On the Borel Complexity of Characterizable Subgroups

joint work with D. Impieri

Sao Sebastiao, Brazil, August 16, 2013

Dedicated to Ofelia T. Alas on the occasion of her 70th birthday

Theorem (Kronecker (a special case))

For every irrational $\alpha \in [0, 1]$ the set of all multiples $\{n\alpha : n \in \mathbb{Z}\}$ is dense in \mathbb{R} modulo 1.

 \mathcal{Z} – infinite strictly increasing sequences $S = (u_n)$ of integers, $W_S = \{ \alpha \in [0, 1] : (u_n \alpha) \text{ is uniformly distributed mod } 1 \}$ for $S \in \mathcal{Z}$ (where "uniformly distributed" means that

$$\lim_{m} \frac{|\{n \in \mathbb{N} : 1 \le n \le m \text{ and } a_n \alpha \in \Delta\}|}{m} = \mu(\Delta)$$

for every subinterval $\Delta \subseteq [0,1]$.)

Theorem (Weyl 1916)

(a) If $u_n = P(n)$ is a polynomial function of n, then W_S contains all irrational $\alpha \in [0, 1]$.

Theorem (Kronecker (a special case))

For every irrational $\alpha \in [0, 1]$ the set of all multiples $\{n\alpha : n \in \mathbb{Z}\}$ is dense in \mathbb{R} modulo 1.

 \mathcal{Z} – infinite strictly increasing sequences $S = (u_n)$ of integers, $W_S = \{ \alpha \in [0,1] : (u_n \alpha) \text{ is uniformly distributed mod } 1 \}$ for $S \in \mathcal{Z}$ (where "uniformly distributed" means that

$$\lim_{m} \frac{|\{n \in \mathbb{N} : 1 \le n \le m \text{ and } a_n \alpha \in \Delta\}|}{m} = \mu(\Delta)$$

for every subinterval $\Delta \subseteq [0,1]$.)

Theorem (Weyl 1916)

(a) If $u_n = P(n)$ is a polynomial function of n, then W_S contains all irrational $\alpha \in [0, 1]$.

Theorem (Kronecker (a special case))

For every irrational $\alpha \in [0, 1]$ the set of all multiples $\{n\alpha : n \in \mathbb{Z}\}$ is dense in \mathbb{R} modulo 1.

 \mathcal{Z} – infinite strictly increasing sequences $S = (u_n)$ of integers, $W_S = \{ \alpha \in [0, 1] : (u_n \alpha) \text{ is uniformly distributed mod } 1 \}$ for $S \in \mathcal{Z}$ (where "uniformly distributed" means that

$$\lim_{m} \frac{|\{n \in \mathbb{N} : 1 \le n \le m \text{ and } a_n \alpha \in \Delta\}|}{m} = \mu(\Delta)$$

for every subinterval $\Delta \subseteq [0,1]$.)

Theorem (Weyl 1916)

(a) If $u_n = P(n)$ is a polynomial function of n, then W_S contains all irrational $\alpha \in [0, 1]$.

Theorem (Kronecker (a special case))

For every irrational $\alpha \in [0, 1]$ the set of all multiples $\{n\alpha : n \in \mathbb{Z}\}$ is dense in \mathbb{R} modulo 1.

 \mathcal{Z} – infinite strictly increasing sequences $S = (u_n)$ of integers, $W_S = \{ \alpha \in [0,1] : (u_n \alpha) \text{ is uniformly distributed mod } 1 \}$ for $S \in \mathcal{Z}$ (where "uniformly distributed" means that

$$\lim_{m} \frac{|\{n \in \mathbb{N} : 1 \le n \le m \text{ and } a_n \alpha \in \Delta\}|}{m} = \mu(\Delta)$$

for every subinterval $\Delta \subseteq [0,1]$.)

Theorem (Weyl 1916)

(a) If $u_n = P(n)$ is a polynomial function of n, then W_S contains all irrational $\alpha \in [0, 1]$.

Theorem (Kronecker (a special case))

For every irrational $\alpha \in [0, 1]$ the set of all multiples $\{n\alpha : n \in \mathbb{Z}\}$ is dense in \mathbb{R} modulo 1.

 \mathcal{Z} – infinite strictly increasing sequences $S = (u_n)$ of integers, $W_S = \{ \alpha \in [0,1] : (u_n \alpha) \text{ is uniformly distributed mod } 1 \}$ for $S \in \mathcal{Z}$ (where "uniformly distributed" means that

$$\lim_{m} \frac{|\{n \in \mathbb{N} : 1 \leq n \leq m \text{ and } a_{n}\alpha \in \Delta\}|}{m} = \mu(\Delta)$$

for every subinterval $\Delta\subseteq[0,1].)$

Theorem (Weyl 1916)

(a) If $u_n = P(n)$ is a polynomial function of n, then W_S contains all irrational $\alpha \in [0, 1]$.

Theorem (Kronecker (a special case))

For every irrational $\alpha \in [0, 1]$ the set of all multiples $\{n\alpha : n \in \mathbb{Z}\}$ is dense in \mathbb{R} modulo 1.

 \mathcal{Z} – infinite strictly increasing sequences $S = (u_n)$ of integers, $W_S = \{ \alpha \in [0,1] : (u_n \alpha) \text{ is uniformly distributed mod } 1 \}$ for $S \in \mathcal{Z}$ (where "uniformly distributed" means that

$$\lim_{m} \frac{|\{n \in \mathbb{N} : 1 \le n \le m \text{ and } a_n \alpha \in \Delta\}|}{m} = \mu(\Delta)$$

for every subinterval $\Delta \subseteq [0,1]$.)

Theorem (Weyl 1916)

(a) If $u_n = P(n)$ is a polynomial function of n, then W_S contains all irrational $\alpha \in [0, 1]$.

Theorem (Kronecker (a special case))

For every irrational $\alpha \in [0, 1]$ the set of all multiples $\{n\alpha : n \in \mathbb{Z}\}$ is dense in \mathbb{R} modulo 1.

