dots, A_n, B_n, \dots)$ is won by TWO if and only if $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B}$.

 $G_1(\mathcal{A}, \mathcal{B})$: in the *n*-th round ONE chooses a set $A_n \in \mathcal{A}$, and TWO $b_n \in A_n$. TWO wins a play $(A_1, b_1; \dots; A_n, b_n; \dots)$ if $\{b_n : n \in \mathbb{N}\} \in \mathcal{B}$; otherwise, ONE wins.

2. Selection properties of texture spaces

Let (S, \mathfrak{S}) be a texture. A subset \mathcal{C} of \mathfrak{S} is said to be a **cover** of a set $A \subset S$ if $A \subset \bigvee \mathcal{C}$; if $\bigvee \mathcal{C} = S$, then \mathcal{C} is said to be a cover of S. By \mathbb{C} (or \mathbb{C}_S when it is necessary) we denote the family of all covers of S.

Definition. A texture space (S, \mathfrak{S}) is said to be **Menger** (**Rothberger**) if S satisfies the selection property $S_{fin}(\mathbb{C}, \mathbb{C})$ ($S_1(\mathbb{C}, \mathbb{C})$).

Textures having the Menger property satisfies: each cover of S has a countable subcover. This property will be called the **Lindelöf property**. For this reason we assume that all covers of a texture are countable. (S, \mathfrak{S}) is a texture iff (S, \mathfrak{S}^c) is a *C*-space $(T_0$ topological space with a completely distributive lattice of open sets)

Proposition. (S, \mathfrak{S}) has the Menger property implies that the topological space (S, \mathfrak{S}^c) has the weak Menger property.

For a texture (S, \mathfrak{S}) the symbol \mathbb{C}_{Ω} denotes the collection of all covers \mathcal{C} of S with the property:

For each k and each partition $C = C_1 \cup \cdots \cup C_k$ there is an $i \leq k$ with $C_i \in \mathbb{C}$.

Theorem The following are equivalent in a texture space (S, \mathfrak{S}) :

- (1) $S_{fin}(\mathbb{C},\mathbb{C})$ holds;
- (2) $S_{fin}(\mathbb{C}_{\Omega},\mathbb{C})$ holds.

Theorem. For a texture space (S, \mathfrak{S}) TFAE:

- (1) S has the Menger property $S_{fin}(\mathbb{C},\mathbb{C})$;
- (2) ONE does not have a winning strategy in the game $G_{fin}(\mathbb{C},\mathbb{C})$ on S.

Ramsey theoretic approach

Recall the following notion in Ramsey theory, called the *Baumgartner-Taylor partition relation*. For each positive integer k,

$$\mathcal{A} \to \lceil \mathcal{B} \rceil_k^2$$

denotes the following statement:

For each A in A and for each function $f : [A]^2 \rightarrow \{1, \dots, k\}$ there are a set $B \in \mathcal{B}$ with $B \subset A$, a $j \in \{1, \dots, k\}$, and a partition $B = \bigcup_{n < \infty} B_n$ of B into pairwise disjoint finite sets such that for each $\{a, b\} \in [B]^2$ for which a and b are not from the same B_n , we have $f(\{a, b\}) = j$.

Call a texture space $(S, \mathfrak{S}) \omega$ -Lindelöf if each $\mathcal{C} \in \mathbb{C}_{\Omega}$ has a countable $\mathcal{C}' \subset \mathcal{C}$ with $\mathcal{C}' \in \mathbb{C}_{\Omega}$.

Theorem. Let (S, \mathfrak{S}) be an ω -Lindelöf texture space. Then $(1) \Rightarrow (2)$ below:

- (1) ONE has no winning strategy in the game $\mathsf{G}_{fin}(\mathbb{C}_\Omega,\mathbb{C})$
- (2) For each $k \in \mathbb{N}$ the partition relation $\mathbb{C}_{\Omega} \to [\mathbb{C}]_k^2$ holds.

A texture space (S, \mathfrak{S}) is said to have the **dual-Menger property** if for each sequence $(\mathcal{K}_n : n \in \mathbb{N})$ such that for each $n, \mathcal{K}_n \subset \mathfrak{S}$ and $\bigcap_{n \in \mathbb{N}} \mathcal{K}_n = \emptyset$, there is a sequence $(\mathcal{F}_n : n \in \mathbb{N})$ satisfying: (1) for each n, \mathcal{F}_n is a finite subset of \mathcal{K}_n and (2) $\bigcap_{n \in \mathbb{N}} \bigcap \{F : F \in \mathcal{F}_n\} = \emptyset$.

