Cardinal invariants of paratopological groups

Iván Sánchez

Universidad Autónoma Metropolitana, México, D.F. isr.uami@gmail.com

São Sebastião, Brazil Brazilian Conference on General Topology and Set Theory In honour of Ofelia T. Alas

August 12–16, 2013

Cardinal invariants of paratopological groups

3 → 4 3

2

イロト イヨト イヨト イヨト

A paratopological group

2

イロト イポト イヨト イヨト

A paratopological group is a group endowed with a topology for which multiplication in the group is continuous.

A paratopological group is a group endowed with a topology for which multiplication in the group is continuous.

Now, consider a topological space X. Let \mathcal{U} be a collection of subsets of X.

A paratopological group is a group endowed with a topology for which multiplication in the group is continuous.

Now, consider a topological space *X*. Let \mathcal{U} be a collection of subsets of *X*. The star of \mathcal{U} with respect to $A \subseteq X$, denoted by $st(\mathcal{U}, A)$, is the set $\bigcup \{ U \in \mathcal{U} : U \cap A \neq \emptyset \}$.

A paratopological group is a group endowed with a topology for which multiplication in the group is continuous.

Now, consider a topological space *X*. Let \mathcal{U} be a collection of subsets of *X*. The star of \mathcal{U} with respect to $A \subseteq X$, denoted by $st(\mathcal{U}, A)$, is the set $\bigcup \{ \mathcal{U} \in \mathcal{U} : \mathcal{U} \cap A \neq \emptyset \}$. When $A = \{x\}$, we simply write $st(\mathcal{U}, x)$.

A paratopological group is a group endowed with a topology for which multiplication in the group is continuous.

Now, consider a topological space *X*. Let \mathcal{U} be a collection of subsets of *X*. The star of \mathcal{U} with respect to $A \subseteq X$, denoted by $st(\mathcal{U}, A)$, is the set $\bigcup \{ \mathcal{U} \in \mathcal{U} : \mathcal{U} \cap A \neq \emptyset \}$. When $A = \{x\}$, we simply write $st(\mathcal{U}, x)$. We put $st^1(\mathcal{U}, x) = st(\mathcal{U}, x)$ and recursively define $st^{n+1}(\mathcal{U}, x) = st(\mathcal{U}, st^n(\mathcal{U}, x))$.

2

イロト イヨト イヨト イヨト

Let *n* be a positive integer. We say that a space *X* has a G_{δ} -diagonal of rank *n*

Let *n* be a positive integer. We say that a space *X* has a G_{δ} -diagonal of rank *n* if there exists a countable collection $\{U_k : k \in \omega\}$ of open covers of *X* such that $\bigcap \{st^n(U_k, x) : k \in \omega\} = \{x\}$ for each $x \in X$.

Let *n* be a positive integer. We say that a space *X* has a G_{δ} -diagonal of rank *n* if there exists a countable collection $\{U_k : k \in \omega\}$ of open covers of *X* such that $\bigcap \{st^n(U_k, x) : k \in \omega\} = \{x\}$ for each $x \in X$. If a space has a G_{δ} -diagonal of any possible rank, then we say that it has a G_{δ} -diagonal of infinite rank.

Iván Sánchez (UAM-I)

Cardinal invariants of paratopological groups

August 12–16, 2013 5 / 11

æ

▲口▶ ▲圖▶ ▲理▶ ▲理≯

Theorem 1 (Arhangel'skii and A. Bella, 2007).

Every Hausdorff first countable paratopological group has a G_{δ} -diagonal of infinite rank.

Theorem 1 (Arhangel'skii and A. Bella, 2007).

Every Hausdorff first countable paratopological group has a G_{δ} -diagonal of infinite rank.

In topological groups: countable π -character \Rightarrow countable character. In paratopological groups, we have:

A D N A B N A B N A B N

Theorem 1 (Arhangel'skii and A. Bella, 2007).