 \mathcal{Z} – infinite strictly increasing sequences $S = (u_n)$ of integers, $W_S = \{ \alpha \in [0,1] : (u_n \alpha) \text{ is uniformly distributed mod } 1 \}$ for $S \in \mathcal{Z}$ (where "uniformly distributed" means that

$$\lim_{m} \frac{|\{n \in \mathbb{N} : 1 \le n \le m \text{ and } a_n \alpha \in \Delta\}|}{m} = \mu(\Delta)$$

for every subinterval $\Delta \subseteq [0,1]$.)

Theorem (Weyl 1916)

(a) If $u_n = P(n)$ is a polynomial function of n, then W_S contains all irrational $\alpha \in [0, 1]$.

Weyl's uniform distribution modulo 1 theorem The set Γ_S The subgroups Γ_S cover \mathbb{T} The size of Γ_S Characterized subgroup

W_S need not contain all irrational $\alpha \in [0, 1]$ in (b):

Example (the sequence of factorials

If S = (n!), then

$$[0,1] \ni \alpha = e - 2 = \sum_{n=2}^{\infty} \frac{1}{n!} \notin W_S$$

as $\frac{1}{n+1} < n!e < \frac{2}{n+1} \pmod{1}$, so $n!e \rightarrow 0 \mod 1$.

If
$$S = (f_n)$$
, then $\alpha = \frac{1+\sqrt{5}}{2} \notin W_S$ as $f_n \alpha \to 0 \mod 1$ $(\alpha - 1 \in [0, 1])$
Indeed, $\alpha = \frac{1}{1+\alpha} = \frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\dots}}}} =: [0; 1, 1, \dots]$ with convergents $\frac{f_{n-1}}{f_n}$, so $f_n \alpha \to 0 \mod 1$ as $\left| \alpha - \frac{f_{n-1}}{f_n} \right| < \frac{1}{f_n^2}$

Weyl's uniform distribution modulo 1 theorem The set Γ_S The subgroups Γ_S cover \mathbb{T} The size of Γ_S Characterized subgroup

W_S need not contain all irrational $\alpha \in [0, 1]$ in (b):

Example (the sequence of factorials)

If S = (n!), then

$$[0,1] \ni \alpha = e - 2 = \sum_{n=2}^{\infty} \frac{1}{n!} \notin W_S$$

as $rac{1}{n+1} < n!e < rac{2}{n+1} \pmod{1},$ so $n!e o 0 \mod 1.$

If
$$S = (f_n)$$
, then $\alpha = \frac{1+\sqrt{5}}{2} \notin W_S$ as $f_n \alpha \to 0 \mod 1$ $(\alpha - 1 \in [0, 1])$
Indeed, $\alpha = \frac{1}{1+\alpha} = \frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\dots}}}} =: [0; 1, 1, \dots]$ with convergents $\frac{f_{n-1}}{f_n}$,
so $f_n \alpha \to 0 \mod 1$ as $\left| \alpha - \frac{f_{n-1}}{f_n} \right| < \frac{1}{f_n^2}$

Weyl's uniform distribution modulo 1 theorem The set Γ_S The subgroups Γ_S cover \mathbb{T} The size of Γ_S Characterized subgroup

W_S need not contain all irrational $\alpha \in [0, 1]$ in (b):

Example (the sequence of factorials)

If S = (n!), then

$$[0,1] \ni \alpha = e - 2 = \sum_{n=2}^{\infty} \frac{1}{n!} \notin W_S$$

as $rac{1}{n+1} < n!e < rac{2}{n+1} \pmod{1},$ so $n!e o 0 \mod 1.$

If
$$S = (f_n)$$
, then $\alpha = \frac{1+\sqrt{5}}{2} \notin W_S$ as $f_n \alpha \to 0 \mod 1$ $(\alpha - 1 \in [0, 1])$
Indeed, $\alpha = \frac{1}{1+\alpha} = \frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\dots}}}} =: [0; 1, 1, \dots]$ with convergents $\frac{f_{n-1}}{f_n}$,
so $f_n \alpha \to 0 \mod 1$ as $\left| \alpha - \frac{f_{n-1}}{f_n} \right| < \frac{1}{f_n^2}$

Weyl's uniform distribution modulo 1 theorem

W_{S} need not contain all irrational $\alpha \in [0, 1]$ in (b):

(the sequence of factorials) Example

If S = (n!), then

$$[0,1] \ni \alpha = e - 2 = \sum_{n=2}^{\infty} \frac{1}{n!} \notin W_{\mathcal{S}}$$

as
$$\frac{1}{n+1} < n!e < \frac{2}{n+1} \pmod{1}$$
, so $n!e \rightarrow 0 \mod 1$.

If
$$S = (f_n)$$
, then $\alpha = \frac{1+\sqrt{5}}{2} \notin W_S$ as $f_n \alpha \to 0 \mod 1$ $(\alpha - 1 \in [0, 1])$
Indeed, $\alpha = \frac{1}{1+\alpha} = \frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\dots}}}} =: [0; 1, 1, \dots]$ with convergents $\frac{f_{n-1}}{f_n}$,
so $f_n \alpha \to 0 \mod 1$ as $\left| \alpha - \frac{f_{n-1}}{f_n} \right| < \frac{1}{f_n^2}$

Weyl's uniform distribution modulo 1 theorem

W_{S} need not contain all irrational $\alpha \in [0, 1]$ in (b):

Example (t

If S = (n!), then

$$[0,1] \ni \alpha = e - 2 = \sum_{n=2}^{\infty} \frac{1}{n!} \notin W_{\mathcal{S}}$$

as
$$\frac{1}{n+1} < n!e < \frac{2}{n+1} \pmod{1}$$
, so $n!e
ightarrow 0 \mod 1$.

