Brazilian Conference on General Topology and Set Theory

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompa properties

Weak P-points

Topological groups

Strong pseudocompact properties

S. Garcia-Ferreira Coauthors: Y. F. Ortiz-Castillo and A. H. Tomita

Centro de Ciencias Matemáticas Universidad Nacional Autónoma de México sgarcia@matmor.unam.mx

Sao Sebastiao, Brazil, 12-16 August 2013

Content

2 $\beta(\mathbb{N})$

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactnes

 $\beta(\mathbb{N})$

Strong pseudocompa properties

Weak P-points

Topological groups

1 Pseudocompactness

3 Strong pseudocompact properties

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

4 Weak *P*-points

5 topological groups

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactnes

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups Our spaces will be Tychonoff.

Definition[E. Hewitt, 1948]

A space X is called *pseudocompact* if for every countable family $\{U_n : n \in \mathbb{N}\}$ of nonempty open subset of X there is $x \in X$ such that $\{n \in \mathbb{N} : V \cap U_n \neq \emptyset\}$ is infinite for all neighborhood V of x.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactnes

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Our spaces will be Tychonoff.

Definition[E. Hewitt, 1948]

A space X is called *pseudocompact* if for every countable family $\{U_n : n \in \mathbb{N}\}$ of nonempty open subset of X there is $x \in X$ such that $\{n \in \mathbb{N} : V \cap U_n \neq \emptyset\}$ is infinite for all neighborhood V of x.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactnes

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Our spaces will be Tychonoff.

Definition[E. Hewitt, 1948]

A space X is called *pseudocompact* if for every countable family $\{U_n : n \in \mathbb{N}\}$ of nonempty open subset of X there is $x \in X$ such that $\{n \in \mathbb{N} : V \cap U_n \neq \emptyset\}$ is infinite for all neighborhood V of x.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Content

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompa properties

Weak P-points

Topological groups

3 Strong pseudocompact propertie

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

4 Weak *P*-points

1 Pseudocompactness

5 topological groups

S. Garcia-Ferreira

Pseudocompactness

$\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

The Stone-Čech compactification $\beta(\mathbb{N})$ of the discrete space of natural numbers \mathbb{N} will be identified with the set of all ultrafilters on \mathbb{N} and its the remainder \mathbb{N}^* will be identified with the set of all free nltrafilters on \mathbb{N} .

For $A \subseteq \mathbb{N}$, we let $\hat{A} = \{p \in \beta(\mathbb{N}) : A \in p\}$ and $A^* = \{p \in \mathbb{N}^* : A \in p\}.$

The family $\{\hat{A} : A \subseteq \mathbb{N}\}$ is a base of clopen subsets of $\beta(\mathbb{N})$, and $\{A^* : A \in [\mathbb{N}]^{\omega}\}$ is a base of clopen subsets of \mathbb{N}^* .

S. Garcia-Ferreira

Pseudocompactness

$\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

The Stone-Čech compactification $\beta(\mathbb{N})$ of the discrete space of natural numbers \mathbb{N} will be identified with the set of all ultrafilters on \mathbb{N} and its the remainder \mathbb{N}^* will be identified with the set of all free ultrafilters on \mathbb{N} .

For $A \subseteq \mathbb{N}$, we let $\hat{A} = \{p \in \beta(\mathbb{N}) : A \in p\}$ and $A^* = \{p \in \mathbb{N}^* : A \in p\}.$

The family $\{\hat{A} : A \subseteq \mathbb{N}\}$ is a base of clopen subsets of $\beta(\mathbb{N})$, and $\{A^* : A \in [\mathbb{N}]^{\omega}\}$ is a base of clopen subsets of \mathbb{N}^* .

S. Garcia-Ferreira

Pseudocompactness

$\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups The Stone-Čech compactification $\beta(\mathbb{N})$ of the discrete space of natural numbers \mathbb{N} will be identified with the set of all ultrafilters on \mathbb{N} and its the remainder \mathbb{N}^* will be identified with the set of all free ultrafilters on \mathbb{N} .

For $A \subseteq \mathbb{N}$, we let $\hat{A} = \{p \in \beta(\mathbb{N}) : A \in p\}$ and $A^* = \{p \in \mathbb{N}^* : A \in p\}.$

The family $\{\hat{A} : A \subseteq \mathbb{N}\}$ is a base of clopen subsets of $\beta(\mathbb{N})$, and $\{A^* : A \in [\mathbb{N}]^{\omega}\}$ is a base of clopen subsets of \mathbb{N}^* .

S. Garcia-Ferreira

Pseudocompactness

$\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups The Stone-Čech compactification $\beta(\mathbb{N})$ of the discrete space of natural numbers \mathbb{N} will be identified with the set of all ultrafilters on \mathbb{N} and its the remainder \mathbb{N}^* will be identified with the set of all free ultrafilters on \mathbb{N} .

For $A \subseteq \mathbb{N}$, we let $\hat{A} = \{p \in \beta(\mathbb{N}) : A \in p\}$ and $A^* = \{p \in \mathbb{N}^* : A \in p\}.$

The family $\{\hat{A} : A \subseteq \mathbb{N}\}$ is a base of clopen subsets of $\beta(\mathbb{N})$, and $\{A^* : A \in [\mathbb{N}]^{\omega}\}$ is a base of clopen subsets of \mathbb{N}^* .

S. Garcia-Ferreira

Pseudocompactness

$\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups The Stone-Čech compactification $\beta(\mathbb{N})$ of the discrete space of natural numbers \mathbb{N} will be identified with the set of all ultrafilters on \mathbb{N} and its the remainder \mathbb{N}^* will be identified with the set of all free ultrafilters on \mathbb{N} .

For
$$A \subseteq \mathbb{N}$$
, we let $\hat{A} = \{p \in \beta(\mathbb{N}) : A \in p\}$ and $A^* = \{p \in \mathbb{N}^* : A \in p\}.$

The family $\{\hat{A} : A \subseteq \mathbb{N}\}$ is a base of clopen subsets of $\beta(\mathbb{N})$, and $\{A^* : A \in [\mathbb{N}]^{\omega}\}$ is a base of clopen subsets of \mathbb{N}^* .

- ロ ト - 4 回 ト - 4 □ - 4

S. Garcia-Ferreira

Pseudocompactness

$\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

The Stone-Čech compactification $\beta(\mathbb{N})$ of the discrete space of natural numbers \mathbb{N} will be identified with the set of all ultrafilters on \mathbb{N} and its the remainder \mathbb{N}^* will be identified with the set of all free ultrafilters on \mathbb{N} .

For
$$A \subseteq \mathbb{N}$$
, we let $\hat{A} = \{p \in \beta(\mathbb{N}) : A \in p\}$ and $A^* = \{p \in \mathbb{N}^* : A \in p\}.$

The family $\{\hat{A} : A \subseteq \mathbb{N}\}$ is a base of clopen subsets of $\beta(\mathbb{N})$, and $\{A^* : A \in [\mathbb{N}]^{\omega}\}$ is a base of clopen subsets of \mathbb{N}^* .

- ロ ト - 4 回 ト - 4 □ - 4

S. Garcia-Ferreira

Pseudocompactness

$\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

The Stone-Čech compactification $\beta(\mathbb{N})$ of the discrete space of natural numbers \mathbb{N} will be identified with the set of all ultrafilters on \mathbb{N} and its the remainder \mathbb{N}^* will be identified with the set of all free ultrafilters on \mathbb{N} .

For
$$A \subseteq \mathbb{N}$$
, we let $\hat{A} = \{p \in \beta(\mathbb{N}) : A \in p\}$ and $A^* = \{p \in \mathbb{N}^* : A \in p\}.$

The family $\{\hat{A} : A \subseteq \mathbb{N}\}$ is a base of clopen subsets of $\beta(\mathbb{N})$, and $\{A^* : A \in [\mathbb{N}]^{\omega}\}$ is a base of clopen subsets of \mathbb{N}^* .

$\beta(\mathbb{N})$

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

$\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Rudin-Keisler Pre-order

Given two ultrafilters $p, q \in \mathbb{N}^*$, we say that $p \leq_{RK} q$ if there exists a function $f : \mathbb{N} \to \mathbb{N}$ such that $\overline{f}(q) = p$, where $\overline{f} : \beta \mathbb{N} \to \beta \mathbb{N}$ is the Stone extension of f.

Let $p, q \in \mathbb{N}^*$. We say that p and q are RK-comparable if either $p \leq_{RK} q$ or $q \leq_{RK} p$. They are RK-equivalent if $p \leq_{RK} q$ and $q \leq_{RK} p$ (in symbols, $p \sim q$). It is known that p and q are RK-equivalent iff there is a bijection $f : \mathbb{N} \to \mathbb{N}$ such that $\overline{f}(p) = q$.

For $p \in \mathbb{N}^*$, the set $T(p) = \{q \in \mathbb{N}^* : p \sim q\}$ is called the *type* of *p*. For each $p \in \mathbb{N}^*$, T(p) will be considered as a subspace of \mathbb{N}^* .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

S. Garcia-Ferreira

Pseudocompactness

$\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Rudin-Keisler Pre-order

Given two ultrafilters $p, q \in \mathbb{N}^*$, we say that $p \leq_{RK} q$ if there exists a function $f : \mathbb{N} \to \mathbb{N}$ such that $\overline{f}(q) = p$, where $\overline{f} : \beta \mathbb{N} \to \beta \mathbb{N}$ is the Stone extension of f.

Let $p, q \in \mathbb{N}^*$. We say that p and q are RK-comparable if either $p \leq_{RK} q$ or $q \leq_{RK} p$. They are RK-equivalent if $p \leq_{RK} q$ and $q \leq_{RK} p$ (in symbols, $p \sim q$). It is known that p and q are RK-equivalent iff there is a bijection $f : \mathbb{N} \to \mathbb{N}$ such that $\overline{f}(p) = q$.

For $p \in \mathbb{N}^*$, the set $T(p) = \{q \in \mathbb{N}^* : p \sim q\}$ is called the *type* of *p*. For each $p \in \mathbb{N}^*$, T(p) will be considered as a subspace of \mathbb{N}^* .

S. Garcia-Ferreira

Pseudocompactness

$\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Rudin-Keisler Pre-order

Given two ultrafilters $p, q \in \mathbb{N}^*$, we say that $p \leq_{RK} q$ if there exists a function $f : \mathbb{N} \to \mathbb{N}$ such that $\overline{f}(q) = p$, where $\overline{f} : \beta \mathbb{N} \to \beta \mathbb{N}$ is the Stone extension of f.

Let $p, q \in \mathbb{N}^*$. We say that p and q are RK-comparable if either $p \leq_{RK} q$ or $q \leq_{RK} p$. They are RK-equivalent if $p \leq_{RK} q$ and $q \leq_{RK} p$ (in symbols, $p \sim q$). It is known that p and q are RK-equivalent iff there is a bijection $f : \mathbb{N} \to \mathbb{N}$ such that $\overline{f}(p) = q$.

For $p \in \mathbb{N}^*$, the set $T(p) = \{q \in \mathbb{N}^* : p \sim q\}$ is called the *type* of *p*. For each $p \in \mathbb{N}^*$, T(p) will be considered as a subspace of \mathbb{N}^* .

S. Garcia-Ferreira

Pseudocompactness

$\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Rudin-Keisler Pre-order

Given two ultrafilters $p, q \in \mathbb{N}^*$, we say that $p \leq_{RK} q$ if there exists a function $f : \mathbb{N} \to \mathbb{N}$ such that $\overline{f}(q) = p$, where $\overline{f} : \beta \mathbb{N} \to \beta \mathbb{N}$ is the Stone extension of f.

Let $p, q \in \mathbb{N}^*$. We say that p and q are RK-comparable if either $p \leq_{RK} q$ or $q \leq_{RK} p$. They are RK-equivalent if $p \leq_{RK} q$ and $q \leq_{RK} p$ (in symbols, $p \sim q$). It is known that p and q are RK-equivalent iff there is a bijection $f : \mathbb{N} \to \mathbb{N}$ such that $\overline{f}(p) = q$.

For $p \in \mathbb{N}^*$, the set $T(p) = \{q \in \mathbb{N}^* : p \sim q\}$ is called the *type* of *p*. For each $p \in \mathbb{N}^*$, T(p) will be considered as a subspace of \mathbb{N}^* .

S. Garcia-Ferreira

Pseudocompactness

$\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Rudin-Keisler Pre-order

Given two ultrafilters $p, q \in \mathbb{N}^*$, we say that $p \leq_{RK} q$ if there exists a function $f : \mathbb{N} \to \mathbb{N}$ such that $\overline{f}(q) = p$, where $\overline{f} : \beta \mathbb{N} \to \beta \mathbb{N}$ is the Stone extension of f.

Let $p, q \in \mathbb{N}^*$. We say that p and q are RK-comparable if either $p \leq_{RK} q$ or $q \leq_{RK} p$. They are RK-equivalent if $p \leq_{RK} q$ and $q \leq_{RK} p$ (in symbols, $p \sim q$). It is known that p and q are RK-equivalent iff there is a bijection $f : \mathbb{N} \to \mathbb{N}$ such that $\overline{f}(p) = q$.

For $p \in \mathbb{N}^*$, the set $T(p) = \{q \in \mathbb{N}^* : p \sim q\}$ is called the *type* of *p*. For each $p \in \mathbb{N}^*$, T(p) will be considered as a subspace of \mathbb{N}^* .