The **dual-Rothberger property** is defined similarly. **Proposition.** For a texture (S, \mathfrak{S}) the following statements are equivalent:

- (1) (S, \mathfrak{S}) has the dual-Menger property;
- (2) (S, \mathfrak{S}^c) has the Menger property.
- (3) For each sequence $(\mathcal{T}_n : n \in \mathbb{N})$ such that $\mathcal{T}_n \subset \mathfrak{S}$ and $S = \bigvee \{T : T \in \mathcal{T}_n\}, n \in \mathbb{N}$, there is a sequence $(\Phi_n : n \in \mathbb{N})$ such that (1) for each n, Φ_n is a finite subset of \mathcal{T}_n , and (2) for each $A \in \mathfrak{S}$ there is $B \in \bigcup_{n \in \mathbb{N}} \Phi_n$ with $B \cap (S \setminus A) \neq \emptyset$.

3. Selection properties of ditopological texture spaces

A dichotomous topology on (S, \mathfrak{S}) , or **ditopology** for short, is a pair (τ, κ) of generally unrelated subsets τ , κ of \mathfrak{S} satisfying

- (au_1) $S, \emptyset \in au$,
- $(\tau_2) \quad G_1, \, G_2 \in \tau \Rightarrow G_1 \cap G_2 \in \tau,$
- $(\tau_3) \quad G_i \in \tau, \ i \in I \Rightarrow \bigvee_i G_i \in \tau,$
- (κ_1) $S, \emptyset \in \kappa$,
- (κ_2) $K_1, K_2 \in \kappa \Rightarrow K_1 \cup K_2 \in \kappa$,
- (κ_3) $K_i \in \kappa, i \in I \Rightarrow \bigcap K_i \in \kappa.$

 $(S, \mathfrak{S}, \tau, \kappa)$: Ditopological texture space.

Let (τ, κ) be a ditopology on (S, \mathfrak{S}) and take $A \in \mathfrak{S}$. The set $\{G_i \mid i \in I\}$ is called an **open cover** of A if $G_i \in \tau$ for all $i \in I$ and $A \subseteq \bigvee_{i \in I} G_i$.

The family $\{F_i \mid i \in I\}$ is called **closed cocover** of A if $F_i \in \kappa$ for all $i \in I$ and $\bigcap_{i \in I} F_i \subseteq A$.

Dicompactness

Let (τ, κ) be a ditopology on the texture (S, \mathfrak{S}) and $A \in \mathfrak{S}$.

1. A is called **compact** if whenever $\{G_i \mid i \in I\}$ is an open cover of A then there is a finite subset J of I with $A \subseteq \bigcup_{j \in J} G_j$. The ditopological texture space $(S, \mathfrak{S}, \tau, \kappa)$ is called compact if S is compact.

- 2. A is called **cocompact** if $\{F_i \mid i \in I\}$ is a closed cocover of A then there is a finite subset J of I with $\bigcap_{j \in J} F_j \subseteq A$. The ditopological texture space $(S, \mathfrak{S}, \tau, \kappa)$ is called cocompact if \emptyset is cocompact.
- 3. (τ, κ) is called **stable** if every $K \in \kappa$ with $K \neq S$ is compact.
- 4. (τ, κ) is called **costable** if every $G \in \tau$ with $G \neq \emptyset$ is cocompact.

A ditopological texture space $(S, \mathfrak{S}, \tau, \kappa)$ is called **dicompact** if it is compact, cocompact, stable and costable.

A ditopological texture space $(S, \mathfrak{S}, \tau, \kappa)$ is σ compact (σ -cocompact) if S is a countable union of compact sets (\emptyset is a countable intersection of cocompact sets).

Selection properties and ditopology

Let $(S, \mathfrak{S}, \tau, \kappa)$ be a ditopological texture space and A a subset of S.

A is said to have the *Menger property* if for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of **open** covers of A there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ of finite sets such that for each $n \in \mathbb{N}$, $\mathcal{V}_n \subseteq \mathcal{U}_n$ and $A \subseteq \bigvee_{n \in \mathbb{N}} \bigvee \mathcal{V}_n$. $(S, \mathfrak{S}, \tau, \kappa)$ is Menger if the set S is Menger. (This is denoted by $S_{fin}(\theta_S, \theta_S)$; θ_S – the family of open covers of S.)

A is said to have the *co-Menger property* if for each sequence $(\mathcal{F}_n : n \in \mathbb{N})$ of closed cocovers of \emptyset there is a sequence $(\mathcal{K}_n : n \in \mathbb{N})$ of finite sets such that for each $n \in \mathbb{N}$, $\mathcal{K}_n \subseteq \mathcal{F}_n$ and $\bigcap_{n \in \mathbb{N}} \bigcap \mathcal{K}_n$ is a closed cocover of A. $(S, \mathfrak{S}, \tau, \kappa)$ is co-Menger if \emptyset is co-Menger. (Notation: $S_{cfin}(\Phi_S, \Phi_S)$; Φ_S is the family of closed cocovers of S.) The Rothberger and co-Rothberger properties of a ditopological spaces are defined in a similar way.