If
$$S = (f_n)$$
, then $\alpha = \frac{1+\sqrt{5}}{2} \notin W_S$ as $f_n \alpha \to 0 \mod 1$ $(\alpha - 1 \in [0, 1])$
Indeed, $\alpha = \frac{1}{1+\alpha} = \frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\dots}}}} =: [0; 1, 1, \dots]$ with convergents $\frac{f_{n-1}}{f_n}$,
so $f_n \alpha \to 0 \mod 1$ as $\left| \alpha - \frac{f_{n-1}}{f_n} \right| < \frac{1}{f_n^2}$

Weyl's uniform distribution modulo 1 theorem

W_{S} need not contain all irrational $\alpha \in [0, 1]$ in (b):

Example (tł

If S = (n!), then

$$[0,1] \ni \alpha = e - 2 = \sum_{n=2}^{\infty} \frac{1}{n!} \notin W_{\mathcal{S}}$$

as
$$\frac{1}{n+1} < n!e < \frac{2}{n+1} \pmod{1}$$
, so $n!e \rightarrow 0 \mod 1$.

If
$$S = (f_n)$$
, then $\alpha = \frac{1+\sqrt{5}}{2} \notin W_S$ as $f_n \alpha \to 0 \mod 1$ $(\alpha - 1 \in [0, 1])$
Indeed, $\alpha = \frac{1}{1+\alpha} = \frac{1}{1+\frac{1}{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1}{$

Weyl's uniform distribution modulo 1 theorem The set Γ_S The subgroups Γ_S cover \mathbb{T} The size of Γ_S Characterized subgroup

W_S need not contain all irrational $\alpha \in [0, 1]$ in (b):

Example (the sequence of factorials)

If S = (n!), then

$$[0,1] \ni \alpha = e - 2 = \sum_{n=2}^{\infty} \frac{1}{n!} \notin W_{\mathcal{S}}$$

as
$$\frac{1}{n+1} < n!e < \frac{2}{n+1} \pmod{1}$$
, so $n!e
ightarrow 0 \mod 1$.

If
$$S = (f_n)$$
, then $\alpha = \frac{1+\sqrt{5}}{2} \notin W_S$ as $f_n \alpha \to 0 \mod 1$ $(\alpha - 1 \in [0, 1])$
Indeed, $\alpha = \frac{1}{1+\alpha} = \frac{1}{1+\frac{1}{1}}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}$

Weyl's uniform distribution modulo 1 theorem The set Γ_S The subgroups Γ_S cover \mathbb{T} The size of Γ_S Characterized subgroup

W_S need not contain all irrational $\alpha \in [0, 1]$ in (b):

Example (the sequence of factorials)

If S = (n!), then

$$[0,1] \ni \alpha = e - 2 = \sum_{n=2}^{\infty} \frac{1}{n!} \notin W_{2}$$

as
$$\frac{1}{n+1} < n!e < \frac{2}{n+1} \pmod{1}$$
, so $n!e
ightarrow 0 \mod 1$.

If
$$S = (f_n)$$
, then $\alpha = \frac{1+\sqrt{5}}{2} \notin W_S$ as $f_n \alpha \to 0 \mod 1$ $(\alpha - 1 \in [0, 1])$
Indeed, $\alpha = \frac{1}{1+\alpha} = \frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\dots}}}} =: [0; 1, 1, \dots]$ with convergents $\frac{f_{n-1}}{f_n}$,
so $f_n \alpha \to 0 \mod 1$ as $\left| \alpha - \frac{f_{n-1}}{f_n} \right| < \frac{1}{f_n^2}$

Weyl's uniform distribution modulo 1 theorem

W_{S} need not contain all irrational $\alpha \in [0, 1]$ in (b):

Example (tł

If S = (n!), then

$$[0,1] \ni \alpha = e - 2 = \sum_{n=2}^{\infty} \frac{1}{n!} \notin W_{S}$$

as
$$\frac{1}{n+1} < n!e < \frac{2}{n+1} \pmod{1}$$
, so $n!e \rightarrow 0 \mod 1$.

If
$$S = (f_n)$$
, then $\alpha = \frac{1+\sqrt{5}}{2} \notin W_S$ as $f_n \alpha \to 0 \mod 1$ $(\alpha - 1 \in [0, 1])$
Indeed, $\alpha = \frac{1}{1+\alpha} = \frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\dots}}}} =: [0; 1, 1, \dots]$ with convergents $\frac{f_{n-1}}{f_n}$,
so $f_n \alpha \to 0 \mod 1$ as $\left| \alpha - \frac{f_{n-1}}{f_n} \right| < \frac{1}{f_n^2}$

Weyl's uniform distribution modulo 1 theorem

W_{S} need not contain all irrational $\alpha \in [0, 1]$ in (b):

Example (tł

If S = (n!), then

$$[0,1] \ni \alpha = e - 2 = \sum_{n=2}^{\infty} \frac{1}{n!} \notin W_{\mathcal{S}}$$

as
$$\frac{1}{n+1} < n!e < \frac{2}{n+1} \pmod{1}$$
, so $n!e
ightarrow 0 \mod 1$.

If
$$S = (f_n)$$
, then $\alpha = \frac{1+\sqrt{5}}{2} \notin W_S$ as $f_n \alpha \to 0 \mod 1$ $(\alpha - 1 \in [0, 1])$
Indeed, $\alpha = \frac{1}{1+\alpha} = \frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\dots}}}} =: [0; 1, 1, \dots]$ with convergents $\frac{f_{n-1}}{f_n}$,
so $f_n \alpha \to 0 \mod 1$ as $\left| \alpha - \frac{f_{n-1}}{f_n} \right| < \frac{1}{f_n^2}$

Weyl's uniform distribution modulo 1 theorem The set Γ_S The subgroups Γ_S cover \mathbb{T} The size of Γ_S Characterized subgroup

Replace reals mod 1 by $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ written additively, with norm ||x|| = distance to the closest integer for $x \in \mathbb{R}$, Haar measure μ .

Definition (a set of singular points in Weyl's theorem)

Let $\Gamma_S = \{x \in \mathbb{T} : u_n \alpha \to 0\}$ for $S \in \mathbb{Z}$.

Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of T;
(b) Γ_S = ⋂_{m=1}[∞] ⋃_{k=1}[∞] ⋂_{n>k} {x ∈ T : ||u_nα|| ≤ 1/m} is a Borel set;
(c) μ(Γ_S) = 0.

Proof. (a) - (b) The closed set $F_k = \bigcap_{n>k} \{x \in \mathbb{T} : ||u_n \alpha|| \le 1/4\}$ has $Int(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$. (c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0_{\mathbb{F}}$.

joint work with D. Impieri

Weyl's uniform distribution modulo 1 theorem The set Γ_S The subgroups Γ_S cover \mathbb{T} The size of Γ_S Characterized subgroup

Replace reals mod 1 by $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ written additively, with norm

 $\|x\|=$ distance to the closest integer for $x\in\mathbb{R},$ Haar measure $\mu.$

Definition (a set of singular points in Weyl's theorem)

Let $\Gamma_S = \{x \in \mathbb{T} : u_n \alpha \to 0\}$ for $S \in \mathbb{Z}$.

 Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of T;
(b) Γ_S = ⋂_{m=1}[∞] ⋃_{k=1}[∞] ⋂_{n>k} {x ∈ T : ||u_nα|| ≤ 1/m} is a Borel set;
(c) μ(Γ_S) = 0.

Proof. (a) - (b) The closed set $F_k = \bigcap_{n>k} \{x \in \mathbb{T} : ||u_n \alpha|| \le 1/4\}$ has $Int(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$. (c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0_{\mathbb{F}}$.

joint work with D. Impieri

Definition (a set of singular points in Weyl's theorem)

Let $\Gamma_S = \{x \in \mathbb{T} : u_n \alpha \to 0\}$ for $S \in \mathbb{Z}$.

Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of T;
(b) Γ_S = ⋂_{m=1}[∞] ⋃_{k=1}[∞] ⋂_{n>k} {x ∈ T : ||u_nα|| ≤ 1/m} is a Borel set;
(c) μ(Γ_S) = 0.

Proof. (a) - (b) The closed set $F_k = \bigcap_{n>k} \{x \in \mathbb{T} : ||u_n \alpha|| \le 1/4\}$ has $Int(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$. (c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0_{\mathbb{F}}$.

joint work with D. Impieri

Definition (a set of singular points in Weyl's theorem)

Let $\Gamma_S = \{x \in \mathbb{T} : u_n \alpha \to 0\}$ for $S \in \mathbb{Z}$.

Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of T;
(b) Γ_S = ⋂_{m=1}[∞] ⋃_{k=1}[∞] ⋂_{n>k} {x ∈ T : ||u_nα|| ≤ 1/m} is a Borel set;
(c) μ(Γ_S) = 0.

Proof. (a) - (b) The closed set $F_k = \bigcap_{n>k} \{x \in \mathbb{T} : ||u_n \alpha|| \le 1/4\}$ has $Int(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$. (c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0_{\mathbb{F}}$.

joint work with D. Impieri

Definition (a set of singular points in Weyl's theorem)

Let $\Gamma_S = \{x \in \mathbb{T} : u_n \alpha \to 0\}$ for $S \in \mathbb{Z}$.

 Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of T;
(b) Γ_S = ⋂_{m=1}[∞] ⋃_{k=1}[∞] ⋂_{n>k} {x ∈ T : ||u_nα|| ≤ 1/m} is a Borel set;
(c) μ(Γ_S) = 0.

Proof. (a) - (b) The closed set $F_k = \bigcap_{n>k} \{x \in \mathbb{T} : ||u_n \alpha|| \le 1/4\}$ has $Int(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$. (c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0$.

joint work with D. Impieri

Definition (a set of singular points in Weyl's theorem)

Let $\Gamma_S = \{x \in \mathbb{T} : u_n \alpha \to 0\}$ for $S \in \mathbb{Z}$.

 Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of T;
(b) Γ_S = ⋂_{m=1}[∞] ⋃_{k=1}[∞] ⋂_{n>k} {x ∈ T : ||u_nα|| ≤ 1/m} is a Borel set;
(c) μ(Γ_S) = 0.

Proof. (a) - (b) The closed set $F_k = \bigcap_{n>k} \{x \in \mathbb{T} : ||u_n \alpha|| \le 1/4\}$ has $Int(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$. (c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0_{\mathbb{F}}$.

joint work with D. Impieri

Definition (a set of singular points in Weyl's theorem)

Let $\Gamma_S = \{x \in \mathbb{T} : u_n \alpha \to 0\}$ for $S \in \mathbb{Z}$.

 Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of T;
(b) Γ_S = ⋂_{m=1}[∞] ⋃_{k=1}[∞] ⋂_{n>k} {x ∈ T : ||u_nα|| ≤ 1/m} is a Borel set;
(c) μ(Γ_S) = 0.

Proof. (a) - (b) The closed set $F_k = \bigcap_{n>k} \{x \in \mathbb{T} : ||u_n \alpha|| \le 1/4\}$ has $Int(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$. (c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0_{\mathbb{F}}$.

joint work with D. Impieri

Definition (a set of singular points in Weyl's theorem)

Let $\Gamma_S = \{x \in \mathbb{T} : u_n \alpha \to 0\}$ for $S \in \mathbb{Z}$.

 Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of T;
(b) Γ_S = ∩[∞]_{m=1} ∪[∞]_{k=1} ∩_{n>k} {x ∈ T : ||u_nα|| ≤ 1/m} is a Borel set;
(c) μ(Γ_S) = 0.

Proof. (a) - (b) The closed set $F_k = \bigcap_{n > k} \{x \in \mathbb{T} : ||u_n \alpha|| \le 1/4\}$ has $Int(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$. (c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0$.

joint work with D. Impieri

Definition (a set of singular points in Weyl's theorem)

Let $\Gamma_S = \{x \in \mathbb{T} : u_n \alpha \to 0\}$ for $S \in \mathbb{Z}$.

 Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of \mathbb{T} ;

(b) $\Gamma_{\mathcal{S}} = \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{n>k} \{ x \in \mathbb{T} : ||u_n \alpha|| \le 1/m \}$ is a Borel set; (c) $\mu(\Gamma_{\mathcal{S}}) = 0.$

Proof. (a) - (b) The closed set $F_k = \bigcap_{n>k} \{x \in \mathbb{T} : ||u_n\alpha|| \le 1/4\}$ has $Int(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$. (c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0$.

joint work with D. Impieri

Definition (a set of singular points in Weyl's theorem)

Let $\Gamma_S = \{x \in \mathbb{T} : u_n \alpha \to 0\}$ for $S \in \mathbb{Z}$.

 Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of T;
(b) Γ_S = ⋂_{m=1}[∞] ⋃_{k=1}[∞] ⋂_{n>k} {x ∈ T : ||u_nα|| ≤ 1/m} is a Borel set;
(c) μ(Γ_S) = 0.

Proof. (a) - (b) The closed set $F_k = \bigcap_{n > k} \{x \in \mathbb{T} : ||u_n \alpha|| \le 1/4\}$ has $Int(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$. (c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0_{\mathbb{T}} = 0_{\mathbb{T}}$

joint work with D. Impieri

Definition (a set of singular points in Weyl's theorem)

Let $\Gamma_S = \{x \in \mathbb{T} : u_n \alpha \to 0\}$ for $S \in \mathbb{Z}$.

 Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of T;
(b) Γ_S = ⋂_{m=1}[∞] ⋃_{k=1}[∞] ⋂_{n>k} {x ∈ T : ||u_nα|| ≤ 1/m} is a Borel set;
(c) μ(Γ_S) = 0.

Proof. (a) - (b) The closed set $F_k = \bigcap_{n>k} \{x \in \mathbb{T} : ||u_n \alpha|| \le 1/4\}$ has $Int(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$. (c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0$.

joint work with D. Impieri

Definition (a set of singular points in Weyl's theorem)

Let $\Gamma_S = \{x \in \mathbb{T} : u_n \alpha \to 0\}$ for $S \in \mathbb{Z}$.

 Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of T;
(b) Γ_S = ⋂_{m=1}[∞] ⋃_{k=1}[∞] ⋂_{n>k} {x ∈ T : ||u_nα|| ≤ 1/m} is a Borel set;
(c) μ(Γ_S) = 0.

Proof. (a) – (b) The closed set $F_k = \bigcap_{n>k} \{x \in \mathbb{T} : ||u_n\alpha|| \le 1/4\}$ has $Int(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$. (c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0$.

joint work with D. Impieri

Definition (a set of singular points in Weyl's theorem)

Let $\Gamma_S = \{x \in \mathbb{T} : u_n \alpha \to 0\}$ for $S \in \mathbb{Z}$.

 Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of T;
(b) Γ_S = ⋂_{m=1}[∞] ⋃_{k=1}[∞] ⋂_{n>k} {x ∈ T : ||u_nα|| ≤ 1/m} is a Borel set;
(c) μ(Γ_S) = 0.

Proof. (a) - (b) The closed set $F_k = \bigcap_{n>k} \{x \in \mathbb{T} : ||u_n \alpha|| \le 1/4\}$ has $Int(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$. (c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu \in [\Gamma_S] = 0_2$

joint work with D. Impieri

Definition (a set of singular points in Weyl's theorem)

Let
$$\Gamma_S = \{x \in \mathbb{T} : u_n \alpha \to 0\}$$
 for $S \in \mathbb{Z}$.

 Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of T;
(b) Γ_S = ⋂_{m=1}[∞] ⋃_{k=1}[∞] ⋂_{n>k} {x ∈ T : ||u_nα|| ≤ 1/m} is a Borel set;
(c) μ(Γ_S) = 0.

Proof. (a) – (b) The closed set $F_k = \bigcap_{n>k} \{x \in \mathbb{T} : ||u_n \alpha|| \le 1/4\}$ has $Int(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$. (c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0$.

joint work with D. Impieri

Definition (a set of singular points in Weyl's theorem)

Let
$$\Gamma_S = \{x \in \mathbb{T} : u_n \alpha \to 0\}$$
 for $S \in \mathbb{Z}$.

 Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

Proof. (a) – (b) The closed set $F_k = \bigcap_{n>k} \{x \in \mathbb{T} : ||u_n \alpha|| \le 1/4\}$ has $Int(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$. (c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0$.

Weyl's uniform distribution modulo 1 theorem The set Γ_S **The subgroups** Γ_S cover \mathbb{T} The size of Γ_S Characterized subgroup

Every irrational $\theta \in [0, 1]$ has a regular continued fraction expansion

$$\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2}}} =: [0; a_1, a_2, \dots],$$

where $a_n \in \mathbb{N}$ for $n \ge 1$. Let u_n, r_n be the denominators and the nominators of convergents of θ , then $u_1 = 1, u_2 = a_2$, $r_1 = a_1, r_2 = a_1a_2 + 1$ and

$$u_n = a_n u_{n-1} + u_{n-2}$$
 and $r_n = a_n r_{n-1} + r_{n-2}$ for every $n > 2$.

Then
$$\left|\theta - \frac{r_n}{u_n}\right| < \frac{1}{u_n u_{n+1}}$$
 and $\left|u_n \theta - r_n\right| < \frac{1}{u_n}$ for $n \in \mathbb{N}$, so $\theta \in \Gamma_{(u_n)}$.

Theorem (G. Larcher 1988)

 $\Gamma_{(u_n)} = \langle \theta \rangle$ if the sequence a_n is bounded.

