Resolvability properties of certain topological spaces

István Juhász

Alfréd Rényi Institute of Mathematics

Sao Paulo, Brasil, August 2013

István Juhász (Rényi Institute)

2

æ

– A topological space X is κ -resolvable iff it has κ disjoint dense subsets.

- A topological space X is κ -resolvable iff it has κ disjoint dense subsets. (resolvable \equiv 2-resolvable)

- A topological space X is κ -resolvable iff it has κ disjoint dense subsets. (resolvable \equiv 2-resolvable)
- X is maximally resolvable iff it is $\Delta(X)$ -resolvable,

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

- A topological space X is κ -resolvable iff it has κ disjoint dense subsets. (resolvable \equiv 2-resolvable)
- X is maximally resolvable iff it is $\Delta(X)$ -resolvable, where

 $\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.$

- A topological space X is κ -resolvable iff it has κ disjoint dense subsets. (resolvable \equiv 2-resolvable)
- X is maximally resolvable iff it is $\Delta(X)$ -resolvable, where

 $\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.$

EXAMPLES:

- A topological space X is κ -resolvable iff it has κ disjoint dense subsets. (resolvable \equiv 2-resolvable)
- X is maximally resolvable iff it is $\Delta(X)$ -resolvable, where

 $\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.$

EXAMPLES:

 $-\mathbb{R}$ is maximally resolvable.

- A topological space X is κ -resolvable iff it has κ disjoint dense subsets. (resolvable \equiv 2-resolvable)
- X is maximally resolvable iff it is $\Delta(X)$ -resolvable, where

 $\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.$

EXAMPLES:

- $-\mathbb{R}$ is maximally resolvable.
- Compact Hausdorff,

(二回) (二回) (二回)

- A topological space X is κ -resolvable iff it has κ disjoint dense subsets. (resolvable \equiv 2-resolvable)
- X is maximally resolvable iff it is $\Delta(X)$ -resolvable, where

 $\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.$

EXAMPLES:

- $-\mathbb{R}$ is maximally resolvable.
- Compact Hausdorff, metric,

< 回 > < 三 > < 三 >

- A topological space X is κ -resolvable iff it has κ disjoint dense subsets. (resolvable \equiv 2-resolvable)
- X is maximally resolvable iff it is $\Delta(X)$ -resolvable, where

 $\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.$

EXAMPLES:

- $-\mathbb{R}$ is maximally resolvable.
- Compact Hausdorff, metric, and linearly ordered spaces are maximally resolvable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- A topological space X is κ -resolvable iff it has κ disjoint dense subsets. (resolvable \equiv 2-resolvable)
- X is maximally resolvable iff it is $\Delta(X)$ -resolvable, where

 $\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.$

EXAMPLES:

- $-\mathbb{R}$ is maximally resolvable.
- Compact Hausdorff, metric, and linearly ordered spaces are maximally resolvable.

QUESTION. What happens if these properties are relaxed?

István Juhász (Rényi Institute)

2

イロト イヨト イヨト イヨ

Every crowded countably compact T_3 space X is ω_1 -resolvable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Every crowded countably compact T_3 space X is ω_1 -resolvable.

NOTE. This fails for T_2 !

Every crowded countably compact T_3 space X is ω_1 -resolvable.

NOTE. This fails for T_2 !

PROOF.(Not Pytkeev's)

Every crowded countably compact T_3 space X is ω_1 -resolvable.

NOTE. This fails for T_2 !

PROOF.(Not Pytkeev's) Tkachenko (1979): If *Y* is countably compact T_3 with $I_s(Y) \le \omega$ then *Y* is scattered.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Every crowded countably compact T_3 space X is ω_1 -resolvable.

NOTE. This fails for T_2 !

PROOF.(Not Pytkeev's) Tkachenko (1979): If *Y* is countably compact T_3 with $ls(Y) \le \omega$ then *Y* is scattered. But every open $G \subset X$ includes a regular closed *Y*, hence $ls(G) \ge ls(Y) \ge \omega_1$.

Every crowded countably compact T_3 space X is ω_1 -resolvable.

NOTE. This fails for T_2 !

PROOF.(Not Pytkeev's) Tkachenko (1979): If *Y* is countably compact T_3 with $ls(Y) \le \omega$ then *Y* is scattered. But every open $G \subset X$ includes a regular closed *Y*, hence $ls(G) \ge ls(Y) \ge \omega_1$. So, any maximal disjoint family of dense left separated subsets of *X* must be uncountable.

Every crowded countably compact T_3 space X is ω_1 -resolvable.

NOTE. This fails for T_2 !

PROOF.(Not Pytkeev's) Tkachenko (1979): If *Y* is countably compact T_3 with $ls(Y) \le \omega$ then *Y* is scattered. But every open $G \subset X$ includes a regular closed *Y*, hence $ls(G) \ge ls(Y) \ge \omega_1$. So, any maximal disjoint family of dense left separated subsets of *X* must be uncountable.

PROBLEM.

Is every crowded countably compact T_3 space X c-resolvable?

Every crowded countably compact T_3 space X is ω_1 -resolvable.

NOTE. This fails for T_2 !

PROOF.(Not Pytkeev's) Tkachenko (1979): If *Y* is countably compact T_3 with $ls(Y) \le \omega$ then *Y* is scattered. But every open $G \subset X$ includes a regular closed *Y*, hence $ls(G) \ge ls(Y) \ge \omega_1$. So, any maximal disjoint family of dense left separated subsets of *X* must be uncountable.

PROBLEM.

Is every crowded countably compact T_3 space X c-resolvable?

NOTE:
$$\Delta(X) \geq \mathfrak{c}$$
.

Every crowded countably compact T_3 space X is ω_1 -resolvable.

NOTE. This fails for T_2 !

PROOF.(Not Pytkeev's) Tkachenko (1979): If *Y* is countably compact T_3 with $ls(Y) \le \omega$ then *Y* is scattered. But every open $G \subset X$ includes a regular closed *Y*, hence $ls(G) \ge ls(Y) \ge \omega_1$. So, any maximal disjoint family of dense left separated subsets of *X* must be uncountable.

PROBLEM.

Is every crowded countably compact T_3 space X c-resolvable?

NOTE:
$$\Delta(X) \geq \mathfrak{c}$$
.