S. Garcia-Ferreira

Pseudocompactness

$\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Rudin-Keisler Pre-order

Given two ultrafilters $p, q \in \mathbb{N}^*$, we say that $p \leq_{RK} q$ if there exists a function $f : \mathbb{N} \to \mathbb{N}$ such that $\overline{f}(q) = p$, where $\overline{f} : \beta \mathbb{N} \to \beta \mathbb{N}$ is the Stone extension of f.

Let $p, q \in \mathbb{N}^*$. We say that p and q are RK-comparable if either $p \leq_{RK} q$ or $q \leq_{RK} p$. They are RK-equivalent if $p \leq_{RK} q$ and $q \leq_{RK} p$ (in symbols, $p \sim q$). It is known that p and q are RK-equivalent iff there is a bijection $f : \mathbb{N} \to \mathbb{N}$ such that $\overline{f}(p) = q$.

For $p \in \mathbb{N}^*$, the set $T(p) = \{q \in \mathbb{N}^* : p \sim q\}$ is called the *type* of *p*. For each $p \in \mathbb{N}^*$, T(p) will be considered as a subspace of \mathbb{N}^* .

S. Garcia-Ferreira

Pseudocompactness

$\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Rudin-Keisler Pre-order

Given two ultrafilters $p, q \in \mathbb{N}^*$, we say that $p \leq_{RK} q$ if there exists a function $f : \mathbb{N} \to \mathbb{N}$ such that $\overline{f}(q) = p$, where $\overline{f} : \beta \mathbb{N} \to \beta \mathbb{N}$ is the Stone extension of f.

Let $p, q \in \mathbb{N}^*$. We say that p and q are RK-comparable if either $p \leq_{RK} q$ or $q \leq_{RK} p$. They are RK-equivalent if $p \leq_{RK} q$ and $q \leq_{RK} p$ (in symbols, $p \sim q$). It is known that p and q are RK-equivalent iff there is a bijection $f : \mathbb{N} \to \mathbb{N}$ such that $\overline{f}(p) = q$.

For $p \in \mathbb{N}^*$, the set $T(p) = \{q \in \mathbb{N}^* : p \sim q\}$ is called the *type* of *p*. For each $p \in \mathbb{N}^*$, T(p) will be considered as a subspace of \mathbb{N}^* .

▲□▼▲□▼▲□▼▲□▼ □ ● ●

S. Garcia-Ferreira

Pseudocompactness

$\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Rudin-Keisler Pre-order

Given two ultrafilters $p, q \in \mathbb{N}^*$, we say that $p \leq_{RK} q$ if there exists a function $f : \mathbb{N} \to \mathbb{N}$ such that $\overline{f}(q) = p$, where $\overline{f} : \beta \mathbb{N} \to \beta \mathbb{N}$ is the Stone extension of f.

Let $p, q \in \mathbb{N}^*$. We say that p and q are RK-comparable if either $p \leq_{RK} q$ or $q \leq_{RK} p$. They are RK-equivalent if $p \leq_{RK} q$ and $q \leq_{RK} p$ (in symbols, $p \sim q$). It is known that p and q are RK-equivalent iff there is a bijection $f : \mathbb{N} \to \mathbb{N}$ such that $\overline{f}(p) = q$.

For $p \in \mathbb{N}^*$, the set $T(p) = \{q \in \mathbb{N}^* : p \sim q\}$ is called the *type* of *p*. For each $p \in \mathbb{N}^*$, T(p) will be considered as a subspace of \mathbb{N}^* .

Content

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

3 Strong pseudocompact properties

4 Weak *P*-points

1 Pseudocompactness

5 topological groups

・ロト・(部・・ヨ・・ヨ・ のへぐ

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition[J. Ginsburg and V. Saks, 1975]

Given a space $X, p \in \mathbb{N}^*$ and a sequence $(S_n)_{n \in \mathbb{N}}$ of nonempty subsets of X, we say that $z \in X$ is a p-limit point of $(S_n)_{n \in \mathbb{N}}$, in symbols $z = p - \lim_{n \to \infty} S_n$, if $\{n \in \mathbb{N} : S_n \cap U \neq \emptyset\} \in p$ for each neighborhood U of z.

Folklore

If $(x_n)_{n \in \mathbb{N}}$ is a sequence of points of X, the we say that x is a p-limit point of this sequence if $x = p - \lim_{n \to \infty} \{x_n\}$. In this case, we simply write $x = p - \lim_{n \to \infty} x_n$.

 $L(p, (S_n)_{n \in \mathbb{N}})$ will denote the set of *p*-limit points of the sequence $(S_n)_{n \in \mathbb{N}}$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition[J. Ginsburg and V. Saks, 1975]

Given a space $X, p \in \mathbb{N}^*$ and a sequence $(S_n)_{n \in \mathbb{N}}$ of nonempty subsets of X, we say that $z \in X$ is a p-limit point of $(S_n)_{n \in \mathbb{N}}$, in symbols $z = p - \lim_{n \to \infty} S_n$, if $\{n \in \mathbb{N} : S_n \cap U \neq \emptyset\} \in p$ for each neighborhood U of z.

Folklore

If $(x_n)_{n \in \mathbb{N}}$ is a sequence of points of X, the we say that x is a p-limit point of this sequence if $x = p - \lim_{n \to \infty} \{x_n\}$. In this case, we simply write $x = p - \lim_{n \to \infty} x_n$.

 $L(p, (S_n)_{n \in \mathbb{N}})$ will denote the set of *p*-limit points of the sequence $(S_n)_{n \in \mathbb{N}}$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition[J. Ginsburg and V. Saks, 1975]

Given a space $X, p \in \mathbb{N}^*$ and a sequence $(S_n)_{n \in \mathbb{N}}$ of nonempty subsets of X, we say that $z \in X$ is a p-limit point of $(S_n)_{n \in \mathbb{N}}$, in symbols $z = p - \lim_{n \to \infty} S_n$, if $\{n \in \mathbb{N} : S_n \cap U \neq \emptyset\} \in p$ for each neighborhood U of z.

Folklore

If $(x_n)_{n \in \mathbb{N}}$ is a sequence of points of X, the we say that x is a p-limit point of this sequence if $x = p - \lim_{n \to \infty} \{x_n\}$. In this case, we simply write $x = p - \lim_{n \to \infty} x_n$.

 $L(p, (S_n)_{n \in \mathbb{N}})$ will denote the set of *p*-limit points of the sequence $(S_n)_{n \in \mathbb{N}}$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition[J. Ginsburg and V. Saks, 1975]

Given a space $X, p \in \mathbb{N}^*$ and a sequence $(S_n)_{n \in \mathbb{N}}$ of nonempty subsets of X, we say that $z \in X$ is a p-limit point of $(S_n)_{n \in \mathbb{N}}$, in symbols $z = p - \lim_{n \to \infty} S_n$, if $\{n \in \mathbb{N} : S_n \cap U \neq \emptyset\} \in p$ for each neighborhood U of z.

Folklore

If $(x_n)_{n \in \mathbb{N}}$ is a sequence of points of X, the we say that x is a p-limit point of this sequence if $x = p - \lim_{n \to \infty} \{x_n\}$. In this case, we simply write $x = p - \lim_{n \to \infty} x_n$.

 $L(p, (S_n)_{n \in \mathbb{N}})$ will denote the set of *p*-limit points of the sequence $(S_n)_{n \in \mathbb{N}}$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition[J. Ginsburg and V. Saks, 1975]

Given a space $X, p \in \mathbb{N}^*$ and a sequence $(S_n)_{n \in \mathbb{N}}$ of nonempty subsets of X, we say that $z \in X$ is a p-limit point of $(S_n)_{n \in \mathbb{N}}$, in symbols $z = p - \lim_{n \to \infty} S_n$, if $\{n \in \mathbb{N} : S_n \cap U \neq \emptyset\} \in p$ for each neighborhood U of z.

Folklore

If $(x_n)_{n \in \mathbb{N}}$ is a sequence of points of X, the we say that x is a p-limit point of this sequence if $x = p - \lim_{n \to \infty} \{x_n\}$. In this case, we simply write $x = p - \lim_{n \to \infty} x_n$.

 $L(p, (S_n)_{n \in \mathbb{N}})$ will denote the set of *p*-limit points of the sequence $(S_n)_{n \in \mathbb{N}}$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Remark

Let $\{x_n : n \in \mathbb{N}\} \subseteq X$. Then $x \in X$ is an accumulation point of $\{x_n : n \in \mathbb{N}\}$ iff there is $p \in \mathbb{N}^*$ such that $x = p - \lim_{n \to \infty} x_n$.

Remark

A space X is called pseudocompact iff for every countable family $\{U_n : n \in \mathbb{N}\}$ of nonempty open subset of X there $p \in \mathbb{N}^*$ such that $L(p, (U_n)_{n \in \mathbb{N}}) \neq \emptyset$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Remark

Let $\{x_n : n \in \mathbb{N}\} \subseteq X$. Then $x \in X$ is an accumulation point of $\{x_n : n \in \mathbb{N}\}$ iff there is $p \in \mathbb{N}^*$ such that $x = p - \lim_{n \to \infty} x_n$.

Remark

A space X is called pseudocompact iff for every countable family $\{U_n : n \in \mathbb{N}\}$ of nonempty open subset of X there $p \in \mathbb{N}^*$ such that $L(p, (U_n)_{n \in \mathbb{N}}) \neq \emptyset$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Remark

Let $\{x_n : n \in \mathbb{N}\} \subseteq X$. Then $x \in X$ is an accumulation point of $\{x_n : n \in \mathbb{N}\}$ iff there is $p \in \mathbb{N}^*$ such that $x = p - \lim_{n \to \infty} x_n$.

Remark

A space X is called pseudocompact iff for every countable family $\{U_n : n \in \mathbb{N}\}$ of nonempty open subset of X there $p \in \mathbb{N}^*$ such that $L(p, (U_n)_{n \in \mathbb{N}}) \neq \emptyset$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Remark

Let $\{x_n : n \in \mathbb{N}\} \subseteq X$. Then $x \in X$ is an accumulation point of $\{x_n : n \in \mathbb{N}\}$ iff there is $p \in \mathbb{N}^*$ such that $x = p - \lim_{n \to \infty} x_n$.

Remark

A space X is called pseudocompact iff for every countable family $\{U_n : n \in \mathbb{N}\}$ of nonempty open subset of X there $p \in \mathbb{N}^*$ such that $L(p, (U_n)_{n \in \mathbb{N}}) \neq \emptyset$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition[J. Ginsburg and V. Saks, 1975]

For $p \in \mathbb{N}^*$, a topological space X is called *p*-*pseudocompact* if every sequence of nonempty open subsets of X has a *p*-limit point. A space X is called *ultrapseudocompact* if X is *p*-pseudocompact for all $p \in \mathbb{N}^*$.

Clearly, for each $p \in \mathbb{N}^*$, *p*-pseudocompactness \Rightarrow pseudompactness. *p*-compactness is preserved under arbitrary products, for all $p \in \mathbb{N}^*$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition[J. Ginsburg and V. Saks, 1975]

For $p \in \mathbb{N}^*$, a topological space X is called *p*-*pseudocompact* if every sequence of nonempty open subsets of X has a *p*-limit point. A space X is called *ultrapseudocompact* if X is *p*-pseudocompact for all $p \in \mathbb{N}^*$.

Clearly, for each $p \in \mathbb{N}^*$, *p*-pseudocompactness \Rightarrow pseudompactness. *p*-compactness is preserved under arbitrary products, for all $p \in \mathbb{N}^*$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition[J. Ginsburg and V. Saks, 1975]

For $p \in \mathbb{N}^*$, a topological space X is called *p*-*pseudocompact* if every sequence of nonempty open subsets of X has a *p*-limit point. A space X is called *ultrapseudocompact* if X is *p*-pseudocompact for all $p \in \mathbb{N}^*$.

Clearly, for each $p \in \mathbb{N}^*$, *p*-pseudocompactness \Rightarrow pseudompactness. *p*-compactness is preserved under arbitrary products, for all $p \in \mathbb{N}^*$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition[J. Ginsburg and V. Saks, 1975]

For $p \in \mathbb{N}^*$, a topological space X is called *p*-*pseudocompact* if every sequence of nonempty open subsets of X has a *p*-limit point. A space X is called *ultrapseudocompact* if X is *p*-pseudocompact for all $p \in \mathbb{N}^*$.

Clearly, for each $p \in \mathbb{N}^*$, *p*-pseudocompactness \Rightarrow pseudompactness. *p*-compactness is preserved under arbitrary products, for all $p \in \mathbb{N}^*$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition[J. Ginsburg and V. Saks, 1975]

For $p \in \mathbb{N}^*$, a topological space X is called *p*-*pseudocompact* if every sequence of nonempty open subsets of X has a *p*-limit point. A space X is called *ultrapseudocompact* if X is *p*-pseudocompact for all $p \in \mathbb{N}^*$.

Clearly, for each $p \in \mathbb{N}^*$, *p*-pseudocompactness \Rightarrow pseudompactness. *p*-compactness is preserved under arbitrary products, for all $p \in \mathbb{N}^*$.
Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition[J. Angoa, Y. F. Ortiz-Castillo and A. Tamariz-Mascarúa, 2013]

for $p \in \mathbb{N}^*$, a space X is called *strongly p-pseudocompact*, if for each sequence $(U_n)_{n\in\mathbb{N}}$ of nonempty open subsets of X there are a sequence $(x_n)_{n\in\mathbb{N}}$ of points in X and $x \in X$ such that $x = p - \lim_{n\to\infty} x_n$ and $x_n \in U_n$ for all $n \in \mathbb{N}$.

