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Subgroups of T determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set ΓS
The subgroups ΓS cover T
The size of ΓS
Characterized subgroup

Theorem (Kronecker (a special case))

For every irrational α ∈ [0, 1] the set of all multiples {nα : n ∈ Z}
is dense in R modulo 1.

Z – infinite strictly increasing sequences S = (un) of integers,
WS = {α ∈ [0, 1] : (unα) is uniformly distributed mod 1}
for S ∈ Z (where “uniformly distributed” means that

lim
m

|{n ∈ N : 1 ≤ n ≤ m and anα ∈ ∆}|
m

= µ(∆)

for every subinterval ∆ ⊆ [0, 1].)

Theorem (Weyl 1916)

(a) If un = P(n) is a polynomial function of n, then WS contains
all irrational α ∈ [0, 1].

(b) WS has measure 1 for every S ∈ Z.

joint work with D. Impieri On the Borel Complexity of Characterizable Subgroups



Subgroups of T determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set ΓS
The subgroups ΓS cover T
The size of ΓS
Characterized subgroup

Theorem (Kronecker (a special case))

For every irrational α ∈ [0, 1] the set of all multiples {nα : n ∈ Z}
is dense in R modulo 1.

Z – infinite strictly increasing sequences S = (un) of integers,
WS = {α ∈ [0, 1] : (unα) is uniformly distributed mod 1}
for S ∈ Z (where “uniformly distributed” means that

lim
m

|{n ∈ N : 1 ≤ n ≤ m and anα ∈ ∆}|
m

= µ(∆)

for every subinterval ∆ ⊆ [0, 1].)

Theorem (Weyl 1916)

(a) If un = P(n) is a polynomial function of n, then WS contains
all irrational α ∈ [0, 1].

(b) WS has measure 1 for every S ∈ Z.

joint work with D. Impieri On the Borel Complexity of Characterizable Subgroups



Subgroups of T determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set ΓS
The subgroups ΓS cover T
The size of ΓS
Characterized subgroup

Theorem (Kronecker (a special case))

For every irrational α ∈ [0, 1] the set of all multiples {nα : n ∈ Z}
is dense in R modulo 1.

Z – infinite strictly increasing sequences S = (un) of integers,
WS = {α ∈ [0, 1] : (unα) is uniformly distributed mod 1}
for S ∈ Z (where “uniformly distributed” means that

lim
m

|{n ∈ N : 1 ≤ n ≤ m and anα ∈ ∆}|
m

= µ(∆)

for every subinterval ∆ ⊆ [0, 1].)

Theorem (Weyl 1916)

(a) If un = P(n) is a polynomial function of n, then WS contains
all irrational α ∈ [0, 1].

(b) WS has measure 1 for every S ∈ Z.

joint work with D. Impieri On the Borel Complexity of Characterizable Subgroups



Subgroups of T determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set ΓS
The subgroups ΓS cover T
The size of ΓS
Characterized subgroup

Theorem (Kronecker (a special case))

For every irrational α ∈ [0, 1] the set of all multiples {nα : n ∈ Z}
is dense in R modulo 1.

Z – infinite strictly increasing sequences S = (un) of integers,
WS = {α ∈ [0, 1] : (unα) is uniformly distributed mod 1}
for S ∈ Z (where “uniformly distributed” means that

lim
m

|{n ∈ N : 1 ≤ n ≤ m and anα ∈ ∆}|
m

= µ(∆)

for every subinterval ∆ ⊆ [0, 1].)

Theorem (Weyl 1916)

(a) If un = P(n) is a polynomial function of n, then WS contains
all irrational α ∈ [0, 1].

(b) WS has measure 1 for every S ∈ Z.

joint work with D. Impieri On the Borel Complexity of Characterizable Subgroups



Subgroups of T determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set ΓS
The subgroups ΓS cover T
The size of ΓS
Characterized subgroup

Theorem (Kronecker (a special case))

For every irrational α ∈ [0, 1] the set of all multiples {nα : n ∈ Z}
is dense in R modulo 1.

Z – infinite strictly increasing sequences S = (un) of integers,
WS = {α ∈ [0, 1] : (unα) is uniformly distributed mod 1}
for S ∈ Z (where “uniformly distributed” means that

lim
m

|{n ∈ N : 1 ≤ n ≤ m and anα ∈ ∆}|
m

= µ(∆)

for every subinterval ∆ ⊆ [0, 1].)

Theorem (Weyl 1916)

(a) If un = P(n) is a polynomial function of n, then WS contains
all irrational α ∈ [0, 1].