István Juhász (Rényi Institute)

æ

EXAMPLE. (Hewitt, '43) There is a countable T_3 space X that is - crowded (i.e. $\Delta(X) = |X| = \aleph_0$) and

< □ > < □ > < □ > < □ >

EXAMPLE. (Hewitt, '43) There is a countable T_3 space X that is

- crowded (i.e. $\Delta(X) = |X| = \aleph_0$) and
- irresolvable(\equiv not 2-resolvable).

- E - N

A D M A A A M M

EXAMPLE. (Hewitt, '43) There is a countable T_3 space X that is

- crowded (i.e. $\Delta(X) = |X| = \aleph_0$) and
- irresolvable(\equiv not 2-resolvable).

PROBLEM. (Malychin, 1995)

Is a Lindelöf T_3 space X with $\Delta(X) > \omega$ resolvable?

EXAMPLE. (Hewitt, '43) There is a countable T_3 space X that is

- crowded (i.e. $\Delta(X) = |X| = \aleph_0$) and
- irresolvable(\equiv not 2-resolvable).

PROBLEM. (Malychin, 1995)

Is a Lindelöf T_3 space X with $\Delta(X) > \omega$ resolvable?

NOTE. Malychin constructed Lindelöf irresolvable Hausdorff (= T_2) spaces,

EXAMPLE. (Hewitt, '43) There is a countable T_3 space X that is

- crowded (i.e. $\Delta(X) = |X| = \aleph_0$) and
- irresolvable(\equiv not 2-resolvable).

PROBLEM. (Malychin, 1995)

Is a Lindelöf T_3 space X with $\Delta(X) > \omega$ resolvable?

NOTE. Malychin constructed Lindelöf irresolvable Hausdorff (= T_2) spaces, and Pavlov Lindelöf irresolvable Uryson (= $T_{2.5}$) spaces.

EXAMPLE. (Hewitt, '43) There is a countable T_3 space X that is

- crowded (i.e. $\Delta(X) = |X| = \aleph_0$) and
- irresolvable(\equiv not 2-resolvable).

PROBLEM. (Malychin, 1995)

Is a Lindelöf T_3 space X with $\Delta(X) > \omega$ resolvable?

NOTE. Malychin constructed Lindelöf irresolvable Hausdorff (= T_2) spaces, and Pavlov Lindelöf irresolvable Uryson (= $T_{2.5}$) spaces.

THEOREM. (Filatova, 2004)

YES, every Lindelöf T_3 space X with $\Delta(X) > \omega$ is 2-resolvable.

イロン イ団と イヨン 一

EXAMPLE. (Hewitt, '43) There is a countable T_3 space X that is

- crowded (i.e. $\Delta(X) = |X| = \aleph_0$) and
- irresolvable(\equiv not 2-resolvable).

PROBLEM. (Malychin, 1995)

Is a Lindelöf T_3 space X with $\Delta(X) > \omega$ resolvable?

NOTE. Malychin constructed Lindelöf irresolvable Hausdorff (= T_2) spaces, and Pavlov Lindelöf irresolvable Uryson (= $T_{2.5}$) spaces.

THEOREM. (Filatova, 2004)

YES, every Lindelöf T_3 space X with $\Delta(X) > \omega$ is 2-resolvable.

This is the main result of her PhD thesis.

EXAMPLE. (Hewitt, '43) There is a countable T_3 space X that is

- crowded (i.e. $\Delta(X) = |X| = \aleph_0$) and
- irresolvable(\equiv not 2-resolvable).

PROBLEM. (Malychin, 1995)

Is a Lindelöf T_3 space X with $\Delta(X) > \omega$ resolvable?

NOTE. Malychin constructed Lindelöf irresolvable Hausdorff (= T_2) spaces, and Pavlov Lindelöf irresolvable Uryson (= $T_{2.5}$) spaces.

THEOREM. (Filatova, 2004)

YES, every Lindelöf T_3 space X with $\Delta(X) > \omega$ is 2-resolvable.

This is the main result of her PhD thesis. It didn't work for 3 !

István Juhász (Rényi Institute)

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

István Juhász (Rényi Institute)

æ

$$s(X) = \sup\{|D| : D \subset X \text{ is discrete}\}$$

æ

$$s(X) = \sup\{|D| : D \subset X \text{ is discrete}\}$$

$$e(X) = \sup\{|D| : D \subset X \text{ is closed discrete}\}$$

æ

$$s(X) = \sup\{|D| : D \subset X \text{ is discrete}\}$$

$$e(X) = \sup\{|D| : D \subset X \text{ is closed discrete}\}$$

THEOREM. (Pavlov, 2002)

2

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

$$s(X) = \sup\{|D| : D \subset X \text{ is discrete}\}$$

$$e(X) = \sup\{|D| : D \subset X \text{ is closed discrete}\}$$

(i) Any T_2 space X with $\Delta(X) > s(X)^+$ is maximally resolvable.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

$$s(X) = \sup\{|D| : D \subset X \text{ is discrete}\}$$

$$e(X) = \sup\{|D| : D \subset X \text{ is closed discrete}\}$$

(i) Any T_2 space X with $\Delta(X) > s(X)^+$ is maximally resolvable. (ii) Any T_3 space X with $\Delta(X) > e(X)^+$ is ω -resolvable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$s(X) = \sup\{|D| : D \subset X \text{ is discrete}\}$$

$$e(X) = \sup\{|D| : D \subset X \text{ is closed discrete}\}$$

(i) Any T_2 space X with $\Delta(X) > s(X)^+$ is maximally resolvable. (ii) Any T_3 space X with $\Delta(X) > e(X)^+$ is ω -resolvable.

THEOREM. (J-S-Sz, 2007)

Any space X with $\Delta(X) > s(X)$ is maximally resolvable.

$$\begin{array}{lll} s(X) &=& \sup\{|D|: D \subset X \text{ is discrete}\}\\ e(X) &=& \sup\{|D|: D \subset X \text{ is closed discrete}\} \end{array}$$

(i) Any T_2 space X with $\Delta(X) > s(X)^+$ is maximally resolvable. (ii) Any T_3 space X with $\Delta(X) > e(X)^+$ is ω -resolvable.

THEOREM. (J-S-Sz, 2007)

Any space X with $\Delta(X) > s(X)$ is maximally resolvable.