Clearly, strongly *p*-pseudocompactness \Rightarrow *p*-pseudocompactness, for each $p \in \mathbb{N}^*$. Strongly *p*-pseudocompactness is preserved under arbitrary products.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition[J. Angoa, Y. F. Ortiz-Castillo and A. Tamariz-Mascarúa, 2013]

for $p \in \mathbb{N}^*$, a space X is called *strongly p-pseudocompact*, if for each sequence $(U_n)_{n \in \mathbb{N}}$ of nonempty open subsets of X there are a sequence $(x_n)_{n \in \mathbb{N}}$ of points in X and $x \in X$ such that $x = p - \lim_{n \to \infty} x_n$ and $x_n \in U_n$ for all $n \in \mathbb{N}$.

Clearly, strongly *p*-pseudocompactness \Rightarrow *p*-pseudocompactness, for each $p \in \mathbb{N}^*$. Strongly *p*-pseudocompactness is preserved under arbitrary products.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups Definition[J. Angoa, Y. F. Ortiz-Castillo and A. Tamariz-Mascarúa, 2013]

for $p \in \mathbb{N}^*$, a space X is called *strongly p-pseudocompact*, if for each sequence $(U_n)_{n\in\mathbb{N}}$ of nonempty open subsets of X there are a sequence $(x_n)_{n\in\mathbb{N}}$ of points in X and $x \in X$ such that $x = p - \lim_{n\to\infty} x_n$ and $x_n \in U_n$ for all $n \in \mathbb{N}$.

Clearly, strongly *p*-pseudocompactness \Rightarrow *p*-pseudocompactness, for each $p \in \mathbb{N}^*$. Strongly *p*-pseudocompactness is preserved under arbitrary products.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition[J. Angoa, Y. F. Ortiz-Castillo and A. Tamariz-Mascarúa, 2013]

for $p \in \mathbb{N}^*$, a space X is called *strongly p-pseudocompact*, if for each sequence $(U_n)_{n \in \mathbb{N}}$ of nonempty open subsets of X there are a sequence $(x_n)_{n \in \mathbb{N}}$ of points in X and $x \in X$ such that $x = p - \lim_{n \to \infty} x_n$ and $x_n \in U_n$ for all $n \in \mathbb{N}$.

Clearly, strongly *p*-pseudocompactness \Rightarrow *p*-pseudocompactness, for each $p \in \mathbb{N}^*$. Strongly *p*-pseudocompactness is preserved under arbitrary products.

Strong pseudocompact properties

- S. Garcia-Ferreira
- Pseudocompactness

$\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups Given a space X, K(X) denotes the hyperspace of nonempty compact subsets of X with the Vietories topoloy.

Theorem[J. Angoa, Y. F. Ortiz-Castillo and A. Tamariz-Mascarua, 2013]

For a topological space X, the following statements are equivalent:

・ロト ・四ト ・ヨト ・ヨ

- X is pseudo- ω -bounded,
- *K*(*X*) is pseudocompact,
- K(X) is p-pseudocompact for some $p \in \mathbb{N}^*$, and
- K(X) is strongly *p*-pseudocompact for some $p \in \mathbb{N}^*$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups Given a space X, K(X) denotes the hyperspace of nonempty compact subsets of X with the Vietories topoloy.

Theorem[J. Angoa, Y. F. Ortiz-Castillo and A. Tamariz-Mascarua, 2013]

For a topological space X, the following statements are equivalent:

- X is pseudo- ω -bounded,
- K(X) is pseudocompact,
- K(X) is p-pseudocompact for some $p \in \mathbb{N}^*$, and
- K(X) is strongly *p*-pseudocompact for some $p \in \mathbb{N}^*$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups Given a space X, K(X) denotes the hyperspace of nonempty compact subsets of X with the Vietories topoloy.

Theorem[J. Angoa, Y. F. Ortiz-Castillo and A. Tamariz-Mascarua, 2013]

For a topological space X, the following statements are equivalent:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

- X is pseudo-ω-bounded,
- K(X) is pseudocompact,
- $i \ K(X)$ is *p*-pseudocompact for some $p \in \mathbb{N}^*$, and
- K(X) is strongly *p*-pseudocompact for some $p \in \mathbb{N}^*$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups Given a space X, K(X) denotes the hyperspace of nonempty compact subsets of X with the Vietories topoloy.

Theorem[J. Angoa, Y. F. Ortiz-Castillo and A. Tamariz-Mascarua, 2013]

For a topological space X, the following statements are equivalent:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

- X is pseudo-ω-bounded,
- K(X) is pseudocompact,
- $i \ K(X)$ is *p*-pseudocompact for some $p \in \mathbb{N}^*$, and
- K(X) is strongly *p*-pseudocompact for some $p \in \mathbb{N}^*$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups Given a space X, K(X) denotes the hyperspace of nonempty compact subsets of X with the Vietories topoloy.

Theorem[J. Angoa, Y. F. Ortiz-Castillo and A. Tamariz-Mascarua, 2013]

For a topological space X, the following statements are equivalent:

- X is pseudo-ω-bounded,
- *K*(*X*) is pseudocompact,

 $\mathsf{K}(X)$ is *p*-pseudocompact for some $p\in\mathbb{N}^*$, and

• K(X) is strongly p-pseudocompact for some $p \in \mathbb{N}^*$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups Given a space X, K(X) denotes the hyperspace of nonempty compact subsets of X with the Vietories topoloy.

Theorem[J. Angoa, Y. F. Ortiz-Castillo and A. Tamariz-Mascarua, 2013]

For a topological space X, the following statements are equivalent:

- X is pseudo-ω-bounded,
- *K*(*X*) is pseudocompact,

 $\mathsf{K}(X)$ is *p*-pseudocompact for some $p\in\mathbb{N}^*$, and

• K(X) is strongly p-pseudocompact for some $p \in \mathbb{N}^*$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups Given a space X, K(X) denotes the hyperspace of nonempty compact subsets of X with the Vietories topoloy.

Theorem[J. Angoa, Y. F. Ortiz-Castillo and A. Tamariz-Mascarua, 2013]

For a topological space X, the following statements are equivalent:

- X is pseudo-ω-bounded,
- K(X) is pseudocompact,
- K(X) is *p*-pseudocompact for some $p \in \mathbb{N}^*$, and

K(X) is strongly p-pseudocompact for some $p \in K(X)$

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups Given a space X, K(X) denotes the hyperspace of nonempty compact subsets of X with the Vietories topoloy.

Theorem[J. Angoa, Y. F. Ortiz-Castillo and A. Tamariz-Mascarua, 2013]

For a topological space X, the following statements are equivalent:

- X is pseudo-ω-bounded,
- K(X) is pseudocompact,
- K(X) is *p*-pseudocompact for some $p \in \mathbb{N}^*$, and

K(X) is strongly p-pseudocompact for some $p \in K(X)$

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups Given a space X, K(X) denotes the hyperspace of nonempty compact subsets of X with the Vietories topoloy.

Theorem[J. Angoa, Y. F. Ortiz-Castillo and A. Tamariz-Mascarua, 2013]

For a topological space X, the following statements are equivalent:

- X is pseudo-ω-bounded,
- K(X) is pseudocompact,
- K(X) is *p*-pseudocompact for some $p \in \mathbb{N}^*$, and
- K(X) is strongly *p*-pseudocompact for some $p \in \mathbb{N}^*$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups A space X is called *strongly pseudocompact* if for each sequence $(U_n)_{n \in \mathbb{N}}$ of nonempty open subsets of X there are $p \in \mathbb{N}^*$, a sequence $(x_n)_{n \in \mathbb{N}}$ of points in X and $x \in X$ such that $x = p - \lim_{n \to \infty} x_n$ and $x_n \in U_n$ for all $n \in \mathbb{N}$.

It is easy to check that the strong pseudocompactness of K(X) is equivalent to any statement of the previous theorem.

There is an ultrapseudocompact, non-strongly pseudocompact space.

Definition[Salvador-Yasser]

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups A space X is called *strongly pseudocompact* if for each sequence $(U_n)_{n \in \mathbb{N}}$ of nonempty open subsets of X there are $p \in \mathbb{N}^*$, a sequence $(x_n)_{n \in \mathbb{N}}$ of points in X and $x \in X$ such that $x = p - \lim_{n \to \infty} x_n$ and $x_n \in U_n$ for all $n \in \mathbb{N}$.

It is easy to check that the strong pseudocompactness of K(X) is equivalent to any statement of the previous theorem.

There is an ultrapseudocompact, non-strongly pseudocompact space.

Definition[Salvador-Yasser]

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups A space X is called *strongly pseudocompact* if for each sequence $(U_n)_{n \in \mathbb{N}}$ of nonempty open subsets of X there are $p \in \mathbb{N}^*$, a sequence $(x_n)_{n \in \mathbb{N}}$ of points in X and $x \in X$ such that $x = p - \lim_{n \to \infty} x_n$ and $x_n \in U_n$ for all $n \in \mathbb{N}$.

It is easy to check that the strong pseudocompactness of K(X) is equivalent to any statement of the previous theorem.

There is an ultrapseudocompact, non-strongly pseudocompact space.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition[Salvador-Yasser]

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups A space X is called *strongly pseudocompact* if for each sequence $(U_n)_{n \in \mathbb{N}}$ of nonempty open subsets of X there are $p \in \mathbb{N}^*$, a sequence $(x_n)_{n \in \mathbb{N}}$ of points in X and $x \in X$ such that $x = p - \lim_{n \to \infty} x_n$ and $x_n \in U_n$ for all $n \in \mathbb{N}$.

It is easy to check that the strong pseudocompactness of K(X) is equivalent to any statement of the previous theorem.

There is an ultrapseudocompact, non-strongly pseudocompact space.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Theorem[P. Simon, 1985]

There are 2^{c} weak *P*-points of \mathbb{N}^{*} pairwise *RK*-incomparable.

onstruction

Pick three *RK*-incomparable weak *P*-points *q*, *r* and *t* of \mathbb{N}^* and fix an ω -partition $\{A_n : n \in \mathbb{N}\}$ of \mathbb{N} . Put $Z = \bigcup_{n \in \mathbb{N}} A_n^*$ and Y = Fr(Z). Let us consider the following sets:

$$Q = \bigcup \{ \overline{\{q_n : n \in \mathbb{N}\}} \cap Y : q_n \in T(q) \cap Z) \},\$$

and, for each $i \in \mathbb{N}$,

 $R_i = \bigcup \{ \overline{\{r_n : n \in \mathbb{N}\}} \setminus \{r_n : n \in \mathbb{N}\} : \{r_n : n \in \mathbb{N}\} \in [A_i^* \cap T(r)]^{\omega} \}$ and $C_i = [A_i^* \cap T(t)] \cup R_i$. Our space will be $X = [\bigcup_{n \in \mathbb{N}} C_n] \cup Q$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Theorem[P. Simon, 1985]

There are 2^{c} weak *P*-points of \mathbb{N}^{*} pairwise *RK*-incomparable.

onstruction

Pick three *RK*-incomparable weak *P*-points *q*, *r* and *t* of \mathbb{N}^* and fix an ω -partition $\{A_n : n \in \mathbb{N}\}$ of \mathbb{N} . Put $Z = \bigcup_{n \in \mathbb{N}} A_n^*$ and Y = Fr(Z). Let us consider the following sets:

$$Q = \bigcup \{ \overline{\{q_n : n \in \mathbb{N}\}} \cap Y : q_n \in T(q) \cap Z) \},\$$

and, for each $i \in \mathbb{N}$,

 $R_i = \bigcup \{ \overline{\{r_n : n \in \mathbb{N}\}} \setminus \{r_n : n \in \mathbb{N}\} : \{r_n : n \in \mathbb{N}\} \in [A_i^* \cap T(r)]^{\omega} \}$ and $C_i = [A_i^* \cap T(t)] \cup R_i$. Our space will be $X = [\bigcup_{n \in \mathbb{N}} C_n] \cup Q$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Theorem[P. Simon, 1985]

There are 2^{c} weak *P*-points of \mathbb{N}^{*} pairwise *RK*-incomparable.

Construction

Pick three *RK*-incomparable weak *P*-points *q*, *r* and *t* of \mathbb{N}^* and fix an ω -partition $\{A_n : n \in \mathbb{N}\}$ of \mathbb{N} . Put $Z = \bigcup_{n \in \mathbb{N}} A_n^*$ and Y = Fr(Z). Let us consider the following sets:

 $Q = \bigcup \{ \overline{\{q_n : n \in \mathbb{N}\}} \cap Y : q_n \in T(q) \cap Z) \},\$

and, for each $i \in \mathbb{N}$,

 $R_i = \bigcup \{ \overline{\{r_n : n \in \mathbb{N}\}} \setminus \{r_n : n \in \mathbb{N}\} : \{r_n : n \in \mathbb{N}\} \in [A_i^* \cap T(r)]^{\omega} \}$

and $C_i = [A_i^* \cap T(t)] \cup R_i$. Our space will be $X = [\bigcup_{n \in \mathbb{N}} C_n] \cup Q$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Theorem[P. Simon, 1985]

There are 2^c weak *P*-points of \mathbb{N}^* pairwise *RK*-incomparable.