Every Hausdorff first countable paratopological group has a G_{δ} -diagonal of infinite rank.

In topological groups: countable π -character \Rightarrow countable character. In paratopological groups, we have:

Example 2 (Arhangel'skii and Burke, 2006).

There exists a Tychonoff paratopological group *G* with a countable π -base such that the space *G* is not first countable.

A question of Arhangel'skii and Bella

Problem 1 (Arhangel'skii and A. Bella, 2007).

Does a Hausdorff (regular, Tychonoff) paratopological group of countable π -character have a G_{δ} -diagonal of infinite rank?

A question of Arhangel'skii and Bella

Problem 1 (Arhangel'skii and A. Bella, 2007).

Does a Hausdorff (regular, Tychonoff) paratopological group of countable π -character have a G_{δ} -diagonal of infinite rank?

The next theorem resolves Problem 1 for regular paratopological groups.

A question of Arhangel'skii and Bella

Problem 1 (Arhangel'skii and A. Bella, 2007).

Does a Hausdorff (regular, Tychonoff) paratopological group of countable π -character have a G_{δ} -diagonal of infinite rank?

The next theorem resolves Problem 1 for regular paratopological groups.

Theorem 3.

Every regular paratopological group of countable π -character has a G_{δ} -diagonal of infinite rank.

Let (X, τ) a topological space. The family $\{Int\overline{U} : U \in \tau\}$ is a base for a topology τ_r on *X*.

Let (X, τ) a topological space. The family $\{Int\overline{U} : U \in \tau\}$ is a base for a topology τ_r on X. The space $X_r = (X, \tau_r)$ is called the semiregularization of X (Stone-Katětov). Clearly, the topology τ_r is weaker than τ .

Let (X, τ) a topological space. The family $\{Int\overline{U} : U \in \tau\}$ is a base for a topology τ_r on X. The space $X_r = (X, \tau_r)$ is called the semiregularization of X (Stone-Katětov). Clearly, the topology τ_r is weaker than τ .

Theorem 4 (Ravsky, 2003).

If G is a Hausdorff paratopological group, then the semiregularization G_r of G is a regular paratopological group.

Let (X, τ) a topological space. The family $\{Int\overline{U} : U \in \tau\}$ is a base for a topology τ_r on X. The space $X_r = (X, \tau_r)$ is called the semiregularization of X (Stone-Katětov). Clearly, the topology τ_r is weaker than τ .

Theorem 4 (Ravsky, 2003).

If G is a Hausdorff paratopological group, then the semiregularization G_r of G is a regular paratopological group.

The previous fact permits us to call G_r the regularization of G.

The regularization of subgroups

Let *H* be a subgroup of a paratopological group (*G*, τ). Put $\sigma = \tau|_{H}$.

The regularization of subgroups

Let *H* be a subgroup of a paratopological group (G, τ) . Put $\sigma = \tau|_{H}$. In general, the topologies $\tau_{r}|_{H}$ and σ_{r} are different.

The regularization of subgroups

Let *H* be a subgroup of a paratopological group (G, τ) . Put $\sigma = \tau|_{H}$. In general, the topologies $\tau_{r}|_{H}$ and σ_{r} are different.

Lemma 5.

If *H* is a dense subgroup of a paratopological group (*G*, τ) and $\sigma = \tau|_{H}$, then $\tau_{r}|_{H} = \sigma_{r}$.

2

イロト イヨト イヨト イヨト

Now, we resolve Problem 1.

э

Now, we resolve Problem 1.

Theorem 6.

Let *H* be a dense subgroup of a Hausdorff paratopological group (G, τ) such that *H* has countable π -character. Then (G, τ) has a G_{δ} -diagonal of infinite rank.

Now, we resolve Problem 1.

Theorem 6.

Let *H* be a dense subgroup of a Hausdorff paratopological group (G, τ) such that *H* has countable π -character. Then (G, τ) has a G_{δ} -diagonal of infinite rank.

Proof.