THEOREM. (J-S-Sz, 2012)

Any T_3 space X with $\Delta(X) > e(X)$ is ω -resolvable.

$$\begin{array}{lll} s(X) &=& \sup\{|D|: D \subset X \text{ is discrete}\}\\ e(X) &=& \sup\{|D|: D \subset X \text{ is closed discrete}\} \end{array}$$

(i) Any T_2 space X with $\Delta(X) > s(X)^+$ is maximally resolvable. (ii) Any T_3 space X with $\Delta(X) > e(X)^+$ is ω -resolvable.

THEOREM. (J-S-Sz, 2007)

Any space X with $\Delta(X) > s(X)$ is maximally resolvable.

THEOREM. (J-S-Sz, 2012)

Any T_3 space X with $\Delta(X) > e(X)$ is ω -resolvable. In particular, every Lindelöf T_3 space X with $\Delta(X) > \omega$ is ω -resolvable.

István Juhász (Rényi Institute)

$$\begin{array}{lll} s(X) &=& \sup\{|D|: D \subset X \text{ is discrete}\}\\ e(X) &=& \sup\{|D|: D \subset X \text{ is closed discrete}\} \end{array}$$

(i) Any T_2 space X with $\Delta(X) > s(X)^+$ is maximally resolvable. (ii) Any T_3 space X with $\Delta(X) > e(X)^+$ is ω -resolvable.

THEOREM. (J-S-Sz, 2007)

Any space X with $\Delta(X) > s(X)$ is maximally resolvable.

THEOREM. (J-S-Sz, 2012)

Any T_3 space X with $\Delta(X) > e(X)$ is ω -resolvable. In particular, every Lindelöf T_3 space X with $\Delta(X) > \omega$ is ω -resolvable.

István Juhász (Rényi Institute)

J-S-Sz

æ

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

If $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ -resolvable.

イロト イヨト イヨト イヨト

If $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ -resolvable.

THEOREM. (J-S-Sz, 2012)

If X is T_3 , $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no closed discrete subset of size κ then X is ω -resolvable.

If $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ -resolvable.

THEOREM. (J-S-Sz, 2012)

If X is T_3 , $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no closed discrete subset of size κ then X is ω -resolvable.

NOTE. For $\Delta(X) > \omega$ regular these suffice.

If $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ -resolvable.

THEOREM. (J-S-Sz, 2012)

If X is T_3 , $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no closed discrete subset of size κ then X is ω -resolvable.

NOTE. For $\Delta(X) > \omega$ regular these suffice. If $\Delta(X) = \lambda$ is singular, we need something extra.

If $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ -resolvable.

THEOREM. (J-S-Sz, 2012)

If X is T_3 , $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no closed discrete subset of size κ then X is ω -resolvable.

NOTE. For $\Delta(X) > \omega$ regular these suffice. If $\Delta(X) = \lambda$ is singular, we need something extra.

For $\Delta(X) = \lambda > s(X)$ we automatically get that X is $< \lambda$ -resolvable.

イロト イポト イヨト イヨト 二日

If $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ -resolvable.

THEOREM. (J-S-Sz, 2012)

If X is T_3 , $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no closed discrete subset of size κ then X is ω -resolvable.

NOTE. For $\Delta(X) > \omega$ regular these suffice. If $\Delta(X) = \lambda$ is singular, we need something extra.

For $\Delta(X) = \lambda > s(X)$ we automatically get that X is $< \lambda$ -resolvable.

But now $\Delta(X) = \lambda > s(X)^+$, so we may use Pavlov's Thm (i).

ヘロト 不通 とうき とうとう ほう

If $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ -resolvable.

THEOREM. (J-S-Sz, 2012)

If X is T_3 , $\Delta(X) \ge \kappa = cf(\kappa) > \omega$ and X has no closed discrete subset of size κ then X is ω -resolvable.

NOTE. For $\Delta(X) > \omega$ regular these suffice. If $\Delta(X) = \lambda$ is singular, we need something extra.

For $\Delta(X) = \lambda > s(X)$ we automatically get that X is $< \lambda$ -resolvable.

But now $\Delta(X) = \lambda > s(X)^+$, so we may use Pavlov's Thm (i).

For $\Delta(X) = \lambda > e(X)^+$ we may use Pavlov's Thm (ii).

御 と くき とくき とうきょう

$<\lambda$ -resolvable

æ

$<\lambda$ -resolvable

THEOREM. (J-S-Sz, 2006)

For any $\kappa \ge \lambda = cf(\lambda) > \omega$ there is a dense $X \subset D(2)^{2^{\kappa}}$ with $\Delta(X) = \kappa$ that is $< \lambda$ -resolvable but not λ -resolvable.

.

$<\lambda$ -resolvable

THEOREM. (J-S-Sz, 2006)

For any $\kappa \ge \lambda = cf(\lambda) > \omega$ there is a dense $X \subset D(2)^{2^{\kappa}}$ with $\Delta(X) = \kappa$ that is $< \lambda$ -resolvable but not λ -resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967.

For any $\kappa \ge \lambda = cf(\lambda) > \omega$ there is a dense $X \subset D(2)^{2^{\kappa}}$ with $\Delta(X) = \kappa$ that is $< \lambda$ -resolvable but not λ -resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967. We used the general method of constructing \mathcal{D} -forced spaces.

For any $\kappa \ge \lambda = cf(\lambda) > \omega$ there is a dense $X \subset D(2)^{2^{\kappa}}$ with $\Delta(X) = \kappa$ that is $< \lambda$ -resolvable but not λ -resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967. We used the general method of constructing \mathcal{D} -forced spaces.

THEOREM. (Illanes, Baskara Rao)

If $cf(\lambda) = \omega$ then every $< \lambda$ -resolvable space is λ -resolvable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For any $\kappa \ge \lambda = cf(\lambda) > \omega$ there is a dense $X \subset D(2)^{2^{\kappa}}$ with $\Delta(X) = \kappa$ that is $< \lambda$ -resolvable but not λ -resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967. We used the general method of constructing \mathcal{D} -forced spaces.

THEOREM. (Illanes, Baskara Rao)

If $cf(\lambda) = \omega$ then every $< \lambda$ -resolvable space is λ -resolvable.

PROBLEM.

Is this true for each singular λ ?