Construction

Pick three *RK*-incomparable weak *P*-points *q*, *r* and *t* of \mathbb{N}^* and fix an ω -partition $\{A_n : n \in \mathbb{N}\}$ of \mathbb{N} . Put $Z = \bigcup_{n \in \mathbb{N}} A_n^*$ and Y = Fr(Z). Let us consider the following sets:

 $Q = \bigcup \{ \overline{\{q_n : n \in \mathbb{N}\}} \cap Y : q_n \in T(q) \cap Z) \},\$

and, for each $i \in \mathbb{N}$,

 $R_i = \bigcup \{ \overline{\{r_n : n \in \mathbb{N}\}} \setminus \{r_n : n \in \mathbb{N}\} : \{r_n : n \in \mathbb{N}\} \in [A_i^* \cap T(r)]^{\omega} \}$

and $C_i = [A_i^* \cap T(t)] \cup R_i$. Our space will be $X = [\bigcup_{n \in \mathbb{N}} C_n] \cup Q$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Theorem[P. Simon, 1985]

There are $2^{\mathfrak{c}}$ weak *P*-points of \mathbb{N}^* pairwise *RK*-incomparable.

Construction

Pick three *RK*-incomparable weak *P*-points *q*, *r* and *t* of \mathbb{N}^* and fix an ω -partition $\{A_n : n \in \mathbb{N}\}$ of \mathbb{N} . Put $Z = \bigcup_{n \in \mathbb{N}} A_n^*$ and Y = Fr(Z). Let us consider the following sets:

$$Q = \bigcup \{ \overline{\{q_n : n \in \mathbb{N}\}} \cap Y : q_n \in T(q) \cap Z) \},\$$

and, for each $i \in \mathbb{N}$,

 $R_i = \bigcup \{ \overline{\{r_n : n \in \mathbb{N}\}} \setminus \{r_n : n \in \mathbb{N}\} : \{r_n : n \in \mathbb{N}\} \in [A_i^* \cap T(r)]^{\omega} \}$ and $C_i = [A_i^* \cap T(t)] \cup R_i$. Our space will be $X = [\bigcup_{n \in \mathbb{N}} C_n] \cup Q$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Theorem[P. Simon, 1985]

There are $2^{\mathfrak{c}}$ weak *P*-points of \mathbb{N}^* pairwise *RK*-incomparable.

Construction

Pick three *RK*-incomparable weak *P*-points *q*, *r* and *t* of \mathbb{N}^* and fix an ω -partition $\{A_n : n \in \mathbb{N}\}$ of \mathbb{N} . Put $Z = \bigcup_{n \in \mathbb{N}} A_n^*$ and Y = Fr(Z). Let us consider the following sets:

$$Q = \bigcup \{ \overline{\{q_n : n \in \mathbb{N}\}} \cap Y : q_n \in T(q) \cap Z) \},\$$

and, for each $i \in \mathbb{N}$,

 $R_i = \bigcup \{ \overline{\{r_n : n \in \mathbb{N}\}} \setminus \{r_n : n \in \mathbb{N}\} : \{r_n : n \in \mathbb{N}\} \in [A_i^* \cap T(r)]^{\omega} \}$ and $C_i = [A_i^* \cap T(t)] \cup R_i$. Our space will be $X = [\bigcup_{n \in \mathbb{N}} C_n] \cup Q$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups Countable compactness \Rightarrow strong pseudocompactness \Rightarrow pseudocompactness.

If $p \in \mathbb{N}^*$ is a weak *P*-point, then T(p) is a pseudocompact space that is not strongly pseudocompact since every countable subset is discrete.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

 $\label{eq:countable} \begin{array}{l} \mbox{Countable compactness} \Rightarrow \mbox{strong pseudocompactness} \Rightarrow \\ \mbox{pseudocompactness}. \end{array}$

If $p \in \mathbb{N}^*$ is a weak *P*-point, then T(p) is a pseudocompact space that is not strongly pseudocompact since every countable subset is discrete.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups $\label{eq:countable} \begin{array}{l} \mbox{Countable compactness} \Rightarrow \mbox{strong pseudocompactness} \Rightarrow \\ \mbox{pseudocompactness}. \end{array}$

If $p \in \mathbb{N}^*$ is a weak *P*-point, then T(p) is a pseudocompact space that is not strongly pseudocompact since every countable subset is discrete.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups $\label{eq:countable} \begin{array}{l} \mbox{Countable compactness} \Rightarrow \mbox{strong pseudocompactness} \Rightarrow \\ \mbox{pseudocompactness}. \end{array}$

If $p \in \mathbb{N}^*$ is a weak *P*-point, then T(p) is a pseudocompact space that is not strongly pseudocompact since every countable subset is discrete.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups A strongly pseudocompact group that is not countably compact.

For each $x \in \{0,1\}^c$, we define $sup(x) = \{\xi < \mathfrak{c} : x(\xi) \neq 0\}$ and let $\chi_A : \mathfrak{c} \to \{0,1\}$ be the characteristic function of $A \subseteq \mathfrak{c}$. Fix a partition $\{P_n : n \in \mathbb{N}\}$ of \mathfrak{c} in subsets of size \mathfrak{c} . Consider the subgroup G of $\{0,1\}^c$ generated by the set $\{x \in \{0,1\}^c : |sup(x)| \le \omega\} \cup \{\chi_{\cup_{n \le k} A_k} : n \in \mathbb{N}\}.$

Since $\{x \in \{0,1\}^c : |sup(x)| \le \omega\}$ is ω -bounded and dense in G, G is strongly pseudocompact. As $\chi_{\bigcup_{n \le k} A_k} \longrightarrow \overrightarrow{1}$ and $\overrightarrow{1} \notin G$, G cannot be countably compact.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups A strongly pseudocompact group that is not countably compact.

For each $x \in \{0,1\}^c$, we define $sup(x) = \{\xi < \mathfrak{c} : x(\xi) \neq 0\}$ and let $\chi_A : \mathfrak{c} \to \{0,1\}$ be the characteristic function of $A \subseteq \mathfrak{c}$. Fix a partition $\{P_n : n \in \mathbb{N}\}$ of \mathfrak{c} in subsets of size \mathfrak{c} . Consider the subgroup G of $\{0,1\}^c$ generated by the set $\{x \in \{0,1\}^c : |sup(x)| \le \omega\} \cup \{\chi_{\cup_{n \le k} A_k} : n \in \mathbb{N}\}.$

Since $\{x \in \{0,1\}^c : |sup(x)| \le \omega\}$ is ω -bounded and dense in G, G is strongly pseudocompact. As $\chi_{\bigcup_{n \le k} A_k} \longrightarrow \overrightarrow{1}$ and $\overrightarrow{1} \notin G$, G cannot be countably compact.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups A strongly pseudocompact group that is not countably compact.

For each $x \in \{0,1\}^c$, we define $sup(x) = \{\xi < \mathfrak{c} : x(\xi) \neq 0\}$ and let $\chi_A : \mathfrak{c} \to \{0,1\}$ be the characteristic function of $A \subseteq \mathfrak{c}$. Fix a partition $\{P_n : n \in \mathbb{N}\}$ of \mathfrak{c} in subsets of size \mathfrak{c} . Consider the subgroup G of $\{0,1\}^c$ generated by the set $\{x \in \{0,1\}^c : |sup(x)| \le \omega\} \cup \{\chi_{\bigcup_{n \le k} A_k} : n \in \mathbb{N}\}.$

Since $\{x \in \{0,1\}^c : |sup(x)| \le \omega\}$ is ω -bounded and dense in G, G is strongly pseudocompact. As $\chi_{\bigcup_{n \le k} A_k} \longrightarrow \overrightarrow{1}$ and $\overrightarrow{1} \notin G$, G cannot be countably compact.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups A strongly pseudocompact group that is not countably compact.

For each $x \in \{0,1\}^c$, we define $sup(x) = \{\xi < \mathfrak{c} : x(\xi) \neq 0\}$ and let $\chi_A : \mathfrak{c} \to \{0,1\}$ be the characteristic function of $A \subseteq \mathfrak{c}$. Fix a partition $\{P_n : n \in \mathbb{N}\}$ of \mathfrak{c} in subsets of size \mathfrak{c} . Consider the subgroup G of $\{0,1\}^c$ generated by the set $\{x \in \{0,1\}^c : |sup(x)| \le \omega\} \cup \{\chi_{\bigcup_{n \le k} A_k} : n \in \mathbb{N}\}.$

Since $\{x \in \{0,1\}^c : |sup(x)| \le \omega\}$ is ω -bounded and dense in G, G is strongly pseudocompact. As $\chi_{\bigcup_{n \le k} A_k} \longrightarrow \overrightarrow{1}$ and $\overrightarrow{1} \notin G$, G cannot be countably compact.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups A strongly pseudocompact group that is not countably compact.

For each $x \in \{0,1\}^c$, we define $sup(x) = \{\xi < \mathfrak{c} : x(\xi) \neq 0\}$ and let $\chi_A : \mathfrak{c} \to \{0,1\}$ be the characteristic function of $A \subseteq \mathfrak{c}$. Fix a partition $\{P_n : n \in \mathbb{N}\}$ of \mathfrak{c} in subsets of size \mathfrak{c} . Consider the subgroup G of $\{0,1\}^c$ generated by the set $\{x \in \{0,1\}^c : |sup(x)| \le \omega\} \cup \{\chi_{\bigcup_{n \le k} A_k} : n \in \mathbb{N}\}.$

Since $\{x \in \{0,1\}^c : |sup(x)| \le \omega\}$ is ω -bounded and dense in G, G is strongly pseudocompact. As $\chi_{\bigcup_{n \le k} A_k} \longrightarrow \overrightarrow{1}$ and $\overrightarrow{1} \notin G$, G cannot be countably compact.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups A strongly pseudocompact group that is not countably compact.

For each $x \in \{0,1\}^c$, we define $sup(x) = \{\xi < \mathfrak{c} : x(\xi) \neq 0\}$ and let $\chi_A : \mathfrak{c} \to \{0,1\}$ be the characteristic function of $A \subseteq \mathfrak{c}$. Fix a partition $\{P_n : n \in \mathbb{N}\}$ of \mathfrak{c} in subsets of size \mathfrak{c} . Consider the subgroup G of $\{0,1\}^c$ generated by the set $\{x \in \{0,1\}^c : |sup(x)| \le \omega\} \cup \{\chi_{\bigcup_{n \le k} A_k} : n \in \mathbb{N}\}.$

Since $\{x \in \{0,1\}^c : |sup(x)| \le \omega\}$ is ω -bounded and dense in G, G is strongly pseudocompact. As $\chi_{\bigcup_{n \le k} A_k} \longrightarrow \vec{1}$ and $\vec{1} \notin G$, G cannot be countably compact.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups A strongly pseudocompact group that is not countably compact.

For each $x \in \{0,1\}^c$, we define $sup(x) = \{\xi < \mathfrak{c} : x(\xi) \neq 0\}$ and let $\chi_A : \mathfrak{c} \to \{0,1\}$ be the characteristic function of $A \subseteq \mathfrak{c}$. Fix a partition $\{P_n : n \in \mathbb{N}\}$ of \mathfrak{c} in subsets of size \mathfrak{c} . Consider the subgroup G of $\{0,1\}^c$ generated by the set $\{x \in \{0,1\}^c : |sup(x)| \le \omega\} \cup \{\chi_{\bigcup_{n \le k} A_k} : n \in \mathbb{N}\}.$

Since $\{x \in \{0,1\}^{\mathfrak{c}} : |sup(x)| \leq \omega\}$ is ω -bounded and dense in G, G is strongly pseudocompact. As $\chi_{\bigcup_{n \leq k} A_k} \longrightarrow \overrightarrow{1}$ and $\overrightarrow{1} \notin G$, G cannot be countably compact.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups For each $p \in \mathbb{N}$, strong *p*-pseudocompactness \Rightarrow strong pseudocompactness.

A countable compact space whose square is not pseudocompact is an example of a strongly pseudocompact space that is not *p*-pseudocompact for any $p \in \mathbb{N}^*$. In 1967, for each $1 < n \in \mathbb{N}$, Z. Frolík constructed a space X such that X^n is countably compact and X^{n+1} is not pseudocompact.

There is another strongly pseudocompact space that is not strongly p-pseudocompact for any $p \in \mathbb{N}^*$ constructed by using *RF*-order on \mathbb{N}^* .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

For each $p \in \mathbb{N}$, strong *p*-pseudocompactness \Rightarrow strong pseudocompactness.

A countable compact space whose square is not pseudocompact is an example of a strongly pseudocompact space that is not *p*-pseudocompact for any $p \in \mathbb{N}^*$. In 1967, for each $1 < n \in \mathbb{N}$, Z. Frolík constructed a space X such that X^n is countably compact and X^{n+1} is not pseudocompact.

There is another strongly pseudocompact space that is not strongly p-pseudocompact for any $p \in \mathbb{N}^*$ constructed by using *RF*-order on \mathbb{N}^* .
Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups For each $p \in \mathbb{N}$, strong *p*-pseudocompactness \Rightarrow strong pseudocompactness.

A countable compact space whose square is not pseudocompact is an example of a strongly pseudocompact space that is not *p*-pseudocompact for any $p \in \mathbb{N}^*$. In 1967, for each $1 < n \in \mathbb{N}$, Z. Frolik constructed a space X such that X^n is countably compact and X^{n+1} is not pseudocompact.

There is another strongly pseudocompact space that is not strongly p-pseudocompact for any $p \in \mathbb{N}^*$ constructed by using *RF*-order on \mathbb{N}^* .