Put $\sigma = \tau|_{H}$.

Now, we resolve Problem 1.

Theorem 6.

Let *H* be a dense subgroup of a Hausdorff paratopological group (G, τ) such that *H* has countable π -character. Then (G, τ) has a G_{δ} -diagonal of infinite rank.

Proof.

Put $\sigma = \tau|_{H}$. Since (H, σ) has countable π -character, (H, σ_r) too. By Lemma 5, $\pi\chi(H, \tau_r|_H) \leq \omega$.

Now, we resolve Problem 1.

Theorem 6.

Let *H* be a dense subgroup of a Hausdorff paratopological group (G, τ) such that *H* has countable π -character. Then (G, τ) has a G_{δ} -diagonal of infinite rank.

Proof.

Put $\sigma = \tau|_{H}$. Since (H, σ) has countable π -character, (H, σ_r) too. By Lemma 5, $\pi\chi(H, \tau_r|_H) \leq \omega$. Since $(H, \tau_r|_H)$ is a dense subgroup of the regular space G_r , the regular paratopological group G_r has countable π -character.

Now, we resolve Problem 1.

Theorem 6.

Let *H* be a dense subgroup of a Hausdorff paratopological group (G, τ) such that *H* has countable π -character. Then (G, τ) has a G_{δ} -diagonal of infinite rank.

Proof.

Put $\sigma = \tau|_{H}$. Since (H, σ) has countable π -character, (H, σ_r) too. By Lemma 5, $\pi\chi(H, \tau_r|_H) \leq \omega$. Since $(H, \tau_r|_H)$ is a dense subgroup of the regular space G_r , the regular paratopological group G_r has countable π -character. Theorem 3 implies that G_r has a G_{δ} -diagonal of infinite rank.

Now, we resolve Problem 1.

Theorem 6.

Let *H* be a dense subgroup of a Hausdorff paratopological group (G, τ) such that *H* has countable π -character. Then (G, τ) has a G_{δ} -diagonal of infinite rank.

Proof.

Put $\sigma = \tau|_{H}$. Since (H, σ) has countable π -character, (H, σ_{r}) too. By Lemma 5, $\pi\chi(H, \tau_{r}|_{H}) \leq \omega$. Since $(H, \tau_{r}|_{H})$ is a dense subgroup of the regular space G_{r} , the regular paratopological group G_{r} has countable π -character. Theorem 3 implies that G_{r} has a G_{δ} -diagonal of infinite rank. Since $\tau_{r} \subseteq \tau$, the space (G, τ) has a G_{δ} -diagonal of infinite rank.

Iván Sánchez (UAM-I)

Cardinal invariants of paratopological groups

August 12–16, 2013

2

10/11

イロト イヨト イヨト イヨト

Corollary 7.

Every Hausdorff paratopological group of countable π -character has a G_{δ} -diagonal of infinite rank.

Corollary 7.

Every Hausdorff paratopological group of countable π -character has a G_{δ} -diagonal of infinite rank.

If a Hausdorff topological group *G* contains a dense subgroup of countable π -character, then *G* is first countable.

Corollary 7.

Every Hausdorff paratopological group of countable π -character has a G_{δ} -diagonal of infinite rank.

If a Hausdorff topological group *G* contains a dense subgroup of countable π -character, then *G* is first countable.

The following example shows that, indeed, Theorem 6 is more general than Corollary 6.

Corollary 7.

Every Hausdorff paratopological group of countable π -character has a G_{δ} -diagonal of infinite rank.

If a Hausdorff topological group *G* contains a dense subgroup of countable π -character, then *G* is first countable.

The following example shows that, indeed, Theorem 6 is more general than Corollary 6.

Example 8.

There exists a Hausdorff paratopological group with uncountable π -character which contains a second countable dense subgroup.

Thank you!

Iván Sánchez (UAM-I)

Cardinal invariants of paratopological groups

(4) (5) (4) (5) August 12-16, 2013

11/11