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For any $\kappa \ge \lambda = cf(\lambda) > \omega$ there is a dense $X \subset D(2)^{2^{\kappa}}$ with $\Delta(X) = \kappa$ that is $< \lambda$ -resolvable but not λ -resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967. We used the general method of constructing \mathcal{D} -forced spaces.

THEOREM. (Illanes, Baskara Rao)

If $cf(\lambda) = \omega$ then every $< \lambda$ -resolvable space is λ -resolvable.

PROBLEM.

Is this true for each singular λ ? How about $\lambda = \aleph_{\omega_1}$?

3

・ロト ・四ト ・ヨト ・ヨト

For any $\kappa \ge \lambda = cf(\lambda) > \omega$ there is a dense $X \subset D(2)^{2^{\kappa}}$ with $\Delta(X) = \kappa$ that is $< \lambda$ -resolvable but not λ -resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967. We used the general method of constructing \mathcal{D} -forced spaces.

THEOREM. (Illanes, Baskara Rao)

If $cf(\lambda) = \omega$ then every $< \lambda$ -resolvable space is λ -resolvable.

PROBLEM.

Is this true for each singular λ ? How about $\lambda = \aleph_{\omega_1}$?

3

・ロト ・四ト ・ヨト ・ヨト

monotone normality

István Juhász (Rényi Institute)

æ

monotone normality

DEFINITION.

æ

イロト イヨト イヨト イヨト

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods :

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods :

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set H(x, U) s. t.

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods :

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set H(x, U) s. t.

(i) $x \in H(x, U) \subset U$,

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods :

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set H(x, U) s. t.

(i) $x \in H(x, U) \subset U$,

and

(ii) if $H(x, U) \cap H(y, V) \neq \emptyset$ then $x \in V$ or $y \in U$.

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods :

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set H(x, U) s. t.

```
(i) x \in H(x, U) \subset U,
```

and

```
(ii) if H(x, U) \cap H(y, V) \neq \emptyset then x \in V or y \in U.
```

FACT. Metric spaces

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods :

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set H(x, U) s. t.

(i) $x \in H(x, U) \subset U$,

and

(ii) if $H(x, U) \cap H(y, V) \neq \emptyset$ then $x \in V$ or $y \in U$.

FACT. Metric spaces and linearly ordered spaces are MN.

イロト イ押ト イヨト イヨト

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods :

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set H(x, U) s. t.

(i) $x \in H(x, U) \subset U$,

and

```
(ii) if H(x, U) \cap H(y, V) \neq \emptyset then x \in V or y \in U.
```

FACT. Metric spaces and linearly ordered spaces are MN.

QUESTION. Are MN spaces maximally resolvable?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

István Juhász (Rényi Institute)

æ

イロン イ理 とく ヨン イヨン

DEFINITION.

István Juhász (Rényi Institute)

2

イロン イ理 とく ヨン イヨン

DEFINITION.

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for $x \in D$.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

DEFINITION.

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for $x \in D$.

EXAMPLE: Countable discrete sets in T_3 spaces are SD.

A D M A A A M M

DEFINITION.

- (i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for $x \in D$.
- EXAMPLE: Countable discrete sets in T_3 spaces are SD.
- (ii) X is an SD space if every non-isolated point $x \in X$ is an SD limit.

DEFINITION.

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for $x \in D$.

EXAMPLE: Countable discrete sets in T_3 spaces are SD.

(ii) X is an SD space if every non-isolated point $x \in X$ is an SD limit.

THEOREM. (Sharma and Sharma, 1988)

Every T_1 crowded SD space is ω -resolvable.

DEFINITION.

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for $x \in D$.

EXAMPLE: Countable discrete sets in T_3 spaces are SD.

(ii) X is an SD space if every non-isolated point $x \in X$ is an SD limit.

THEOREM. (Sharma and Sharma, 1988)

Every T_1 crowded SD space is ω -resolvable.

THEOREM. (DTTW, 2002)

MN spaces are SD, hence crowded MN spaces are ω -resolvable.

DEFINITION.

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for $x \in D$.

EXAMPLE: Countable discrete sets in T_3 spaces are SD.

(ii) X is an SD space if every non-isolated point $x \in X$ is an SD limit.

THEOREM. (Sharma and Sharma, 1988)

Every T_1 crowded SD space is ω -resolvable.

THEOREM. (DTTW, 2002)

MN spaces are SD, hence crowded MN spaces are ω -resolvable.

PROBLEM. (Ceder and Pearson, 1967)

Are ω -resolvable spaces maximally resolvable?

æ

イロト イロト イヨト イヨト

$[J-S-Sz] \equiv I$. JUHÁSZ, L. SOUKUP AND Z. SZENTMIKLÓSSY, *Resolvability and monotone normality*, Israel J. Math., 166 (2008), no. 1, pp. 1–16.

3

 $[J-S-Sz] \equiv I$. JUHÁSZ, L. SOUKUP AND Z. SZENTMIKLÓSSY, *Resolvability and monotone normality*, Israel J. Math., 166 (2008), no. 1, pp. 1–16.

DEFINITION. X is a DSD space if every dense subspace of X is SD.

 $[J-S-Sz] \equiv I$. JUHÁSZ, L. SOUKUP AND Z. SZENTMIKLÓSSY, *Resolvability and monotone normality*, Israel J. Math., 166 (2008), no. 1, pp. 1–16.

DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

 $[J-S-Sz] \equiv I$. JUHÁSZ, L. SOUKUP AND Z. SZENTMIKLÓSSY, *Resolvability and monotone normality*, Israel J. Math., 166 (2008), no. 1, pp. 1–16.

DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

 $[J-S-Sz] \equiv I$. JUHÁSZ, L. SOUKUP AND Z. SZENTMIKLÓSSY, *Resolvability and monotone normality*, Israel J. Math., 166 (2008), no. 1, pp. 1–16.

DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

- If κ is measurable then there is a MN space X with $\Delta(X) = \kappa$ that is ω_1 -irrresolvable.

 $[J-S-Sz] \equiv I$. JUHÁSZ, L. SOUKUP AND Z. SZENTMIKLÓSSY, *Resolvability and monotone normality*, Israel J. Math., 166 (2008), no. 1, pp. 1–16.

DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

- If κ is measurable then there is a MN space X with $\Delta(X) = \kappa$ that is ω_1 -irrresolvable.
- If X is DSD with $|X| < \aleph_{\omega}$ then X is maximally resolvable.