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups For each $p \in \mathbb{N}$, strong *p*-pseudocompactness \Rightarrow strong pseudocompactness.

A countable compact space whose square is not pseudocompact is an example of a strongly pseudocompact space that is not *p*-pseudocompact for any $p \in \mathbb{N}^*$. In 1967, for each $1 < n \in \mathbb{N}$, Z. Frolík constructed a space X such that X^n is countably compact and X^{n+1} is not pseudocompact.

There is another strongly pseudocompact space that is not strongly p-pseudocompact for any $p \in \mathbb{N}^*$ constructed by using *RF*-order on \mathbb{N}^* .

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups For each $p \in \mathbb{N}$, strong *p*-pseudocompactness \Rightarrow strong pseudocompactness.

A countable compact space whose square is not pseudocompact is an example of a strongly pseudocompact space that is not p-pseudocompact for any $p \in \mathbb{N}^*$. In 1967, for each $1 < n \in \mathbb{N}$, Z. Frolík constructed a space X such that X^n is countably compact and X^{n+1} is not pseudocompact.

There is another strongly pseudocompact space that is not strongly p-pseudocompact for any $p \in \mathbb{N}^*$ constructed by using RF-order on \mathbb{N}^* .

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition(Rudin-Frolik order)

For each $p, q \in \mathbb{N}$, we say that $p <_{RF} q$ if there is an embedding $f : \mathbb{N} \to \mathbb{N}^*$ such that $\overline{f}(p) = q$.

Frolík proved that $\overline{f}(p) \not\sim p$ for every $p \in \mathbb{N}$ and every embedding $f : \mathbb{N} \to \mathbb{N}^*$.

For each $p, q \in \mathbb{N}$, we say that $p \leq_{RF} q$ if either $p <_{RF} q$ or $p \sim q$. We know that $\leq_{RF} \Rightarrow \leq_{RK}$ and they are different.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition(Rudin-Frolík order)

For each $p, q \in \mathbb{N}$, we say that $p <_{RF} q$ if there is an embedding $f : \mathbb{N} \to \mathbb{N}^*$ such that $\overline{f}(p) = q$.

Frolík proved that $\overline{f}(p) \not\sim p$ for every $p \in \mathbb{N}$ and every embedding $f : \mathbb{N} \to \mathbb{N}^*$.

For each $p, q \in \mathbb{N}$, we say that $p \leq_{RF} q$ if either $p <_{RF} q$ or $p \sim q$. We know that $\leq_{RF} \Rightarrow \leq_{RK}$ and they are different.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition(Rudin-Frolík order)

For each $p, q \in \mathbb{N}$, we say that $p <_{RF} q$ if there is an embedding $f : \mathbb{N} \to \mathbb{N}^*$ such that $\overline{f}(p) = q$.

Frolík proved that $\overline{f}(p) \not\sim p$ for every $p \in \mathbb{N}$ and every embedding $f : \mathbb{N} \to \mathbb{N}^*$.

For each $p, q \in \mathbb{N}$, we say that $p \leq_{RF} q$ if either $p <_{RF} q$ or $p \sim q$. We know that $\leq_{RF} \Rightarrow \leq_{RK}$ and they are different.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition(Rudin-Frolík order)

For each $p, q \in \mathbb{N}$, we say that $p <_{RF} q$ if there is an embedding $f : \mathbb{N} \to \mathbb{N}^*$ such that $\overline{f}(p) = q$.

Frolík proved that $\overline{f}(p) \not\sim p$ for every $p \in \mathbb{N}$ and every embedding $f : \mathbb{N} \to \mathbb{N}^*$.

For each $p, q \in \mathbb{N}$, we say that $p \leq_{RF} q$ if either $p <_{RF} q$ or $p \sim q$. We know that $\leq_{RF} \Rightarrow \leq_{RK}$ and they are different.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition(Rudin-Frolík order)

For each $p, q \in \mathbb{N}$, we say that $p <_{RF} q$ if there is an embedding $f : \mathbb{N} \to \mathbb{N}^*$ such that $\overline{f}(p) = q$.

Frolík proved that $\overline{f}(p) \not\sim p$ for every $p \in \mathbb{N}$ and every embedding $f : \mathbb{N} \to \mathbb{N}^*$.

For each $p, q \in \mathbb{N}$, we say that $p \leq_{RF} q$ if either $p <_{RF} q$ or $p \sim q$. We know that $\leq_{RF} \Rightarrow \leq_{RK}$ and they are different.

■ For every p ∈ N*, the RF-predecessors of p are linearly ordered by ≤_{RF}.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Lemma

The \leq_{RF} satisfies the following properties.

• The weak *P*-points of \mathbb{N}^* are \leq_{RF} -minimal.

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Lemma

The \leq_{RF} satisfies the following properties.

• The weak *P*-points of \mathbb{N}^* are \leq_{RF} -minimal.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Lemma

The \leq_{RF} satisfies the following properties.

- The weak *P*-points of \mathbb{N}^* are \leq_{RF} -minimal.
- For every p ∈ N*, the RF-predecessors of p are linearly ordered by ≤_{RF}.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition

For each $p \in \mathbb{N}^*$, we define

 $B_{p} = \{q \in \mathbb{N}^{*} : \exists s \in \mathbb{N}^{*} (s \leq_{RF} q \land s \leq_{RF} p) \lor (p \leq_{RF} q \lor q \leq_{RF} p) \}$

nd $X_p = \mathbb{N}^* \setminus B_p$. Observe that $p \notin X_p$ for every $p \in \mathbb{N}^*$.

.emma

If $p, q \in \mathbb{N}^*$, then X_p is strongly q-pseudocompact iff $q \notin B_p$. In particular, X_p cannot be strongly p-pseudocompact.

Lemma

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition

For each $p \in \mathbb{N}^*$, we define

 $B_p = \{q \in \mathbb{N}^* : \exists s \in \mathbb{N}^* (s \leq_{RF} q \land s \leq_{RF} p) \lor (p \leq_{RF} q \lor q \leq_{RF} p) \}.$

and $X_p = \mathbb{N}^* \setminus B_p$. Observe that $p \notin X_p$ for every $p \in \mathbb{N}^*$.

emma

If $p, q \in \mathbb{N}^*$, then X_p is strongly *q*-pseudocompact iff $q \notin B_p$. In particular, X_p cannot be strongly *p*-pseudocompact.

Lemma

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition

For each $p \in \mathbb{N}^*$, we define

$$B_p = \{q \in \mathbb{N}^* : \exists s \in \mathbb{N}^* (s \leq_{RF} q \land s \leq_{RF} p) \lor (p \leq_{RF} q \lor q \leq_{RF} p) \}.$$

and $X_p = \mathbb{N}^* \setminus B_p$. Observe that $p \notin X_p$ for every $p \in \mathbb{N}^*$.

emma

E

If $p, q \in \mathbb{N}^*$, then X_p is strongly q-pseudocompact iff $q \notin B_p$. In particular, X_p cannot be strongly p-pseudocompact.

Lemma

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition

For each $p \in \mathbb{N}^*$, we define

$$B_p = \{q \in \mathbb{N}^* : \exists s \in \mathbb{N}^* (s \leq_{RF} q \land s \leq_{RF} p) \lor (p \leq_{RF} q \lor q \leq_{RF} p) \}.$$

and $X_p = \mathbb{N}^* \setminus B_p$. Observe that $p \notin X_p$ for every $p \in \mathbb{N}^*$.

Lemma

If $p, q \in \mathbb{N}^*$, then X_p is strongly q-pseudocompact iff $q \notin B_p$. In particular, X_p cannot be strongly p-pseudocompact.

Lemma

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition

For each $p \in \mathbb{N}^*$, we define

 $B_p = \{q \in \mathbb{N}^* : \exists s \in \mathbb{N}^* (s \leq_{RF} q \land s \leq_{RF} p) \lor (p \leq_{RF} q \lor q \leq_{RF} p) \}.$

and $X_p = \mathbb{N}^* \setminus B_p$. Observe that $p \notin X_p$ for every $p \in \mathbb{N}^*$.

Lemma

If $p, q \in \mathbb{N}^*$, then X_p is strongly *q*-pseudocompact iff $q \notin B_p$. In particular, X_p cannot be strongly *p*-pseudocompact.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lemma

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Definition

For each $p \in \mathbb{N}^*$, we define

 $B_p = \{q \in \mathbb{N}^* : \exists s \in \mathbb{N}^* (s \leq_{RF} q \land s \leq_{RF} p) \lor (p \leq_{RF} q \lor q \leq_{RF} p) \}.$

and $X_p = \mathbb{N}^* \setminus B_p$. Observe that $p \notin X_p$ for every $p \in \mathbb{N}^*$.

Lemma

If $p, q \in \mathbb{N}^*$, then X_p is strongly *q*-pseudocompact iff $q \notin B_p$. In particular, X_p cannot be strongly *p*-pseudocompact.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lemma

S. Garcia-Ferreira

Pseudocompactness

$\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

xample

If X is the countably compactification of the disjoint topological sum $\sqcup_{p \in \mathbb{N}^*} X_p$ by adding just one point, then X is a strongly pseudocompact space that is not strongly *p*-pseudocompact for any $p \in \mathbb{N}^*$.

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Example

If X is the countably compactification of the disjoint topological sum $\sqcup_{p \in \mathbb{N}^*} X_p$ by adding just one point, then X is a strongly pseudocompact space that is not strongly *p*-pseudocompact for any $p \in \mathbb{N}^*$.

Content

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompa properties

Weak P-points

Topological groups

Strong pseudocompact propertie

1 Pseudocompactness

5 topological groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 ・ 今へ?

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

⁻heorem

The space of weak P-points of \mathbb{N}^* is ultrapseudocompact and non-strongly pseudocompact

lotation

Let $\mathcal{P}=\{P_n:n\in\mathbb{N}\}$ be an ω -partition of $\mathbb N$ and let $p\in\mathbb{N}^*.$ We lefine

 $\mathcal{F}(\mathcal{P},p) = \{\bigcup_{n \in A} (P_n \setminus F_n) : A \in p \text{ and } \forall n \in A(F_n \in [\mathbb{N}]^{<\omega})\}$

It is easy to check that $\mathcal{F}(\mathcal{P}, p)$ is a filter base. We write \mathcal{F}_p instead of $\mathcal{F}(\mathcal{P}, p)$ when a confusion is not possible.

Strong pseudocompact properties

- S. Garcia-Ferreira
- Pseudocompactness
- $\beta(\mathbb{N})$
- Strong pseudocompact properties
- Weak P-points
- Topological groups

Theorem

The space of weak P-points of \mathbb{N}^* is ultrapseudocompact and non-strongly pseudocompact

lotatior

Let $\mathcal{P} = \{P_n : n \in \mathbb{N}\}$ be an ω -partition of \mathbb{N} and let $\rho \in \mathbb{N}^*$. We define

 $\mathcal{F}(\mathcal{P},p) = \{\bigcup_{n \in A} (P_n \setminus F_n) : A \in p \text{ and } \forall n \in A(F_n \in [\mathbb{N}]^{<\omega})\}$

It is easy to check that $\mathcal{F}(\mathcal{P}, p)$ is a filter base. We write \mathcal{F}_p instead of $\mathcal{F}(\mathcal{P}, p)$ when a confusion is not possible.

Strong pseudocompact properties

- S. Garcia-Ferreira
- Pseudocompactness
- $\beta(\mathbb{N})$
- Strong pseudocompact properties
- Weak P-points
- Topological groups

Theorem

The space of weak P-points of \mathbb{N}^* is ultrapseudocompact and non-strongly pseudocompact

Notation

Let $\mathcal{P} = \{ P_n : n \in \mathbb{N} \}$ be an ω -partition of \mathbb{N} and let $p \in \mathbb{N}^*$. We define

$$\mathcal{F}(\mathcal{P},p) = \{ \bigcup_{n \in A} (P_n \setminus F_n) : A \in p \text{ and } \forall n \in A(F_n \in [\mathbb{N}]^{<\omega}) \}.$$

It is easy to check that $\mathcal{F}(\mathcal{P}, p)$ is a filter base. We write \mathcal{F}_p instead of $\mathcal{F}(\mathcal{P}, p)$ when a confusion is not possible.

Strong pseudocompact properties

- S. Garcia-Ferreira
- Pseudocompactness
- $\beta(\mathbb{N})$
- Strong pseudocompact properties

Weak P-points

Topological groups

Theorem

The space of weak P-points of \mathbb{N}^* is ultrapseudocompact and non-strongly pseudocompact

Notation

Let $\mathcal{P} = \{ P_n : n \in \mathbb{N} \}$ be an ω -partition of \mathbb{N} and let $p \in \mathbb{N}^*$. We define

$$\mathcal{F}(\mathcal{P},p) = \{ \bigcup_{n \in A} (P_n \setminus F_n) : A \in p \text{ and } orall n \in A(F_n \in [\mathbb{N}]^{<\omega}) \}.$$

It is easy to check that $\mathcal{F}(\mathcal{P}, p)$ is a filter base. We write \mathcal{F}_p instead of $\mathcal{F}(\mathcal{P}, p)$ when a confusion is not possible.