(日) (同) (三) (三)

Weyl's uniform distribution modulo 1 theorem The set Γ_S **The subgroups** Γ_S cover \mathbb{T} The size of Γ_S Characterized subgroup

Every irrational $\theta \in [0,1]$ has a regular continued fraction expansion

$$\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2}}} =: [0; a_1, a_2, \dots],$$

where $a_n \in \mathbb{N}$ for $n \ge 1$. Let u_n, r_n be the denominators and the nominators of convergents of θ , then $u_1 = 1, u_2 = a_2$, $r_1 = a_1, r_2 = a_1a_2 + 1$ and

$$u_n = a_n u_{n-1} + u_{n-2}$$
 and $r_n = a_n r_{n-1} + r_{n-2}$ for every $n > 2$.

Then
$$\left|\theta - \frac{r_n}{u_n}\right| < \frac{1}{u_n u_{n+1}}$$
 and $\left|u_n \theta - r_n\right| < \frac{1}{u_n}$ for $n \in \mathbb{N}$, so $\theta \in \Gamma_{(u_n)}$.

Theorem (G. Larcher 1988)

 $\Gamma_{(u_n)} = \langle \theta \rangle$ if the sequence a_n is bounded.

・ロト ・同ト ・ヨト ・ヨト

э

Weyl's uniform distribution modulo 1 theorem The set Γ_S **The subgroups** Γ_S cover \mathbb{T} The size of Γ_S Characterized subgroup

Every irrational $\theta \in [0,1]$ has a regular continued fraction expansion

$$\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2}}} =: [0; a_1, a_2, \dots],$$

where $a_n \in \mathbb{N}$ for $n \ge 1$. Let u_n, r_n be the denominators and the nominators of convergents of θ , then $u_1 = 1, u_2 = a_2$, $r_1 = a_1, r_2 = a_1a_2 + 1$ and

$$u_n = a_n u_{n-1} + u_{n-2}$$
 and $r_n = a_n r_{n-1} + r_{n-2}$ for every $n > 2$.

Then
$$\left|\theta - \frac{r_n}{u_n}\right| < \frac{1}{u_n u_{n+1}}$$
 and $\left|u_n \theta - r_n\right| < \frac{1}{u_n}$ for $n \in \mathbb{N}$, so $\theta \in \Gamma_{(u_n)}$.

Theorem (G. Larcher 1988)

 $\Gamma_{(u_n)} = \langle \theta \rangle$ if the sequence a_n is bounded.

< ロ > < 同 > < 回 > < 回 >
Weyl's uniform distribution modulo 1 theorem The set Γ_S **The subgroups** Γ_S cover \mathbb{T} The size of Γ_S Characterized subgroup

Every irrational $\theta \in [0,1]$ has a regular continued fraction expansion

$$\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2}}} =: [0; a_1, a_2, \dots],$$

where $a_n \in \mathbb{N}$ for $n \ge 1$. Let u_n, r_n be the denominators and the nominators of convergents of θ , then $u_1 = 1, u_2 = a_2$, $r_1 = a_1, r_2 = a_1a_2 + 1$ and

$$u_n = a_n u_{n-1} + u_{n-2}$$
 and $r_n = a_n r_{n-1} + r_{n-2}$ for every $n > 2$.

Then
$$\left|\theta - \frac{r_n}{u_n}\right| < \frac{1}{u_n u_{n+1}}$$
 and $\left|u_n \theta - r_n\right| < \frac{1}{u_n}$ for $n \in \mathbb{N}$, so $\theta \in \Gamma_{(u_n)}$.

Theorem (G. Larcher 1988

 $\Gamma_{(u_n)} = \langle \theta \rangle$ if the sequence a_n is bounded.

- 4 同 6 4 日 6 4 日 6

Weyl's uniform distribution modulo 1 theorem The set Γ_S **The subgroups** Γ_S cover \mathbb{T} The size of Γ_S Characterized subgroup

Every irrational $\theta \in [0,1]$ has a regular continued fraction expansion

$$\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2}}} =: [0; a_1, a_2, \dots],$$

where $a_n \in \mathbb{N}$ for $n \ge 1$. Let u_n, r_n be the denominators and the nominators of convergents of θ , then $u_1 = 1, u_2 = a_2$, $r_1 = a_1, r_2 = a_1a_2 + 1$ and

 $u_n = a_n u_{n-1} + u_{n-2}$ and $r_n = a_n r_{n-1} + r_{n-2}$ for every n > 2.

Then
$$\left|\theta - \frac{r_n}{u_n}\right| < \frac{1}{u_n u_{n+1}}$$
 and $\left|u_n \theta - r_n\right| < \frac{1}{u_n}$ for $n \in \mathbb{N}$, so $\theta \in \Gamma_{(u_n)}$.

Theorem (G. Larcher 1988

 $\Gamma_{(u_n)} = \langle \theta \rangle$ if the sequence a_n is bounded.

・ロト ・同ト ・ヨト ・ヨト

Weyl's uniform distribution modulo 1 theorem The set Γ_S **The subgroups** Γ_S cover \mathbb{T} The size of Γ_S Characterized subgroup

Every irrational $\theta \in [0,1]$ has a regular continued fraction expansion

$$\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2}}} =: [0; a_1, a_2, \dots],$$

where $a_n \in \mathbb{N}$ for $n \ge 1$. Let u_n, r_n be the denominators and the nominators of convergents of θ , then $u_1 = 1, u_2 = a_2$, $r_1 = a_1, r_2 = a_1a_2 + 1$ and

$$u_n = a_n u_{n-1} + u_{n-2}$$
 and $r_n = a_n r_{n-1} + r_{n-2}$ for every $n > 2$.

Then
$$\left|\theta - \frac{r_n}{u_n}\right| < \frac{1}{u_n u_{n+1}}$$
 and $\left|u_n \theta - r_n\right| < \frac{1}{u_n}$ for $n \in \mathbb{N}$, so $\theta \in \Gamma_{(u_n)}$.

Theorem (G. Larcher 1988

 $\Gamma_{(u_n)} = \langle \theta \rangle$ if the sequence a_n is bounded.