Proposition. Let $(S, \mathfrak{S}, \tau, \kappa)$ be a ditopological texture space.

a) If $(S, \mathfrak{S}, \tau, \kappa)$ is σ -compact, then $(S, \mathfrak{S}, \tau, \kappa)$ has the Menger property. (b) If $(S, \mathfrak{S}, \tau, \kappa)$ is σ -cocompact, then $(S, \mathfrak{S}, \tau, \kappa)$ has the co-Menger property

Example. There is a ditopological texture space which is Menger (in fact Rothberger), but not compact.

Let $(\mathbb{R}, \mathfrak{R}, \tau_{\mathbb{R}}, \kappa_{\mathbb{R}})$ be the real line with the texture $\mathfrak{R} = \{(-\infty, r] : r \in \mathbb{R}\} \cup \{(-\infty, r) : r \in \mathbb{R}\}$ \mathbb{R} \cup { \mathbb{R} , \emptyset }, topology $\tau_{\mathbb{R}} =$ { $(-\infty, r)$: $r \in \mathbb{R}$ } \cup $\{\mathbb{R}, \emptyset\}$ and cotopology $\kappa_{\mathbb{R}}$ = $\{(-\infty, r] : r \in$ \mathbb{R} \cup { \mathbb{R} , \emptyset }. This ditopological texture space is neither compact (because the open cover $\mathcal{U} = \{(-\infty, n) : n \in \mathbb{N}\}$ does not contain a finite subcover) nor cocompact (because its closed cocover $\{(-\infty, r] : r \in \mathbb{R}\}$ does not contain a finite cocover). But $(\mathbb{R}, \mathfrak{R}, \tau_{\mathbb{R}}, \kappa_{\mathbb{R}})$ is Rothberger and co-Rothberger. Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of open covers of \mathbb{R} . Write \mathbb{R} = $\cup \{(-\infty, n) : n \in \mathbb{N}\}$. For each n there is some $r_n \in \mathbb{R}$ such that $(-\infty, n) \subset (-\infty, r_n) \in \mathcal{U}_n$. Then the collection $\{(-\infty, r_n) : n \in \mathbb{N}\}$ shows that $(\mathbb{R}, \mathfrak{R}, \tau_{\mathbb{R}}, \kappa_{\mathbb{R}})$ is Rothberger.

Proposition. Let $(S, \mathfrak{S}, \sigma)$ be a texture with the complementation σ and let (τ, κ) be a complemented ditopology on $(S, \mathfrak{S}, \sigma)$. Then $S \in$ $S_{fin}(\theta_S, \theta_S)$ if and only if $\emptyset \in S_{cfin}(\mathfrak{F}_S, \mathfrak{F}_S)$.

Proposition. Let $(S, \mathfrak{S}, \sigma)$ be a texture with complementation σ and let (τ, κ) be a complemented ditopology on $(S, \mathfrak{S}, \sigma)$. Then for $K \in \kappa$ with $K \neq S$, $K \in S_{fin}(\theta, \theta)$ if and only if $G \in S_{cfin}(\mathfrak{F}, \mathfrak{F})$ for $G \in \tau$ and $G \neq \emptyset$.

Operations

For a texture space (S, \mathfrak{S}) and a set $A \in \mathfrak{S}$ the texturing $\mathfrak{S}_A := \{A \cap K : K \in \mathfrak{S}\}$ of A is called the *induced texture* on A, and (A, \mathfrak{S}_A) is called a *principal subtexture* of (S, \mathfrak{S}) .

Proposition. Let $(S, \mathfrak{S}, \sigma, \tau, \kappa)$ be a complemented ditopological texture space. If S is Menger and $A \in \kappa$, then $(A, \mathfrak{S}_A, \tau_A, \kappa_A)$ is also Menger.

Remark. If S is co-Menger and $A \in \tau$, then $(A, \mathfrak{S}_A, \tau_A, \kappa_A)$ is also co-Menger.

An open cover \mathcal{U} of a ditopological texture space $(S, \mathfrak{S}, \sigma, \tau, \kappa)$ is said to be an ω -cover if for each finite $F \subseteq S$ there is an element U_F of \mathcal{U} such that $F \subseteq U_F$.

Proposition. The following are equivalent for a ditopological texture space $(S, \mathfrak{S}, \sigma, \tau, \kappa)$:

- (1) For each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of ω -covers of S there are finite sets $\mathcal{V}_n \subseteq \mathcal{U}_n$, $n \in \mathbb{N}$, such that $\bigcup_{n \in \mathbb{N}} \mathcal{V}_n$ is an ω -cover of S;
- (2) Each finite power of S has the Menger property.

THANK YOU!