Strong pseudocompact properties

- S. Garcia-Ferreira
- Pseudocompactness
- $\beta(\mathbb{N})$
- Strong pseudocompact properties
- Weak P-points
- Topological groups

Theorem

The space of weak P-points of \mathbb{N}^* is ultrapseudocompact and non-strongly pseudocompact

Notation

Let $\mathcal{P} = \{P_n : n \in \mathbb{N}\}$ be an ω -partition of \mathbb{N} and let $p \in \mathbb{N}^*$. We define

$$\mathcal{F}(\mathcal{P},p) = \{ \bigcup_{n \in A} (P_n \setminus F_n) : A \in p \text{ and } orall n \in A(F_n \in [\mathbb{N}]^{<\omega}) \}.$$

It is easy to check that $\mathcal{F}(\mathcal{P}, p)$ is a filter base. We write \mathcal{F}_p instead of $\mathcal{F}(\mathcal{P}, p)$ when a confusion is not possible.

Strong pseudocompact properties

- S. Garcia-Ferreira
- Pseudocompactness
- $\beta(\mathbb{N})$
- Strong pseudocompac properties
- Weak P-points
- Topological groups

Theorem-I

et $A \subseteq \mathbb{N}^*$. Then:

- A is ultrapseudocompact iff for every p ∈ N* and every ω-partition P of N, there exists q ∈ A such that F(P, p) ⊆ q.
- If A = T(A), for every $p \in \mathbb{N}^*$ there exists $q \in A$ such that $p \leq_{RK} q$ iff for every function with infinite fibers $f : \mathbb{N} \to \mathbb{N}$ and every $p \in \overline{f}[\mathbb{N}^*]$, $\overline{f}^{-1}(p) \cap A \neq \emptyset$.
- If A is ultrapseudocompact, then for every $p \in \mathbb{N}^*$, there exists $q \in A$ such that $p \leq_{RK} q$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Theorem-I

Let $A \subseteq \mathbb{N}^*$. Then:

A is ultrapseudocompact iff for every p∈ N* and every
ω-partition P of N, there exists q ∈ A such that F(P, p) ⊆ q.

 $p \leq_{RK} q$ iff for every function with infinite fibers $f : \mathbb{N} \to \mathbb{N}$ and every $p \in \overline{f}[\mathbb{N}^*], \ \overline{f}^{-1}(p) \cap A \neq \emptyset$.

If A is ultrapseudocompact, then for every $p \in \mathbb{N}^*$, there exists $q \in A$ such that $p \leq_{RK} q$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Theorem-I

Let $A \subseteq \mathbb{N}^*$. Then:

A is ultrapseudocompact iff for every p∈ N* and every
ω-partition P of N, there exists q ∈ A such that F(P, p) ⊆ q.

 $p \leq_{RK} q$ iff for every function with infinite fibers $f : \mathbb{N} \to \mathbb{N}$ and every $p \in \overline{f}[\mathbb{N}^*], \ \overline{f}^{-1}(p) \cap A \neq \emptyset$.

If A is ultrapseudocompact, then for every $p \in \mathbb{N}^*$, there exists $q \in A$ such that $p \leq_{RK} q$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Theorem-I

Let $A \subseteq \mathbb{N}^*$. Then:

- A is ultrapseudocompact iff for every $p \in \mathbb{N}^*$ and every ω -partition \mathcal{P} of \mathbb{N} , there exists $q \in A$ such that $\mathcal{F}(\mathcal{P}, p) \subseteq q$.
- If A = T(A), for every $p \in \mathbb{N}^*$ there exists $q \in A$ such that $p \leq_{RK} q$ iff for every function with infinite fibers $f : \mathbb{N} \to \mathbb{N}$ and every $p \in \overline{f}[\mathbb{N}^*]$, $\overline{f}^{-1}(p) \cap A \neq \emptyset$.

f A is ultrapseudocompact, then for every $\rho \in \mathbb{N}^*$, there exists $g \in A$ such that $\rho \leq_{BK} g$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Theorem-I

Let $A \subseteq \mathbb{N}^*$. Then:

- A is ultrapseudocompact iff for every $p \in \mathbb{N}^*$ and every ω -partition \mathcal{P} of \mathbb{N} , there exists $q \in A$ such that $\mathcal{F}(\mathcal{P}, p) \subseteq q$.
- If A = T(A), for every $p \in \mathbb{N}^*$ there exists $q \in A$ such that $p \leq_{RK} q$ iff for every function with infinite fibers $f : \mathbb{N} \to \mathbb{N}$ and every $p \in \overline{f}[\mathbb{N}^*]$, $\overline{f}^{-1}(p) \cap A \neq \emptyset$.

f A is ultrapseudocompact, then for every $\rho \in \mathbb{N}^*$, there exists $g \in A$ such that $\rho \leq_{BK} g$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

$\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Theorem-I

Let $A \subseteq \mathbb{N}^*$. Then:

- A is ultrapseudocompact iff for every $p \in \mathbb{N}^*$ and every ω -partition \mathcal{P} of \mathbb{N} , there exists $q \in A$ such that $\mathcal{F}(\mathcal{P}, p) \subseteq q$.
- If A = T(A), for every $p \in \mathbb{N}^*$ there exists $q \in A$ such that $p \leq_{RK} q$ iff for every function with infinite fibers $f : \mathbb{N} \to \mathbb{N}$ and every $p \in \overline{f}[\mathbb{N}^*]$, $\overline{f}^{-1}(p) \cap A \neq \emptyset$.
- If A is ultrapseudocompact, then for every $p \in \mathbb{N}^*$, there exists $q \in A$ such that $p \leq_{RK} q$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

emark

The first clause of previous theorem is very important since to prove that a subset $A \subseteq \mathbb{N}^*$ is ultrapseudocompact is enough to check the condition:

"for every $p \in \mathbb{N}^*$ and every ω -partition $\{P_n : n \in \mathbb{N}\}$, there exists $q \in A$ such that $\mathcal{F}(\mathcal{P}, p) \subseteq q$ ".

Unfortunately, we do not know whether or not this last conditions is equivalent to the statement

"for every $p\in \mathbb{N}^*$, there exists $q\in A$ such that $p\leq_{RK}q$ ".

Theorem[J. van Mill, 1984]

There is a finite-to-one function $f : \mathbb{N} \to \mathbb{N}$ such that for all $p \in \mathbb{N}^*$ there is a weak *P*-point *q* in \mathbb{N}^* such that $p \leq_{RK} q$ via *f*.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Remark

The first clause of previous theorem is very important since to prove that a subset $A \subseteq \mathbb{N}^*$ is ultrapseudocompact is enough to check the condition:

"for every $p \in \mathbb{N}^*$ and every ω -partition $\{P_n : n \in \mathbb{N}\}$, there exists $q \in A$ such that $\mathcal{F}(\mathcal{P}, p) \subseteq q$ ".

Unfortunately, we do not know whether or not this last conditions is equivalent to the statement

"for every $p \in \mathbb{N}^*$, there exists $q \in A$ such that $p \leq_{RK} q$ ".

Theorem[J. van Mill, 1984]

There is a finite-to-one function $f : \mathbb{N} \to \mathbb{N}$ such that for all $p \in \mathbb{N}^*$ there is a weak *P*-point *q* in \mathbb{N}^* such that $p \leq_{RK} q$ via *f*.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Remark

The first clause of previous theorem is very important since to prove that a subset $A \subseteq \mathbb{N}^*$ is ultrapseudocompact is enough to check the condition:

"for every $p \in \mathbb{N}^*$ and every ω -partition $\{P_n : n \in \mathbb{N}\}$, there exists $q \in A$ such that $\mathcal{F}(\mathcal{P}, p) \subseteq q$ ".

Unfortunately, we do not know whether or not this last conditions is equivalent to the statement

"for every $p\in \mathbb{N}^*$, there exists $q\in A$ such that $p\leq_{\mathit{RK}} q$ ".

Theorem[J. van Mill, 1984]

There is a finite-to-one function $f : \mathbb{N} \to \mathbb{N}$ such that for all $p \in \mathbb{N}^*$ there is a weak *P*-point *q* in \mathbb{N}^* such that $p \leq_{RK} q$ via *f*.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Remark

The first clause of previous theorem is very important since to prove that a subset $A \subseteq \mathbb{N}^*$ is ultrapseudocompact is enough to check the condition:

"for every $p \in \mathbb{N}^*$ and every ω -partition $\{P_n : n \in \mathbb{N}\}$, there exists $q \in A$ such that $\mathcal{F}(\mathcal{P}, p) \subseteq q$ ".

Unfortunately, we do not know whether or not this last conditions is equivalent to the statement

"for every $p \in \mathbb{N}^*$, there exists $q \in A$ such that $p \leq_{RK} q$ ".

Theorem[J. van Mill, 1984]

There is a finite-to-one function $f : \mathbb{N} \to \mathbb{N}$ such that for all $p \in \mathbb{N}^*$ there is a weak *P*-point *q* in \mathbb{N}^* such that $p \leq_{RK} q$ via *f*.
Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

⁻heorem-II

For every ω -partition $\{P_n : n \in \mathbb{N}\}$ of \mathbb{N} and every $p \in \mathbb{N}^*$ there is a weak *P*-point point *q* such that $\mathcal{F}_p \subseteq q$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Theorem-II

For every ω -partition $\{P_n : n \in \mathbb{N}\}$ of \mathbb{N} and every $p \in \mathbb{N}^*$ there is a weak *P*-point point *q* such that $\mathcal{F}_p \subseteq q$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Corollary

The weak P-points of \mathbb{N} is an ultrapseudocompact non-strongly pseudocompact space.

Proof

Obviously, X cannot be strongly pseudocompact. By Theorem II, for every ω -partition \mathcal{P} of \mathbb{N} and every $p \in \mathbb{N}^*$, there exists $q \in X$ such that $\mathcal{F}(\mathcal{P}, p) \subseteq q$. It then follows from Theorem I that X is ultrapseudocompact.

・ロット (雪) (日) (日) (日)

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Corollary

The weak P-points of $\mathbb N$ is an ultrapseudocompact non-strongly pseudocompact space.

Proof

Obviously, X cannot be strongly pseudocompact. By Theorem II, for every ω -partition \mathcal{P} of \mathbb{N} and every $p \in \mathbb{N}^*$, there exists $q \in X$ such that $\mathcal{F}(\mathcal{P}, p) \subseteq q$. It then follows from Theorem I that X is ultrapseudocompact.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Corollary

The weak P-points of $\mathbb N$ is an ultrapseudocompact non-strongly pseudocompact space.

Proof

Obviously, X cannot be strongly pseudocompact. By Theorem II, for every ω -partition \mathcal{P} of \mathbb{N} and every $p \in \mathbb{N}^*$, there exists $q \in X$ such that $\mathcal{F}(\mathcal{P}, p) \subseteq q$. It then follows from Theorem I that X is ultrapseudocompact.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Corollary

The weak P-points of $\mathbb N$ is an ultrapseudocompact non-strongly pseudocompact space.

Proof

Obviously, X cannot be strongly pseudocompact. By Theorem II, for every ω -partition \mathcal{P} of \mathbb{N} and every $p \in \mathbb{N}^*$, there exists $q \in X$ such that $\mathcal{F}(\mathcal{P}, p) \subseteq q$. It then follows from Theorem I that X is ultrapseudocompact.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Content

- S. Garcia-Ferreira
- Pseudocompactness
- $\beta(\mathbb{N})$
- Strong pseudocompa properties
- Weak P-points
- Topological groups

- Strong pseudocompact propertie
- 4 Weak *P*-points

5 topological groups

1 Pseudocompactness

Strong pseudocompact properties

- S. Garcia-Ferreira
- Pseudocompactness
- $\beta(\mathbb{N})$
- Strong pseudocompac properties
- Weak P-points

Topological groups

Theorem[Comfort-Ross, 1966]

The product of pseudocompact topological groups is pseudocompact.

Theorem[Protasov, 1994]

Every infinite totally bounded group contains a nonclosed discrete subset.

Definition

A topological group is *totally bounded* if for every neighborhood V of e there is $F \in [G]^{\leq \omega}$ such that G = VF. Every pseudocompact group is totally bounded.

・ロト ・ 四ト ・ ヨト ・ ヨト

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Theorem[Comfort-Ross, 1966]

The product of pseudocompact topological groups is pseudocompact.

Theorem[Protasov, 1994]

Every infinite totally bounded group contains a nonclosed discrete subset.

Definition

A topological group is *totally bounded* if for every neighborhood V of e there is $F \in [G]^{\leq \omega}$ such that G = VF. Every pseudocompact group is totally bounded.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Theorem[Comfort-Ross, 1966]

The product of pseudocompact topological groups is pseudocompact.

Theorem[Protasov, 1994]

Every infinite totally bounded group contains a nonclosed discrete subset.

Definition

A topological group is *totally bounded* if for every neighborhood V of e there is $F \in [G]^{\leq \omega}$ such that G = VF. Every pseudocompact group is totally bounded.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Theorem[Comfort-Ross, 1966]

The product of pseudocompact topological groups is pseudocompact.

Theorem[Protasov, 1994]

Every infinite totally bounded group contains a nonclosed discrete subset.

Definition

A topological group is *totally bounded* if for every neighborhood V of e there is $F \in [G]^{\leq \omega}$ such that G = VF. Every pseudocompact group is totally bounded.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Theorem[Comfort-Ross, 1966]

The product of pseudocompact topological groups is pseudocompact.

Theorem[Protasov, 1994]

Every infinite totally bounded group contains a nonclosed discrete subset.