3

 $[J-S-Sz] \equiv I$. JUHÁSZ, L. SOUKUP AND Z. SZENTMIKLÓSSY, *Resolvability and monotone normality*, Israel J. Math., 166 (2008), no. 1, pp. 1–16.

DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

- If κ is measurable then there is a MN space X with $\Delta(X) = \kappa$ that is ω_1 -irrresolvable.
- If X is DSD with $|X| < \aleph_{\omega}$ then X is maximally resolvable.
- From a supercompact cardinal, it is consistent to have a MN space X with $|X| = \Delta(X) = \aleph_{\omega}$ that is ω_2 -irresolvable.

э.

 $[J-S-Sz] \equiv I$. JUHÁSZ, L. SOUKUP AND Z. SZENTMIKLÓSSY, *Resolvability and monotone normality*, Israel J. Math., 166 (2008), no. 1, pp. 1–16.

DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

- If κ is measurable then there is a MN space X with $\Delta(X) = \kappa$ that is ω_1 -irrresolvable.
- If X is DSD with $|X| < \aleph_{\omega}$ then X is maximally resolvable.
- From a supercompact cardinal, it is consistent to have a MN space X with $|X| = \Delta(X) = \aleph_{\omega}$ that is ω_2 -irresolvable.

This left a number of questions open.

э

イロト 不得 トイヨト イヨト

István Juhász (Rényi Institute)

æ

イロト イヨト イヨト イヨ

DEFINITION.

István Juhász (Rényi Institute)

æ

イロト イポト イヨト イヨト

DEFINITION.

- An ultrafilter \mathcal{F} is μ -descendingly complete iff for any descending μ -sequence $\{A_{\alpha} : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap \{A_{\alpha} : \alpha < \mu\} \in \mathcal{F}$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

DEFINITION.

- An ultrafilter \mathcal{F} is μ -descendingly complete iff for any descending μ -sequence $\{A_{\alpha} : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap \{A_{\alpha} : \alpha < \mu\} \in \mathcal{F}$.

 μ -descendingly incomplete is (now) called μ -decomposable.

4 3 5 4 3 5 5

A D M A A A M M

DEFINITION.

- An ultrafilter \mathcal{F} is μ -descendingly complete iff for any descending μ -sequence $\{A_{\alpha} : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap \{A_{\alpha} : \alpha < \mu\} \in \mathcal{F}$.

 μ -descendingly incomplete is (now) called μ -decomposable.

 $-\Delta(\mathcal{F}) = \min\{|\mathbf{A}| : \mathbf{A} \in \mathcal{F}\}.$

3

DEFINITION.

- An ultrafilter \mathcal{F} is μ -descendingly complete iff for any descending μ -sequence $\{A_{\alpha} : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap \{A_{\alpha} : \alpha < \mu\} \in \mathcal{F}$.

 $\mu\text{-descendingly incomplete is (now) called }\mu\text{-decomposable.}$

 $-\Delta(\mathcal{F}) = \min\{|\mathbf{A}| : \mathbf{A} \in \mathcal{F}\}.$

- \mathcal{F} is maximally decomposable iff it is μ -decomposable for all (infinite) $\mu \leq \Delta(\mathcal{F})$.

3

DEFINITION.

- An ultrafilter \mathcal{F} is μ -descendingly complete iff for any descending μ -sequence $\{A_{\alpha} : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap \{A_{\alpha} : \alpha < \mu\} \in \mathcal{F}$.

 $\mu\text{-descendingly}$ incomplete is (now) called $\mu\text{-decomposable}.$

 $-\Delta(\mathcal{F}) = \min\{|\mathbf{A}| : \mathbf{A} \in \mathcal{F}\}.$

- \mathcal{F} is maximally decomposable iff it is μ -decomposable for all (infinite) $\mu \leq \Delta(\mathcal{F})$.

FACTS.

3

DEFINITION.

- An ultrafilter \mathcal{F} is μ -descendingly complete iff for any descending μ -sequence $\{A_{\alpha} : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap \{A_{\alpha} : \alpha < \mu\} \in \mathcal{F}$. μ -descendingly incomplete is (now) called μ -decomposable.
- $-\Delta(\mathcal{F}) = \min\{|\mathbf{A}| : \mathbf{A} \in \mathcal{F}\}.$
- \mathcal{F} is maximally decomposable iff it is μ -decomposable for all (infinite) $\mu \leq \Delta(\mathcal{F})$.

FACTS.

– Any "measure" is countably complete, hence ω -indecomposable.

3

DEFINITION.

- An ultrafilter \mathcal{F} is μ -descendingly complete iff for any descending μ -sequence $\{A_{\alpha} : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap \{A_{\alpha} : \alpha < \mu\} \in \mathcal{F}$. μ -descendingly incomplete is (now) called μ -decomposable.
- $-\Delta(\mathcal{F}) = \min\{|\mathbf{A}| : \mathbf{A} \in \mathcal{F}\}.$
- \mathcal{F} is maximally decomposable iff it is μ -decomposable for all (infinite) $\mu \leq \Delta(\mathcal{F})$.

FACTS.

- Any "measure" is countably complete, hence ω -indecomposable.
- [Donder, 1988] If there is a not maximally decomposable ultrafilter then there is a measurable cardinal in some inner model.

DEFINITION.

- An ultrafilter \mathcal{F} is μ -descendingly complete iff for any descending μ -sequence $\{A_{\alpha} : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap \{A_{\alpha} : \alpha < \mu\} \in \mathcal{F}$. μ -descendingly incomplete is (now) called μ -decomposable.
- $-\Delta(\mathcal{F}) = \min\{|\mathbf{A}| : \mathbf{A} \in \mathcal{F}\}.$
- \mathcal{F} is maximally decomposable iff it is μ -decomposable for all (infinite) $\mu \leq \Delta(\mathcal{F})$.

FACTS.

- Any "measure" is countably complete, hence ω -indecomposable.
- [Donder, 1988] If there is a not maximally decomposable ultrafilter then there is a measurable cardinal in some inner model.
- [Kunen Prikry, 1971] Every ultrafilter \mathcal{F} with $\Delta(\mathcal{F}) < \aleph_{\omega}$ is maximally decomposable.