・ロト ・同ト ・ヨト ・ヨト

э

Weyl's uniform distribution modulo 1 theorem The set Γ_S **The subgroups** Γ_S cover \mathbb{T} The size of Γ_S Characterized subgroup

Every irrational $\theta \in [0,1]$ has a regular continued fraction expansion

$$\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2}}} =: [0; a_1, a_2, \dots],$$

where $a_n \in \mathbb{N}$ for $n \ge 1$. Let u_n, r_n be the denominators and the nominators of convergents of θ , then $u_1 = 1, u_2 = a_2$, $r_1 = a_1, r_2 = a_1a_2 + 1$ and

$$u_n = a_n u_{n-1} + u_{n-2}$$
 and $r_n = a_n r_{n-1} + r_{n-2}$ for every $n > 2$.

Then
$$\left|\theta - \frac{r_n}{u_n}\right| < \frac{1}{u_n u_{n+1}}$$
 and $\left|u_n \theta - r_n\right| < \frac{1}{u_n}$ for $n \in \mathbb{N}$, so $\theta \in \Gamma_{(u_n)}$.

Theorem (G. Larcher 1988)

 $G_{(u_n)} = \langle heta
angle$ if the sequence a_n is bounded.

joint work with D. Impieri On the Borel Complexity of Characterizable Subgroups

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Weyl's uniform distribution modulo 1 theorem The set Γ_S **The subgroups** Γ_S cover \mathbb{T} The size of Γ_S Characterized subgroup

Every irrational $\theta \in [0,1]$ has a regular continued fraction expansion

$$\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2}}} =: [0; a_1, a_2, \dots],$$

where $a_n \in \mathbb{N}$ for $n \ge 1$. Let u_n, r_n be the denominators and the nominators of convergents of θ , then $u_1 = 1, u_2 = a_2$, $r_1 = a_1, r_2 = a_1a_2 + 1$ and

$$u_n = a_n u_{n-1} + u_{n-2}$$
 and $r_n = a_n r_{n-1} + r_{n-2}$ for every $n > 2$.

Then
$$\left|\theta - \frac{r_n}{u_n}\right| < \frac{1}{u_n u_{n+1}}$$
 and $\left|u_n \theta - r_n\right| < \frac{1}{u_n}$ for $n \in \mathbb{N}$, so $\theta \in \Gamma_{(u_n)}$.

Theorem (G. Larcher 1988)

 $\Gamma_{(u_n)} = \langle \theta \rangle$ if the sequence a_n is bounded.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Weyl's uniform distribution modulo 1 theorem The set Γ_S The subgroups Γ_S cover \mathbb{T} **The size of \Gamma_S** Characterized subgroup

Being a Borel set of \mathbb{T} , Γ_S is either countable or $|\Gamma_S| = \mathfrak{c}$.

Definition (Let $q_n = \frac{u_{n+1}}{u_n}$.)

Theorem (Egglestone 1952: $|\Gamma_S|$ depends on q_n)

(a) $|\Gamma_S| = \mathfrak{c}$ if $q_n \to \infty$; (b) Γ_S is countable if (q_n) is bounded.

Neither (a) nor (b) are necessary conditions.

Theorem (C. Kraaikamp and P. Liardet 1991)

If $u_n = a_n u_{n-1} + u_{n-2}$ and $u_1 = 1$, then TFAE: (a) Γ_S is countable; (b) q_n is bounded; (c) Γ_S is cyclic.

 q_n is bounded iff a_n is bounded, so (b) \rightarrow (c) is Lagcher's theorem.

Weyl's uniform distribution modulo 1 theorem The set Γ_S The subgroups Γ_S cover \mathbb{T} **The size of \Gamma_S** Characterized subgroup

Being a Borel set of \mathbb{T} , Γ_S is either countable or $|\Gamma_S| = \mathfrak{c}$.

Definition (Let $q_n = \frac{u_{n+1}}{u_n}$.)

Theorem (Egglestone 1952: $|\Gamma_S|$ depends on q_n)

(a) $|\Gamma_{S}| = \mathfrak{c}$ if $q_{n} \to \infty$; (b) Γ_{S} is countable if (q_{n}) is bounded.

Neither (a) nor (b) are necessary conditions.

Theorem (C. Kraaikamp and P. Liardet 1991)

If $u_n = a_n u_{n-1} + u_{n-2}$ and $u_1 = 1$, then TFAE: (a) Γ_S is countable; (b) q_n is bounded; (c) Γ_S is cyclic.

 q_n is bounded iff a_n is bounded, so (b) \rightarrow (c) is Lagcher's theorem.

Weyl's uniform distribution modulo 1 theorem The set Γ_S The subgroups Γ_S cover \mathbb{T} **The size of \Gamma_S** Characterized subgroup

Being a Borel set of \mathbb{T} , Γ_S is either countable or $|\Gamma_S| = \mathfrak{c}$.

Definition (Let $q_n = \frac{u_{n+1}}{u_n}$.)

Theorem (Egglestone 1952: $|\Gamma_S|$ depends on q_n)

(a) |Γ_S| = c if q_n → ∞; (b) Γ_S is countable if (q_n) is bounded

Neither (a) nor (b) are necessary conditions.

Theorem (C. Kraaikamp and P. Liardet 1991)

If $u_n = a_n u_{n-1} + u_{n-2}$ and $u_1 = 1$, then TFAE: (a) Γ_S is countable; (b) q_n is bounded; (c) Γ_S is cyclic.

 q_n is bounded iff a_n is bounded, so (b) \rightarrow (c) is Larcher's theorem.

Weyl's uniform distribution modulo 1 theorem The set Γ_S The subgroups Γ_S cover \mathbb{T} **The size of \Gamma_S** Characterized subgroup

Being a Borel set of \mathbb{T} , Γ_S is either countable or $|\Gamma_S| = \mathfrak{c}$.

Definition (Let $q_n = \frac{u_{n+1}}{u_n}$.)

Theorem (Egglestone 1952: $|\Gamma_S|$ depends on q_n)

(a) $|\Gamma_{S}| = \mathfrak{c}$ if $q_{n} \to \infty$; (b) Γ_{S} is countable if (q_{n}) is bounded.