Definition

A topological group is *totally bounded* if for every neighborhood V of e there is $F \in [G]^{<\omega}$ such that G = VF. Every pseudocompact group is totally bounded.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Definition

We say that a space X is:

- D-pseudocompact if for every infinite countable family
 {*U_n* : *n* ∈ ℕ} of nonempty pairwise disjoint open subsets, there
 is a discrete set *D* ⊆ ⋃_{*n*∈ℕ} *U_n* such that *D* \ (⋃_{*n*∈ℕ} *U_n*) ≠ ∅ and
 U_n ∩ *D* ≠ ∅ for infinitely many *n* ∈ ℕ.
- F-pseudocompact if for every infinite countable family $\{U_n : n \in \mathbb{N}\}$ of nonempty pairwise disjoint open subsets, there is a non-closed discrete set $D \subseteq \bigcup_{n \in \mathbb{N}} U_n$ such that $|U_n \cap D| < \omega$ for all $n \in \mathbb{N}$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Definition

We say that a space X is:

• D-pseudocompact if for every infinite countable family $\{U_n : n \in \mathbb{N}\}$ of nonempty pairwise disjoint open subsets, there is a discrete set $D \subseteq \bigcup_{n \in \mathbb{N}} U_n$ such that $\overline{D} \setminus (\bigcup_{n \in \mathbb{N}} \overline{U_n}) \neq \emptyset$ and $U_n \cap D \neq \emptyset$ for infinitely many $n \in \mathbb{N}$.

F-pseudocompact if for every infinite countable family $\{U_n : n \in \mathbb{N}\}$ of nonempty pairwise disjoint open subsets, there is a non-closed discrete set $D \subseteq \bigcup_{n \in \mathbb{N}} U_n$ such that $|U_n \cap D| < \omega$ for all $n \in \mathbb{N}$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Definition

We say that a space X is:

• D-pseudocompact if for every infinite countable family $\{U_n : n \in \mathbb{N}\}$ of nonempty pairwise disjoint open subsets, there is a discrete set $D \subseteq \bigcup_{n \in \mathbb{N}} U_n$ such that $\overline{D} \setminus (\bigcup_{n \in \mathbb{N}} \overline{U_n}) \neq \emptyset$ and $U_n \cap D \neq \emptyset$ for infinitely many $n \in \mathbb{N}$.

F-pseudocompact if for every infinite countable family $\{U_n : n \in \mathbb{N}\}$ of nonempty pairwise disjoint open subsets, there is a non-closed discrete set $D \subseteq \bigcup_{n \in \mathbb{N}} U_n$ such that $|U_n \cap D| < \omega$ for all $n \in \mathbb{N}$.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Definition

We say that a space X is:

- D-pseudocompact if for every infinite countable family $\{U_n : n \in \mathbb{N}\}$ of nonempty pairwise disjoint open subsets, there is a discrete set $D \subseteq \bigcup_{n \in \mathbb{N}} U_n$ such that $\overline{D} \setminus (\bigcup_{n \in \mathbb{N}} \overline{U_n}) \neq \emptyset$ and $U_n \cap D \neq \emptyset$ for infinitely many $n \in \mathbb{N}$.
- F-pseudocompact if for every infinite countable family
 {*U_n* : *n* ∈ ℕ} of nonempty pairwise disjoint open subsets, there
 is a non-closed discrete set *D* ⊆ ⋃_{*n*∈ℕ} *U_n* such that
 |*U_n* ∩ *D*| < ω for all *n* ∈ ℕ.

Strong pseudocompact properties	
S. Garcia-Ferreira	
oseudocompactness	
3(ℕ)	
Strong	
seudocompact properties	Stronlgy pseudocompact \Rightarrow <i>F</i> -pseudocompact \Rightarrow <i>D</i> -pseudocompact
Weak <i>P</i> -points	
Topological	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Topologica groups

groups

Strong pseudocompact properties	
S. Garcia-Ferreira	
Pseudocompactness	
$\beta(\mathbb{N})$	
Strong pseudocompact properties	
	Stronlgy pseudocompact \Rightarrow <i>F</i> -pseudocompact \Rightarrow <i>D</i> -pseudocompact
Weak P-points	
Topological	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompa properties

Weak P-points

Topological groups

Example

There is a D-pseudocompact space X that is not F-pseudocompact.

ix $p \in \mathbb{N}^*$ and let $\{A_n : n \in \mathbb{N}\}$ be a partition of \mathbb{N} in infinite sets. et $f : \omega \to T(p)$ be an embedding and set $\overline{f}(p) = p^2$. Now let $\tau : \omega \to T(p^2)$ be an embedding and set $\overline{g}(p) = p^3$. Define

 $B_n=T(p)\cap A_n^*$ for each $n\in\mathbb{N},$

 $egin{aligned} \mathcal{C}_n &= \mathcal{T}(p^2) \cap A_n^* ext{ for each } n \in \mathbb{N}, ext{ and } \ \mathcal{R} &= \mathit{Fr}(igcup_{n \in \mathbb{N}} A_n^*) \setminus (\mathcal{T}(p^2) \cup \mathcal{T}(p^3)). \end{aligned}$

$$X=R\cup (\bigcup_{n\in\mathbb{N}}(B_n\cup C_n).$$

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompa properties

Weak P-points

Topological groups

Example

There is a D-pseudocompact space X that is not F-pseudocompact.

ix $p \in \mathbb{N}^*$ and let $\{A_n : n \in \mathbb{N}\}$ be a partition of \mathbb{N} in infinite sets. et $f : \omega \to T(p)$ be an embedding and set $\overline{f}(p) = p^2$. Now let $\overline{f} : \omega \to T(p^2)$ be an embedding and set $\overline{g}(p) = p^3$. Define

 $B_n=T(p)\cap A_n^*$ for each $n\in\mathbb{N},$

 $egin{aligned} &\mathcal{C}_n = \ T(p^2) \cap A_n^* ext{ for each } n \in \mathbb{N}, ext{ and } \ &R = Fr(igcup_{n \in \mathbb{N}} A_n^*) \setminus (T(p^2) \cup T(p^3)). \end{aligned}$

$$X=R\cup (\bigcup_{n\in\mathbb{N}}(B_n\cup C_n).$$

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompa properties

Weak P-points

Topological groups

Example

There is a D-pseudocompact space X that is not F-pseudocompact.

Fix $p \in \mathbb{N}^*$ and let $\{A_n : n \in \mathbb{N}\}$ be a partition of \mathbb{N} in infinite sets. Let $f : \omega \to T(p)$ be an embedding and set $\overline{f}(p) = p^2$. Now let $g : \omega \to T(p^2)$ be an embedding and set $\overline{g}(p) = p^3$. Define

> $B_n = T(p) \cap A_n^*$ for each $n \in \mathbb{N}$, $C_n = T(p^2) \cap A_n^*$ for each $n \in \mathbb{N}$, and $R = Fr(\bigcup_{n \in \mathbb{N}} A_n^*) \setminus (T(p^2) \cup T(p^3)).$

$$X=R\cup (\bigcup_{n\in\mathbb{N}}(B_n\cup C_n).$$

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompa properties

Weak P-points

Topological groups

Example

There is a D-pseudocompact space X that is not F-pseudocompact.

Fix $p \in \mathbb{N}^*$ and let $\{A_n : n \in \mathbb{N}\}$ be a partition of \mathbb{N} in infinite sets. Let $f : \omega \to T(p)$ be an embedding and set $\overline{f}(p) = p^2$. Now let $g : \omega \to T(p^2)$ be an embedding and set $\overline{g}(p) = p^3$. Define

$$B_n=T(p)\cap A_n^*$$
 for each $n\in\mathbb{N},$

$$egin{aligned} \mathcal{C}_n &= \ \mathcal{T}(p^2) \cap \mathcal{A}_n^* ext{ for each } n \in \mathbb{N}, ext{ and } \ \mathcal{R} &= \ \mathcal{F}r(igcup_{n \in \mathbb{N}} \mathcal{A}_n^*) \setminus (\mathcal{T}(p^2) \cup \mathcal{T}(p^3)). \end{aligned}$$

$$X = R \cup (\bigcup_{n \in \mathbb{N}} (B_n \cup C_n)).$$

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompa properties

Weak P-points

Topological groups

Example

There is a D-pseudocompact space X that is not F-pseudocompact.

Fix $p \in \mathbb{N}^*$ and let $\{A_n : n \in \mathbb{N}\}$ be a partition of \mathbb{N} in infinite sets. Let $f : \omega \to T(p)$ be an embedding and set $\overline{f}(p) = p^2$. Now let $g : \omega \to T(p^2)$ be an embedding and set $\overline{g}(p) = p^3$. Define

$$B_n = T(p) \cap A_n^*$$
 for each $n \in \mathbb{N},$

$$egin{aligned} \mathcal{C}_n &= \ensuremath{\mathcal{T}}(p^2) \cap \mathcal{A}_n^* ext{ for each } n \in \mathbb{N}, ext{ and } \ \mathcal{R} &= \ensuremath{\mathcal{F}} \mathbf{r}(igcup_{n \in \mathbb{N}} \mathcal{A}_n^*) \setminus (\ensuremath{\mathcal{T}}(p^2) \cup \ensuremath{\mathcal{T}}(p^3)). \end{aligned}$$

$$X=R\cup (\bigcup_{n\in\mathbb{N}}(B_n\cup C_n).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Topological groups

Topological groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Topological groups

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Strong pseudocompact properties

- S. Garcia-Ferreira
- Pseudocompactness
- $\beta(\mathbb{N})$
- Strong pseudocompac properties
- Weak P-points

Topological groups

roof

Let G be a pseudocompact group and let $(U_n)_{n\in\mathbb{N}}$ be a sequence of nonempty pairwise disjoint open sets of G. Since G is oseudocompact we can find an accumulation point x for the sequence $(U_n)_{n\in\mathbb{N}}$. Without loss of generality, assume that $x = e \notin \overline{U_n}$ for all $n \in \mathbb{N}$. By following the proof of Protasov's Theorem, we can find a discrete set $\{a_{n_k} : k \in \mathbb{N}\}$ such that:

- $\blacksquare n_k < n_{k+1} \text{ for all } k \in \mathbb{N},$
- The set $\{a_{n_i}a_{n_i}^{-1}: i, j \in \mathbb{N} \text{ and } i < j\}$ is discrete,
- $\{a_{n_i}a_{n_i}^{-1}: j \in \mathbb{N}\} \subseteq U_{n_i}$ for each $i \in \mathbb{N}$, and
- $e \in \{a_{n_i}a_{n_j}^{-1}: i, j \in \mathbb{N} \text{ and } i < j\}$

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

Proof

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Let G be a pseudocompact group and let $(U_n)_{n\in\mathbb{N}}$ be a sequence of nonempty pairwise disjoint open sets of G. Since G is

pseudocompact we can find an accumulation point x for the sequence $(U_n)_{n \in \mathbb{N}}$. Without loss of generality, assume that $x = e \notin \overline{U_n}$ for all $n \in \mathbb{N}$. By following the proof of Protasov's Theorem, we can find a discrete set $\{a_{n_k} : k \in \mathbb{N}\}$ such that:

 $\blacksquare n_k < n_{k+1} \text{ for all } k \in \mathbb{N},$

■ The set $\{a_{n_i}a_{n_i}^{-1}: i, \; j \in \mathbb{N} \; \; ext{and} \; \; i < j\}$ is discrete,

• $\{a_{n_i}a_{n_i}^{-1}: j\in\mathbb{N}\}\subseteq U_{n_i}$ for each $i\in\mathbb{N},$ and

 $\bullet \in \{a_{n_i}a_{n_j}^{-1}: i, j \in \mathbb{N} \text{ and } i < j\}$

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Proof

Let *G* be a pseudocompact group and let $(U_n)_{n \in \mathbb{N}}$ be a sequence of nonempty pairwise disjoint open sets of *G*. Since *G* is pseudocompact we can find an accumulation point *x* for the sequence $(U_n)_{n \in \mathbb{N}}$. Without loss of generality, assume that $x = e \notin \overline{U_n}$ for all $n \in \mathbb{N}$. By following the proof of Protasov's Theorem, we can find a discrete set $\{a_{n_k} : k \in \mathbb{N}\}$ such that:

• The set $\{a_{n_i}a_{n_i}^{-1}: i, j \in \mathbb{N} \text{ and } i < j\}$ is discrete,

• $\{a_{n_i}a_{n_i}^{-1}:j\in\mathbb{N}\}\subseteq U_{n_i}$ for each $i\in\mathbb{N},$ and

 $\bullet \in \{a_{n_i}a_{n_i}^{-1}: i, j \in \mathbb{N} \text{ and } i < j\}$

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Proof

Let G be a pseudocompact group and let $(U_n)_{n\in\mathbb{N}}$ be a sequence of nonempty pairwise disjoint open sets of G. Since G is pseudocompact we can find an accumulation point x for the sequence $(U_n)_{n\in\mathbb{N}}$. Without loss of generality, assume that $x = e \notin \overline{U_n}$ for all $n \in \mathbb{N}$. By following the proof of Protasov's Theorem, we can find a discrete set $\{a_{n_k} : k \in \mathbb{N}\}$ such that:

• $n_k < n_{k+1}$ for all $k \in \mathbb{N}$,

The set $\{a_{n_i}a_{n_i}^{-1}: i, j \in \mathbb{N} \text{ and } i < j\}$ is discrete,

• $\{a_{n_i}a_{n_i}^{-1}: j \in \mathbb{N}\} \subseteq U_{n_i}$ for each $i \in \mathbb{N}$, and