æ

<ロ> <問> <問> < 同> < 同> 、

 $[J-M] \equiv I$. JUHÁSZ AND M. MAGIDOR, On the maximal resolvability of monotonically normal spaces, Israel J. Math, 192 (2012), 637-666.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

$[J-M] \equiv I$. JUHÁSZ AND M. MAGIDOR, On the maximal resolvability of monotonically normal spaces, Israel J. Math, 192 (2012), 637-666.

Main results of [J-M]

э

イロト イヨト イヨト イヨト

$[J-M] \equiv I$. JUHÁSZ AND M. MAGIDOR, On the maximal resolvability of monotonically normal spaces, Israel J. Math, 192 (2012), 637-666.

Main results of [J-M]

(1) TFAEV

lstván Juhász	(Rényi	Institute)
---------------	--------	------------

э

 $[J-M] \equiv I$. JUHÁSZ AND M. MAGIDOR, On the maximal resolvability of monotonically normal spaces, Israel J. Math, 192 (2012), 637-666.

Main results of [J-M]

(1) TFAEV

– Every DSD space (of cardinality $< \kappa$) is maximally resolvable.

э

 $[J-M] \equiv I$. JUHÁSZ AND M. MAGIDOR, On the maximal resolvability of monotonically normal spaces, Israel J. Math, 192 (2012), 637-666.

Main results of [J-M]

(1) TFAEV

- Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
- Every MN space (of cardinality $< \kappa$) is maximally resolvable.

э

 $[J-M] \equiv I$. JUHÁSZ AND M. MAGIDOR, On the maximal resolvability of monotonically normal spaces, Israel J. Math, 192 (2012), 637-666.

Main results of [J-M]

(1) TFAEV

- Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
- Every MN space (of cardinality $< \kappa$) is maximally resolvable.
- Every ultrafilter \mathcal{F} (with $\Delta(\mathcal{F}) < \kappa$) is maximally decomposable.

э

 $[J-M] \equiv I$. JUHÁSZ AND M. MAGIDOR, On the maximal resolvability of monotonically normal spaces, Israel J. Math, 192 (2012), 637-666.

Main results of [J-M]

(1) TFAEV

- Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
- Every MN space (of cardinality $< \kappa$) is maximally resolvable.
- Every ultrafilter \mathcal{F} (with $\Delta(\mathcal{F}) < \kappa$) is maximally decomposable.

(2) TFAEC

э.

 $[J-M] \equiv I$. JUHÁSZ AND M. MAGIDOR, On the maximal resolvability of monotonically normal spaces, Israel J. Math, 192 (2012), 637-666.

Main results of [J-M]

(1) TFAEV

- Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
- Every MN space (of cardinality $< \kappa$) is maximally resolvable.
- Every ultrafilter \mathcal{F} (with $\Delta(\mathcal{F}) < \kappa$) is maximally decomposable.

(2) TFAEC

- There is a measurable cardinal.

э.

 $[J-M] \equiv I$. JUHÁSZ AND M. MAGIDOR, On the maximal resolvability of monotonically normal spaces, Israel J. Math, 192 (2012), 637-666.

Main results of [J-M]

(1) TFAEV

- Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
- Every MN space (of cardinality $< \kappa$) is maximally resolvable.
- Every ultrafilter \mathcal{F} (with $\Delta(\mathcal{F}) < \kappa$) is maximally decomposable.

(2) TFAEC

- There is a measurable cardinal.
- There is a MN space that is not maximally resolvable.

э

 $[J-M] \equiv I$. JUHÁSZ AND M. MAGIDOR, On the maximal resolvability of monotonically normal spaces, Israel J. Math, 192 (2012), 637-666.

Main results of [J-M]

(1) TFAEV

- Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
- Every MN space (of cardinality $< \kappa$) is maximally resolvable.
- Every ultrafilter \mathcal{F} (with $\Delta(\mathcal{F}) < \kappa$) is maximally decomposable.

(2) TFAEC

- There is a measurable cardinal.
- There is a MN space that is not maximally resolvable.
- There is a MN space X with $|X| = \Delta(X) = \aleph_{\omega}$ that is ω_1 -irresolvable.

э.

István Juhász (Rényi Institute)

2

イロト イヨト イヨト イヨト

filtration spaces

DEFINITION.

István Juhász (Rényi Institute)

2

イロト イロト イヨト イヨト

filtration spaces

DEFINITION.

-F is a filtration if dom(F) = T is an infinitely branching tree

э

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

filtration spaces

DEFINITION.

-F is a filtration if dom(F) = T is an infinitely branching tree (of height ω)

3

-F is a filtration if dom(F) = T is an infinitely branching tree (of height ω) and, for each $t \in T$, F(t) is a filter on S(t) that contains all co-finite subsets of S(t).

イロト イ団ト イヨト イヨト

- *F* is a filtration if dom(*F*) = *T* is an infinitely branching tree (of height ω) and, for each $t \in T$, *F*(*t*) is a filter on *S*(*t*) that contains all co-finite subsets of *S*(*t*).

- The topology τ_F on T: For $G \subset T$, $G \in \tau_F$ iff

 $t\in G\Rightarrow G\cap S(t)\in F(t),$

イロト イ押ト イヨト イヨト

- *F* is a filtration if dom(*F*) = *T* is an infinitely branching tree (of height ω) and, for each $t \in T$, *F*(*t*) is a filter on *S*(*t*) that contains all co-finite subsets of *S*(*t*).

- The topology τ_F on T: For $G \subset T$, $G \in \tau_F$ iff

 $t\in G\Rightarrow G\cap S(t)\in F(t),$

 $-X(F) = \langle T, \tau_F \rangle$ is called a filtration space.

イロト イポト イヨト イヨト

- *F* is a filtration if dom(*F*) = *T* is an infinitely branching tree (of height ω) and, for each $t \in T$, *F*(*t*) is a filter on *S*(*t*) that contains all co-finite subsets of *S*(*t*).

- The topology τ_F on T: For $G \subset T$, $G \in \tau_F$ iff

 $t\in G\Rightarrow G\cap S(t)\in F(t),$

 $-X(F) = \langle T, \tau_F \rangle$ is called a filtration space.

FACT. [J-S-Sz] Every filtration space X(F) is MN.

- *F* is a filtration if dom(*F*) = *T* is an infinitely branching tree (of height ω) and, for each $t \in T$, *F*(*t*) is a filter on *S*(*t*) that contains all co-finite subsets of *S*(*t*).