(b) WS has measure 1 for every S ∈ Z.

joint work with D. Impieri On the Borel Complexity of Characterizable Subgroups



Subgroups of T determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set ΓS
The subgroups ΓS cover T
The size of ΓS
Characterized subgroup

Theorem (Kronecker (a special case))

For every irrational α ∈ [0, 1] the set of all multiples {nα : n ∈ Z}
is dense in R modulo 1.

Z – infinite strictly increasing sequences S = (un) of integers,
WS = {α ∈ [0, 1] : (unα) is uniformly distributed mod 1}
for S ∈ Z (where “uniformly distributed” means that

lim
m

|{n ∈ N : 1 ≤ n ≤ m and anα ∈ ∆}|
m

= µ(∆)

for every subinterval ∆ ⊆ [0, 1].)

Theorem (Weyl 1916)

(a) If un = P(n) is a polynomial function of n, then WS contains
all irrational α ∈ [0, 1].

(b) WS has measure 1 for every S ∈ Z.

joint work with D. Impieri On the Borel Complexity of Characterizable Subgroups



Subgroups of T determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set ΓS
The subgroups ΓS cover T
The size of ΓS
Characterized subgroup

Theorem (Kronecker (a special case))

For every irrational α ∈ [0, 1] the set of all multiples {nα : n ∈ Z}
is dense in R modulo 1.

Z – infinite strictly increasing sequences S = (un) of integers,
WS = {α ∈ [0, 1] : (unα) is uniformly distributed mod 1}
for S ∈ Z (where “uniformly distributed” means that

lim
m

|{n ∈ N : 1 ≤ n ≤ m and anα ∈ ∆}|
m

= µ(∆)

for every subinterval ∆ ⊆ [0, 1].)

Theorem (Weyl 1916)

(a) If un = P(n) is a polynomial function of n, then WS contains
all irrational α ∈ [0, 1].

(b) WS has measure 1 for every S ∈ Z.

joint work with D. Impieri On the Borel Complexity of Characterizable Subgroups



Subgroups of T determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set ΓS
The subgroups ΓS cover T
The size of ΓS
Characterized subgroup

WS need not contain all irrational α ∈ [0, 1] in (b):

Example (the sequence of factorials)

If S = (n!), then

[0, 1] 3 α = e − 2 =
∞∑
n=2

1

n!
6∈WS

as 1
n+1 < n!e < 2

n+1 (mod 1), so n!e → 0 mod 1.

Example (The Fibonacci sequence fn = fn−1 + fn−2)

If S = (fn), then α = 1+
√

5
2 6∈WS as fnα→ 0 mod 1 (α−1 ∈ [0, 1])

Indeed, α = 1
1+α = 1

1+ 1

1+ 1
1+...

=: [0; 1, 1, . . . ] with convergents fn−1

fn
,

so fnα→ 0 mod 1 as
∣∣∣α− fn−1

fn

∣∣∣ < 1
f 2
n
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Replace reals mod 1 by T = R/Z written additively, with norm
‖x‖ = distance to the closest integer for x ∈ R, Haar measure µ.

Definition (a set of singular points in Weyl’s theorem)

Let ΓS = {x ∈ T : unα→ 0} for S ∈ Z.

ΓS is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets ΓS)

(a) ΓS is a (proper) subgroup of T;

(b) ΓS =
⋂∞

m=1

⋃∞
k=1

⋂
n>k{x ∈ T : ‖unα‖ ≤ 1/m} is a Borel set;

(c) µ(ΓS) = 0.

Proof. (a) – (b) The closed set Fk =
⋂

n>k{x ∈ T : ‖unα‖ ≤ 1/4}
has Int(Fk) = ∅ as un →∞, so by Baire category theorem
ΓS ⊆

⋃∞
k=1 Fk 6= T .

(c) T = nT for all n ∈ N, hence [T : ΓS ] is infinite and µ(ΓS) = 0.
joint work with D. Impieri On the Borel Complexity of Characterizable Subgroups
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Subgroups of T determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set ΓS
The subgroups ΓS cover T
The size of ΓS
Characterized subgroup

Every irrational θ ∈ [0, 1] has a regular continued fraction
expansion

θ =
1

a1 + 1
a2+ 1

...

=: [0; a1, a2, . . . ],

where an ∈ N for n ≥ 1. Let un, rn be the denominators and the
nominators of convergents of θ, then u1 = 1, u2 = a2,
r1 = a1, r2 = a1a2 + 1 and

un = anun−1 + un−2 and rn = anrn−1 + rn−2 for every n > 2.