 $\bullet \in \{a_{n_i}a_{n_i}^{-1}: i, j \in \mathbb{N} \text{ and } i < j\}$

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Proof

Let G be a pseudocompact group and let $(U_n)_{n\in\mathbb{N}}$ be a sequence of nonempty pairwise disjoint open sets of G. Since G is pseudocompact we can find an accumulation point x for the sequence $(U_n)_{n\in\mathbb{N}}$. Without loss of generality, assume that $x = e \notin \overline{U_n}$ for all $n \in \mathbb{N}$. By following the proof of Protasov's Theorem, we can find a discrete set $\{a_{n_k} : k \in \mathbb{N}\}$ such that:

• $n_k < n_{k+1}$ for all $k \in \mathbb{N}$,

The set $\{a_{n_i}a_{n_i}^{-1}: i, j \in \mathbb{N} \text{ and } i < j\}$ is discrete,

• $\{a_{n_i}a_{n_i}^{-1}: j \in \mathbb{N}\} \subseteq U_{n_i}$ for each $i \in \mathbb{N}$, and

 $\bullet \in \{a_{n_i}a_{n_i}^{-1}: i, j \in \mathbb{N} \text{ and } i < j\}$

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Proof

Let G be a pseudocompact group and let $(U_n)_{n\in\mathbb{N}}$ be a sequence of nonempty pairwise disjoint open sets of G. Since G is pseudocompact we can find an accumulation point x for the sequence $(U_n)_{n\in\mathbb{N}}$. Without loss of generality, assume that $x = e \notin \overline{U_n}$ for all $n \in \mathbb{N}$. By following the proof of Protasov's Theorem, we can find a discrete set $\{a_{n_k} : k \in \mathbb{N}\}$ such that:

- $n_k < n_{k+1}$ for all $k \in \mathbb{N}$,
- The set $\{a_{n_i}a_{n_i}^{-1}: i, j \in \mathbb{N} \text{ and } i < j\}$ is discrete,

• $\{a_{n_i}a_{n_i}^{-1}: j\in\mathbb{N}\}\subseteq U_{n_i}$ for each $i\in\mathbb{N}$, and

• $e \in \{a_{n_i}a_{n_i}^{-1}: i, j \in \mathbb{N} \text{ and } i < j\}$

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Proof

Let G be a pseudocompact group and let $(U_n)_{n\in\mathbb{N}}$ be a sequence of nonempty pairwise disjoint open sets of G. Since G is pseudocompact we can find an accumulation point x for the sequence $(U_n)_{n\in\mathbb{N}}$. Without loss of generality, assume that $x = e \notin \overline{U_n}$ for all $n \in \mathbb{N}$. By following the proof of Protasov's Theorem, we can find a discrete set $\{a_{n_k} : k \in \mathbb{N}\}$ such that:

- $n_k < n_{k+1}$ for all $k \in \mathbb{N}$,
- The set $\{a_{n_i}a_{n_i}^{-1}: i, j \in \mathbb{N} \text{ and } i < j\}$ is discrete,

• $\{a_{n_i}a_{n_i}^{-1}: j\in\mathbb{N}\}\subseteq U_{n_i}$ for each $i\in\mathbb{N}$, and

• $e \in \{a_{n_i}a_{n_i}^{-1}: i, j \in \mathbb{N} \text{ and } i < j\}$

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Proof

Let G be a pseudocompact group and let $(U_n)_{n\in\mathbb{N}}$ be a sequence of nonempty pairwise disjoint open sets of G. Since G is pseudocompact we can find an accumulation point x for the sequence $(U_n)_{n\in\mathbb{N}}$. Without loss of generality, assume that $x = e \notin \overline{U_n}$ for all $n \in \mathbb{N}$. By following the proof of Protasov's Theorem, we can find a discrete set $\{a_{n_k} : k \in \mathbb{N}\}$ such that:

- $n_k < n_{k+1}$ for all $k \in \mathbb{N}$,
- The set $\{a_{n_i}a_{n_i}^{-1}: i, j \in \mathbb{N} \text{ and } i < j\}$ is discrete,
- $\{a_{n_i}a_{n_i}^{-1}: j \in \mathbb{N}\} \subseteq U_{n_i}$ for each $i \in \mathbb{N}$, and

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Proof

Let G be a pseudocompact group and let $(U_n)_{n\in\mathbb{N}}$ be a sequence of nonempty pairwise disjoint open sets of G. Since G is pseudocompact we can find an accumulation point x for the sequence $(U_n)_{n\in\mathbb{N}}$. Without loss of generality, assume that $x = e \notin \overline{U_n}$ for all $n \in \mathbb{N}$. By following the proof of Protasov's Theorem, we can find a discrete set $\{a_{n_k} : k \in \mathbb{N}\}$ such that:

- $n_k < n_{k+1}$ for all $k \in \mathbb{N}$,
- The set $\{a_{n_i}a_{n_i}^{-1}: i, j \in \mathbb{N} \text{ and } i < j\}$ is discrete,
- $\{a_{n_i}a_{n_i}^{-1}: j \in \mathbb{N}\} \subseteq U_{n_i}$ for each $i \in \mathbb{N}$, and
Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Proof

Let G be a pseudocompact group and let $(U_n)_{n\in\mathbb{N}}$ be a sequence of nonempty pairwise disjoint open sets of G. Since G is pseudocompact we can find an accumulation point x for the sequence $(U_n)_{n\in\mathbb{N}}$. Without loss of generality, assume that $x = e \notin \overline{U_n}$ for all $n \in \mathbb{N}$. By following the proof of Protasov's Theorem, we can find a discrete set $\{a_{n_k} : k \in \mathbb{N}\}$ such that:

- $n_k < n_{k+1}$ for all $k \in \mathbb{N}$,
- The set $\{a_{n_i}a_{n_i}^{-1}: i, j \in \mathbb{N} \text{ and } i < j\}$ is discrete,

•
$$\{a_{n_i}a_{n_i}^{-1}: j \in \mathbb{N}\} \subseteq U_{n_i}$$
 for each $i \in \mathbb{N}$, and

$$\bullet \in \overline{\{a_{n_i}a_{n_j}^{-1}: i, j \in \mathbb{N} \text{ and } i < j\}}$$

Strong pseudocompact properties

- S. Garcia-Ferreira
- Pseudocompactness
- $\beta(\mathbb{N})$
- Strong pseudocompa properties
- Weak P-points
- Topological groups

Let $D = \{a_{n_i}a_{n_j}^{-1} : i, j \in \mathbb{N} \text{ and } i < j \leq 2n_i\}$. It is evident that $|D \cap U_n| < \omega$ for every $n \in \mathbb{N}$. Now, let U be an open neighborhood of e. Fix a symmetric open neighborhood V of e so that $V^2 \subseteq U$. Since G is totally bounded, there is a finite set F such that $\{a_{n_i} : i \in \mathbb{N}\} \subseteq VF$. If k > |F|, then, there are $i, j \in \mathbb{N}$ and $g \in F$ such that $k \leq i < j \leq 2n_k$ and $a_{n_i}, a_{n_j} \in Vg$. So $a_{n_i}a_{n_j}^{-1} \in D$ and $a_{n_i}a_{n_j}^{-1} \in (Vg)(Vg)^{-1}$. As $(Vg)(Vg)^{-1} = V^2 \subseteq U$ and $i < j \leq 2n_k \leq 2n_i$, we obtain that $D \cap U \neq \emptyset$. Since $e \notin D$, D is not closed. Therefore, G is F-pseudocompact.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompa properties

Weak P-points

Topological groups

Let $D = \{a_{n_i}a_{n_j}^{-1} : i, j \in \mathbb{N} \text{ and } i < j \leq 2n_i\}$. It is evident that $|D \cap U_n| < \omega$ for every $n \in \mathbb{N}$. Now, let U be an open neighborhood of e. Fix a symmetric open neighborhood V of e so that $V^2 \subseteq U$. Since G is totally bounded, there is a finite set F such that $\{a_{n_i} : i \in \mathbb{N}\} \subseteq VF$. If k > |F|, then, there are $i, j \in \mathbb{N}$ and $g \in F$ such that $k \leq i < j \leq 2n_k$ and $a_{n_i}, a_{n_j} \in Vg$. So $a_{n_i}a_{n_j}^{-1} \in D$ and $a_{n_i}a_{n_j}^{-1} \in (Vg)(Vg)^{-1}$. As $(Vg)(Vg)^{-1} = V^2 \subseteq U$ and $i < j \leq 2n_k \leq 2n_i$, we obtain that $D \cap U \neq \emptyset$. Since $e \notin D$, D is not closed. Therefore, G is F-pseudocompact.

p-compact groups

Strong pseudocompact properties

- S. Garcia-Ferreira
- Pseudocompactness
- $\beta(\mathbb{N})$
- Strong pseudocompac properties
- Weak P-points

Topological groups

Question

Is every pseudocompact group *p*-psuedocompact for some $p \in \mathbb{N}^*$?

Theorem[Salvador-Yasser, 2013]

Let $\{X_i : i \in I\}$ be a family of compact metric spaces and let $X = \prod_{i \in I} X_i$. Then, every pseudocompact dense subspace of X is ultrapseudocompact.

Thus, every dense pseudocompact subgroup of a Cantor cube $\{0,1\}^\alpha$ is ultrapseudocompact, for any uncountable cardinal α , .

p-compact groups

Strong pseudocompact properties

- S. Garcia-Ferreira
- Pseudocompactness
- $\beta(\mathbb{N})$
- Strong pseudocompac properties
- Weak P-points

Topological groups

Question

Is every pseudocompact group *p*-psuedocompact for some $p \in \mathbb{N}^*$?

Theorem[Salvador-Yasser, 2013]

Let $\{X_i : i \in I\}$ be a family of compact metric spaces and let $X = \prod_{i \in I} X_i$. Then, every pseudocompact dense subspace of X is ultrapseudocompact.

Thus, every dense pseudocompact subgroup of a Cantor cube $\{0,1\}^\alpha$ is ultrapseudocompact, for any uncountable cardinal $\alpha,$.

p-compact groups

Strong pseudocompact properties

- S. Garcia-Ferreira
- Pseudocompactness
- $\beta(\mathbb{N})$
- Strong pseudocompac properties
- Weak P-points

Topological groups

Question

Is every pseudocompact group *p*-psuedocompact for some $p \in \mathbb{N}^*$?

Theorem[Salvador-Yasser, 2013]

Let $\{X_i : i \in I\}$ be a family of compact metric spaces and let $X = \prod_{i \in I} X_i$. Then, every pseudocompact dense subspace of X is ultrapseudocompact.

Thus, every dense pseudocompact subgroup of a Cantor cube $\{0,1\}^\alpha$ is ultrapseudocompact, for any uncountable cardinal $\alpha_{\rm r}$.

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Theorem[Tomita-Salvador, 2013]

Every pseudocompact torsion group is ultrapseudocompact.

Theorem[Salvador, 1992]

Suppose the existence of two selective ultrafilters RK-equivalent. Then for every weak P-point $p \in \omega^*$ there exists a pseudocompact group that is not p-pseudocompact.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Theorem[Tomita-Salvador, 2013]

Every pseudocompact torsion group is ultrapseudocompact.

[Salvador, 1992]

Suppose the existence of two selective ultrafilters RK-equivalent. Then for every weak P-point $p \in \omega^*$ there exists a pseudocompact group that is not p-pseudocompact.

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Theorem[Tomita-Salvador, 2013]

Every pseudocompact torsion group is ultrapseudocompact.

Theorem[Salvador, 1992]

Suppose the existence of two selective ultrafilters RK-equivalent. Then for every weak P-point $p \in \omega^*$ there exists a pseudocompact group that is not p-pseudocompact.

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-point

Topological groups

Example[Tomita-Salvador, 2013]

There is a pseudocompact subgroup of $\{0,1\}^{c}$ that is not strongly pseudocompact.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompact properties

Weak P-points

Topological groups

Example[Tomita-Salvador, 2013]

There is a pseudocompact subgroup of $\{0,1\}^{c}$ that is not strongly pseudocompact.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Strong pseudocompact properties

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Juestion

n *ZFC*, is there a pseudocompact group that is not ultraseudocompact ?

Questior

Is the product of strongly pseudocompact groups strongly pseudocompact ?

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Question

In ZFC, is there a pseudocompact group that is not ultraseudocompact ?

Questior

Is the product of strongly pseudocompact groups strongly pseudocompact ?

S. Garcia-Ferreira

Pseudocompactness

 $\beta(\mathbb{N})$

Strong pseudocompac properties

Weak P-points

Topological groups

Question

In ZFC, is there a pseudocompact group that is not ultraseudocompact ?

Question

Is the product of strongly pseudocompact groups strongly pseudocompact ?

Ofelia

Strong pseudocompact properties	
S. Garcia-Ferreira	
Pseudocompactnes	3
$\beta(\mathbb{N})$	
Strong pseudocompact properties	
Weak <i>P</i> -points	
Topological groups	FELICIDADES OFELIA POR TUS ϵ -AÑOS, WHERE ϵ > 0

<□ > < @ > < E > < E > E のQ @

Ofelia

groups

Strong udocompact rroperties	
Garcia-Ferreira	
seudocompactness	
β(ℕ)	
Strong pseudocompact properties	
Weak <i>P</i> -points	
Topological	FELICIDADES OFELIA POR TUS ϵ -AÑOS. WHERE $\epsilon > 0$

Ofelia

Strong docompact roperties	
Garcia-Ferreira	
udocompactness	
[ℕ)	
trong seudocompact roperties	
Veak <i>P</i> -points	
Topological	FELICIDADES OFELIA POR TUS ϵ -AÑOS, WHERE $\epsilon > 0$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

groups