- The topology τ_F on T: For $G \subset T$, $G \in \tau_F$ iff

 $t \in G \Rightarrow G \cap S(t) \in F(t),$

 $-X(F) = \langle T, \tau_F \rangle$ is called a filtration space.

FACT. [J-S-Sz] Every filtration space X(F) is MN.

Moreover, filtration spaces determine the resolvability behavior of all MN (or DSD) spaces.

irresolvability of filtration spaces

István Juhász (Rényi Institute)

2

THEOREM. [J-S-Sz]

If *F* is an ultrafiltration and $\mu \ge \omega$ is a regular cardinal s.t. *F*(*t*) is μ -descendingly complete for all $t \in T = \text{dom}(F)$,

THEOREM. [J-S-Sz]

If *F* is an ultrafiltration and $\mu \ge \omega$ is a regular cardinal s.t. *F*(*t*) is μ -descendingly complete for all $t \in T = \text{dom}(F)$, then *X*(*F*) is hereditarily μ ⁺-irresolvable.

THEOREM. [J-S-Sz]

If *F* is an ultrafiltration and $\mu \ge \omega$ is a regular cardinal s.t. *F*(*t*) is μ -descendingly complete for all $t \in T = \text{dom}(F)$, then *X*(*F*) is hereditarily μ ⁺-irresolvable.

COROLLARY. [J-S-Sz]

If $\mathcal{F} \in un(\kappa)$ is a measure and $F(t) = \mathcal{F}$ for all $t \in dom(F) = \kappa^{<\omega}$ then X(F) is hereditarily ω_1 -irresolvable.

István Juhász (Rényi Institute)

Э.

DEFINITION. [J-M]

István Juhász (Rényi Institute)

Э.

イロト イヨト イヨト イヨト

DEFINITION. [J-M] F is a λ -filtration if

æ

イロト イポト イヨト イヨト

DEFINITION. [J-M] F is a λ -filtration if

 $-T = \operatorname{dom}(F) \subset \lambda^{<\omega},$

2

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

DEFINITION. [J-M] F is a λ -filtration if

- $-T = \operatorname{dom}(F) \subset \lambda^{<\omega},$
- for each $t \in T$ there is $\omega \leq \mu_t \leq \lambda$ s.t.

$$S(t) = \{t^{\alpha} : \alpha < \mu_t\} \text{ and } F(t) \in \mathrm{un}(\mu_t),$$

3

DEFINITION. [J-M] F is a λ -filtration if

- $-T = \operatorname{dom}(F) \subset \lambda^{<\omega},$
- for each $t \in T$ there is $\omega \leq \mu_t \leq \lambda$ s.t.

$$S(t) = \{t^{\alpha} : \alpha < \mu_t\} \text{ and } F(t) \in \mathrm{un}(\mu_t),$$

– moreover, for any $\mu < \lambda$ and $t \in T$:

 $\{\alpha: \mu_{t^{\frown}\alpha} > \mu\} \in F(t).$

DEFINITION. [J-M] F is a λ -filtration if

- $-T = \operatorname{dom}(F) \subset \lambda^{<\omega},$
- for each $t \in T$ there is $\omega \leq \mu_t \leq \lambda$ s.t.

$$S(t) = \{t^{\alpha} : \alpha < \mu_t\} \text{ and } F(t) \in \mathrm{un}(\mu_t),$$

– moreover, for any $\mu < \lambda$ and $t \in T$:

$$\{\alpha: \mu_{t \cap \alpha} > \mu\} \in F(t).$$

NOTE. If *F* is a λ -filtration then $|X(F)| = \Delta(X(F)) = \lambda$.

・ロト ・ 同ト ・ ヨト ・ ヨ

DEFINITION. [J-M] F is a λ -filtration if

- $-T = \operatorname{dom}(F) \subset \lambda^{<\omega},$
- for each $t \in T$ there is $\omega \leq \mu_t \leq \lambda$ s.t.

$$S(t) = \{t^{\alpha} : \alpha < \mu_t\} \text{ and } F(t) \in \mathrm{un}(\mu_t),$$

– moreover, for any $\mu < \lambda$ and $t \in T$:

$$\{\alpha: \mu_{t \cap \alpha} > \mu\} \in F(t).$$

NOTE. If *F* is a λ -filtration then $|X(F)| = \Delta(X(F)) = \lambda$.

- The λ -filtration F is full if dom $(F) = \lambda^{<\omega}$, i.e. $\mu_t = \lambda$ for all $t \in \lambda^{<\omega}$.

DEFINITION. [J-M] F is a λ -filtration if

- $-T = \operatorname{dom}(F) \subset \lambda^{<\omega},$
- for each $t \in T$ there is $\omega \leq \mu_t \leq \lambda$ s.t.

$$S(t) = \{t^{\alpha} : \alpha < \mu_t\} \text{ and } F(t) \in \mathrm{un}(\mu_t),$$

– moreover, for any $\mu < \lambda$ and $t \in T$:

$$\{\alpha: \mu_{t \cap \alpha} > \mu\} \in F(t).$$

NOTE. If *F* is a λ -filtration then $|X(F)| = \Delta(X(F)) = \lambda$.

- The λ -filtration F is full if dom $(F) = \lambda^{<\omega}$, i.e. $\mu_t = \lambda$ for all $t \in \lambda^{<\omega}$.

Full λ -filtrations were considered in [J-S-Sz].

István Juhász (Rényi Institute)

æ

THEOREM [J-S-Sz]

István Juhász (Rényi Institute)

Resolvability

Sao Paulo 2013 16 / 18

æ

イロト イヨト イヨト イヨト

THEOREM [J-S-Sz]

For $\kappa \leq \lambda = cf(\lambda)$, TFAEV

2

イロン イ理 とく ヨン イヨン

THEOREM [J-S-Sz]

For $\kappa \leq \lambda = cf(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.

-

THEOREM [J-S-Sz]

For $\kappa \leq \lambda = cf(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.

3

THEOREM [J-S-Sz]

For $\kappa \leq \lambda = cf(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- For every full λ -filtration *F*, the space *X*(*F*) is κ -resolvable.

3

THEOREM [J-S-Sz]

For $\kappa \leq \lambda = cf(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- For every full λ -filtration *F*, the space *X*(*F*) is κ -resolvable.