Then
∣∣∣θ − rn

un

∣∣∣ < 1
unun+1

and |unθ− rn| < 1
un

for n ∈ N, so θ ∈ Γ(un).

Theorem (G. Larcher 1988 )

Γ(un) = 〈θ〉 if the sequence an is bounded.
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Subgroups of T determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set ΓS
The subgroups ΓS cover T
The size of ΓS
Characterized subgroup

Being a Borel set of T, ΓS is either countable or |ΓS | = c.

Definition (Let qn = un+1

un
.)

Theorem (Egglestone 1952: |ΓS | depends on qn)

(a) |ΓS | = c if qn →∞;
(b) ΓS is countable if (qn) is bounded.

Neither (a) nor (b) are necessary conditions.

Theorem (C. Kraaikamp and P. Liardet 1991)

If un = anun−1 + un−2 and u1 = 1, then TFAE:
(a) ΓS is countable;
(b) qn is bounded;
(c) ΓS is cyclic.

qn is bounded iff an is bounded, so (b) → (c) is Larcher’s theorem.
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The size of ΓS
Characterized subgroup

When a subgroup H of T has the form H = ΓS for some S ∈ Z?
Call such an S a characterizing sequence for H
and H – a characterizable subgroup of T.

Some cyclic H = 〈α〉 have a characterizing sequence (e.g., 〈1+
√

5
2 〉,

Larcher’s theorem)
The case H = Q/Z. Now Q/Z ⊆ Γ(n!), but the inclusion is proper
(as |Γ(n!)| = c by Egglestone’s theorem). To get a characterizing
sequence S∗ for Q/Z add to (n!) also all multiples k(n!) with
k = 2, 3, . . . , n to get Q/Z = ΓS∗ ⊆ Γ(n!).

Theorem (J.P. Borel 1983, A. B́ıró, J.-M.Deshouillers, V.Sós 2001)

Every countable subgroup H of T has a characterizing sequence.

B́ıró, Deshouillers and Sós conjectured that this can be extended
to all compact metrizable abelian groups G in place of T.
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Subgroups of T determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set ΓS
The subgroups ΓS cover T
The size of ΓS
Characterized subgroup

For a compact abelian group G let Ĝ be the group of all characters
of G , i.e., all continuous homomorphisms G → T. Now, for a
sequence S = (un) in Ĝ let

ΓS(G ) = {x ∈ G : un(x)→ 0 in T}
If S is not definitely zero, then again ΓS(G ) 6= G .
Call a subgroup H of G of the form H = ΓS(G ) a characterizable
subgroup of G .
ΓS(G ) is a Borel subset (actually, an Fσδ-set) of X as

ΓS(X ) =
⋂

0<M<ω

⋃
m≥M

 ⋂
n≥M

{
x ∈ X : ‖vn(x)‖ ≤ 1

M

} .

Theorem (Kunen, DD and indep. Beigleböck, Steineder, Winckler)

The countable subgroups of compact metrizable abelian groups are
characterizable.
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Subgroups of T determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set ΓS
The subgroups ΓS cover T
The size of ΓS
Characterized subgroup

Are Fσ-subgroups (of T) characterizable

Question [Kunen, DD]

When Fσ- subgroups H of compact metrizable abelian groups are
characterizable ?

If H contains a compact subgroup K of G with countable torsion
quotient H/K (so that H is even a countable union of compact
subgroups [KK & DD]). Here “torsion” can be relaxed as the
countable subgroup H/K of the compact metrizable group G/K is
characterizable.

Theorem (Andras B́ıró)

An Fσ- subgroups of T need not be characterizable.

B́ıró discovered a new property of the characterizable subgroups —
they are Polishable (i.e., they admit a finer Polish group topology).
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The Polish topology of a characterizable subgroup H = ΓS of T
We can assume wlog that u0 = 1, then the homomorphism
dS : H → TN defined by dS(x) = (unx) ∈ TN is injective and
dS(H) ⊆ {(zn) ∈ TN : zn → 0} =: c0(T)
and H → dS(H) is a topological isomorphism when H and c0(T)
carry the induced topologies (from T and TN, resp.).
The metric topology of TN determined by the sup-norm (i.e.,
|z |S = supn ‖zn‖ for z = (zn) ∈ TN) induces on c0(T) a Polish
group topology finer than the product topology,
so the topology τS of H transferred to H via dS is a finer Polish
that does not depend of S (i.e., if H = ΓS ′ as well, then τS ′ = τS).