THEOREM [J-M]

3

THEOREM [J-S-Sz]

For $\kappa \leq \lambda = cf(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- For every full λ -filtration *F*, the space *X*(*F*) is κ -resolvable.

THEOREM [J-M]

For λ singular and $cf(\lambda)^+ < \kappa \leq \lambda$, TFAEV

THEOREM [J-S-Sz]

For $\kappa \leq \lambda = cf(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- For every full λ -filtration *F*, the space *X*(*F*) is κ -resolvable.

THEOREM [J-M]

- For λ singular and $cf(\lambda)^+ < \kappa \leq \lambda$, TFAEV
- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.

(日)

THEOREM [J-S-Sz]

For $\kappa \leq \lambda = cf(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- For every full λ -filtration *F*, the space *X*(*F*) is κ -resolvable.

THEOREM [J-M]

- For λ singular and $cf(\lambda)^+ < \kappa \leq \lambda$, TFAEV
- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.

イロト 不得 トイヨト イヨト ニヨー

THEOREM [J-S-Sz]

For $\kappa \leq \lambda = cf(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- For every full λ -filtration *F*, the space *X*(*F*) is κ -resolvable.

THEOREM [J-M]

- For λ singular and $cf(\lambda)^+ < \kappa \leq \lambda$, TFAEV
- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- For every λ -filtration *F*, the space *X*(*F*) is κ -resolvable.

イロト 不得 トイヨト イヨト ニヨー

THEOREM [J-S-Sz]

For $\kappa \leq \lambda = cf(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- For every full λ -filtration *F*, the space *X*(*F*) is κ -resolvable.

THEOREM [J-M]

- For λ singular and $cf(\lambda)^+ < \kappa \leq \lambda$, TFAEV
- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- For every λ -filtration *F*, the space *X*(*F*) is κ -resolvable.

NOTE. For maximal resolvability, the cases $\kappa = \lambda$ are of interest.

István Juhász (Rényi Institute)

2

• • • • • • • • • • • •

If λ is regular, X is DSD with $|X| = \Delta(X) = \lambda$, and there are "dense many" points in X that are not CAPs of any SD set of size λ , then X is λ -resolvable.

4 A N

If λ is regular, X is DSD with $|X| = \Delta(X) = \lambda$, and there are "dense many" points in X that are not CAPs of any SD set of size λ , then X is λ -resolvable.

Lemma 2. [J-S-Sz]

For any $\lambda \ge \omega$, if X is any space s.t. every point in X is the CAP of some SD set of size λ , then there is a full λ -filtration F and a one-one continuous map

$$g:X(F)\to X$$
.

If λ is regular, X is DSD with $|X| = \Delta(X) = \lambda$, and there are "dense many" points in X that are not CAPs of any SD set of size λ , then X is λ -resolvable.

Lemma 2. [J-S-Sz]

For any $\lambda \ge \omega$, if X is any space s.t. every point in X is the CAP of some SD set of size λ , then there is a full λ -filtration F and a one-one continuous map

$$g:X(F)\to X$$
.

This takes care of the case when λ is regular.

If λ is regular, X is DSD with $|X| = \Delta(X) = \lambda$, and there are "dense many" points in X that are not CAPs of any SD set of size λ , then X is λ -resolvable.

Lemma 2. [J-S-Sz]

For any $\lambda \ge \omega$, if X is any space s.t. every point in X is the CAP of some SD set of size λ , then there is a full λ -filtration F and a one-one continuous map

$$g:X(F)\to X$$
.

This takes care of the case when λ is regular.

The singular case (proved in [J-M]) is similar but more complicated.

æ

THEOREM [J-M]

István Juhász (Rényi Institute)

2

THEOREM [J-M]

If $\kappa \leq \lambda$ and *F* is a λ -filtration s.t.

3

THEOREM [J-M]

If $\kappa \leq \lambda$ and *F* is a λ -filtration s.t.

(i) for every $t \in T = \text{dom}(F)$, if $\mu_t \ge \kappa$ then F(t) is κ -decomposable,

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If $\kappa \leq \lambda$ and *F* is a λ -filtration s.t.

(i) for every $t \in T = \text{dom}(F)$, if $\mu_t \ge \kappa$ then F(t) is κ -decomposable,

(ii) for every $t \in T = \text{dom}(F)$ and $\mu \leq \kappa$,

 $\{\alpha < \mu_t : F(t^{\alpha}) \text{ is } \mu\text{-decomposable}\} \in F(t),\$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If $\kappa \leq \lambda$ and *F* is a λ -filtration s.t.

(i) for every $t \in T = \text{dom}(F)$, if $\mu_t \ge \kappa$ then F(t) is κ -decomposable,

(ii) for every $t \in T = \text{dom}(F)$ and $\mu \leq \kappa$,

 $\{\alpha < \mu_t : F(t \cap \alpha) \text{ is } \mu \text{-decomposable}\} \in F(t),$

then X(F) is κ -resolvable.

-

If $\kappa \leq \lambda$ and *F* is a λ -filtration s.t.

(i) for every $t \in T = \text{dom}(F)$, if $\mu_t \ge \kappa$ then F(t) is κ -decomposable,

(ii) for every $t \in T = \text{dom}(F)$ and $\mu \leq \kappa$,

 $\{\alpha < \mu_t : F(t \cap \alpha) \text{ is } \mu \text{-decomposable}\} \in F(t),$

then X(F) is κ -resolvable.

COROLLARY [J-M]

э.

・ロト ・ 四ト ・ ヨト ・ ヨト …

If $\kappa \leq \lambda$ and *F* is a λ -filtration s.t.

(i) for every $t \in T = \text{dom}(F)$, if $\mu_t \ge \kappa$ then F(t) is κ -decomposable,

(ii) for every $t \in T = \text{dom}(F)$ and $\mu \leq \kappa$,

 $\{\alpha < \mu_t : F(t \cap \alpha) \text{ is } \mu \text{-decomposable}\} \in F(t),$

then X(F) is κ -resolvable.

COROLLARY [J-M]

If every $\mathcal{F} \in un(\mu)$ is maximally decomposable whenever $\omega \leq \mu \leq \lambda$, then X(F) is λ -resolvable for any λ -filtration F.

István Juhász (Rényi Institute)

3

<ロ> <問> <問> < 回> < 回> 、