Theorem (B́ıró 2008)

If K is an uncountable Kronecker set of T, then the Fσ-subgroup
〈K 〉 is not Polishable (so, 〈K 〉 is not characterizable).
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Definition

A non empty compact subset K of an infinite compact metrizable
abelian group X is called a Kronecker set, if for every continuous
function f : K → T and ε > 0 there exists a v ∈ X̂ such that

max {‖f (x)− v(x)‖ : x ∈ K} < ε.

Gabriyelyan extended B́ıró’s theorem for infinite compact
metrizable abelian group:

Theorem (Gabriyelyan 2009)

Let X be a compact metrizable abelian group. Then

(a) ΓS(X ) is Polishable for every sequence S of characters of X ;

(b) if K is an uncountable Kronecker set in X , then 〈K 〉 is not
Polishable; in particular, 〈K 〉 is not characterizable.

Moreover, Gabriyelyan produced a compact metrizable group X
with a Polishable Fσ-subgroup that is not characterizable.
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When uncountable characterizable subgroups (of T) are Fσ?

Example (uncountable characterizable Fσ-subgroups)

(a) [Gabriyelyan 2012] if j : R ↪→ T2 is a dense continuous
monomorphism, then j(R) is characterizable.
(b) if a subgroup H of a compact metrizable group G contains a
compact subgroup K such that H/K is countable, then H is
characterizable.

Item (a) can be generalized as follows:

Theorem (Gabriele Negro, answering a question of Gabriyelyan)

If G is a compact metrizable abelian group, H is a metrizable LCA
group and j : H ↪→ G is a continuous monomorphism, then j(H) is
characterizable.
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When all characterizable subgroups are Fσ?

Theorem (Gabriyelyan 2013)

All characterizable subgroups of compact metrizable abelian group
are Fσ iff G has finite exponent.

Consequently, all compact metrizable abelian groups of infinite
exponent contain a characterizable subgroup that is not an Fσ-set.

Example (characterizable, non-Fσ-subgroups of T)

(a) [Bukovský, Kholshevikova, Repický 1994]
ΓS is not an Fσ-subgroup of T for S = (22n).

(b) [Gabriyelyan 2013] ΓS is not an Fσ-subgroup of T for S = (n!).

Is there something common between (a) and (b) ?
In both cases un|un+1 in S = (un) and qn = un+1

un
→∞.
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ΓS is not an Fσ-subgroup of T for S = (22n).

(b) [Gabriyelyan 2013] ΓS is not an Fσ-subgroup of T for S = (n!).

Is there something common between (a) and (b) ?
In both cases un|un+1 in S = (un) and qn = un+1

un
→∞.

joint work with D. Impieri On the Borel Complexity of Characterizable Subgroups



Subgroups of T determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set ΓS
The subgroups ΓS cover T
The size of ΓS
Characterized subgroup

When all characterizable subgroups are Fσ?

Theorem (Gabriyelyan 2013)

All characterizable subgroups of compact metrizable abelian group
are Fσ iff G has finite exponent.

Consequently, all compact metrizable abelian groups of infinite
exponent contain a characterizable subgroup that is not an Fσ-set.

Example (characterizable, non-Fσ-subgroups of T)
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Definition (Call a sequence S = (un) of positive integers an
artitmetic sequence (briefly, an a-sequence) if un|un+1 for all but
finitely many n.)

Theorem (Impieri, DD 2013)

The following are equivalent for an a-sequence S = (un) ∈ Z:

(a) ΓS ≤ Q/Z;

(b) (qn) is bounded;

(c) ΓS is countable;

(d) ΓS is an Fσ-set.

(e) τS is discrete.

(a) and (b) are specific properties of T, while (c)—(e) can be
discussed for every metrizable compact abelian group G in place of
T and (c) ⇔ (e) holds true in general, (c) ⇔ (d) is open even in T.
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Removing the hypothesis “a-sequence” in the theorem leads to
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(a) ΓS ≤ Q/Z;

(b) (qn) is bounded;

(c) ΓS is countable;

(d) ΓS is an Fσ-set.

(e) τS is discrete.
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Characterized subgroup

Open questions

Question

If ΓS is an Fσ-set of T for some S ∈ ZN, must ΓS be necessarily
countable?

The answer is positive if S is an a-sequence.

Question

If H is a countable subgroup of T, does there exist a characterizing
sequence S ∈ ZN of H with bounded sequence of ratios (qn)?

Question

Does every Polishable Fσ-subgroup of T admit a characterizing se-
quence?

By Biro’s theorem, the answer is negative if we relax “Polishable”,
by Gabriyelyan’s example, the answer is negative if we replace T be
an arbitrary compact metrizable group.
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an arbitrary compact metrizable group.
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