Neither (a) nor (b) are necessary conditions.

Theorem (C. Kraaikamp and P. Liardet 1991)

```
If u_n = a_n u_{n-1} + u_{n-2} and u_1 = 1, then TFAE:
(a) \Gamma_S is countable;
(b) q_n is bounded;
(c) \Gamma_S is cyclic.
```

 q_n is bounded iff a_n is bounded, so (b) \rightarrow (c) is Larcher's theorem.

Weyl's uniform distribution modulo 1 theorem The set Γ_S The subgroups Γ_S cover \mathbb{T} **The size of \Gamma_S** Characterized subgroup

Being a Borel set of \mathbb{T} , Γ_S is either countable or $|\Gamma_S| = \mathfrak{c}$.

Definition (Let $q_n = \frac{u_{n+1}}{u_n}$.)

Theorem (Egglestone 1952: $|\Gamma_S|$ depends on q_n)

(a) $|\Gamma_{S}| = \mathfrak{c}$ if $q_{n} \to \infty$; (b) Γ_{S} is countable if (q_{n}) is bounded.

Neither (a) nor (b) are necessary conditions.

Theorem (C. Kraaikamp and P. Liardet 1991)

If $u_n = a_n u_{n-1} + u_{n-2}$ and $u_1 = 1$, then TFAE: (a) Γ_S is countable; (b) q_n is bounded; (c) Γ_S is cyclic.

 q_n is bounded iff a_n is bounded, so (b) \rightarrow (c) is Larcher's theorem.

Weyl's uniform distribution modulo 1 theorem The set Γ_S The subgroups Γ_S cover \mathbb{T} **The size of \Gamma_S** Characterized subgroup

Being a Borel set of \mathbb{T} , Γ_S is either countable or $|\Gamma_S| = \mathfrak{c}$.

Definition (Let $q_n = \frac{u_{n+1}}{u_n}$.)

Theorem (Egglestone 1952: $|\Gamma_S|$ depends on q_n)

(a) $|\Gamma_{S}| = \mathfrak{c}$ if $q_{n} \to \infty$; (b) Γ_{S} is countable if (q_{n}) is bounded.

Neither (a) nor (b) are necessary conditions.

Theorem (C. Kraaikamp and P. Liardet 1991)

If $u_n = a_n u_{n-1} + u_{n-2}$ and $u_1 = 1$, then TFAE:

(a) Γ_S is countable; (b) q_n is bounded; (c) Γ_S is cyclic.

 q_n is bounded iff a_n is bounded, so (b) \rightarrow (c) is Lagcher's theorem.

Weyl's uniform distribution modulo 1 theorem The set Γ_S The subgroups Γ_S cover \mathbb{T} **The size of \Gamma_S** Characterized subgroup

Being a Borel set of \mathbb{T} , Γ_S is either countable or $|\Gamma_S| = \mathfrak{c}$.

Definition (Let $q_n = \frac{u_{n+1}}{u_n}$.)

Theorem (Egglestone 1952: $|\Gamma_S|$ depends on q_n)

(a) $|\Gamma_{S}| = \mathfrak{c}$ if $q_{n} \to \infty$; (b) Γ_{S} is countable if (q_{n}) is bounded.

Neither (a) nor (b) are necessary conditions.

Theorem (C. Kraaikamp and P. Liardet 1991)

If $u_n = a_n u_{n-1} + u_{n-2}$ and $u_1 = 1$, then TFAE: (a) Γ_S is countable; (b) q_n is bounded; (c) Γ_S is cyclic.

 q_n is bounded iff a_n is bounded, so (b) \rightarrow (c) is Lagcher's theorem.

Weyl's uniform distribution modulo 1 theorem The set Γ_S The subgroups Γ_S cover \mathbb{T} **The size of \Gamma_S** Characterized subgroup

Being a Borel set of \mathbb{T} , Γ_S is either countable or $|\Gamma_S| = \mathfrak{c}$.

Definition (Let $q_n = \frac{u_{n+1}}{u_n}$.)

Theorem (Egglestone 1952: $|\Gamma_S|$ depends on q_n)

(a) $|\Gamma_{S}| = \mathfrak{c}$ if $q_{n} \to \infty$; (b) Γ_{S} is countable if (q_{n}) is bounded.

Neither (a) nor (b) are necessary conditions.

Theorem (C. Kraaikamp and P. Liardet 1991)

If $u_n = a_n u_{n-1} + u_{n-2}$ and $u_1 = 1$, then TFAE: (a) Γ_S is countable; (b) q_n is bounded; (c) Γ_S is cyclic.

 q_n is bounded iff a_n is bounded, so (b) \rightarrow (c) is Lagcher's theorem.

Weyl's uniform distribution modulo 1 theorem The set Γ_S The subgroups Γ_S cover \mathbb{T} **The size of \Gamma_S** Characterized subgroup

Being a Borel set of \mathbb{T} , Γ_S is either countable or $|\Gamma_S| = \mathfrak{c}$.

Definition (Let $q_n = \frac{u_{n+1}}{u_n}$.)

Theorem (Egglestone 1952: $|\Gamma_S|$ depends on q_n)

(a) $|\Gamma_{S}| = \mathfrak{c}$ if $q_{n} \to \infty$; (b) Γ_{S} is countable if (q_{n}) is bounded.

Neither (a) nor (b) are necessary conditions.

Theorem (C. Kraaikamp and P. Liardet 1991)

If $u_n = a_n u_{n-1} + u_{n-2}$ and $u_1 = 1$, then TFAE: (a) Γ_S is countable; (b) q_n is bounded; (c) Γ_S is cyclic.

 q_n is bounded iff a_n is bounded, so (b) \rightarrow (c) is Larcher's theorem.

Weyl's uniform distribution modulo 1 theorem The set Γ_S The subgroups Γ_S cover \mathbb{T} **The size of \Gamma_S** Characterized subgroup

Being a Borel set of \mathbb{T} , Γ_S is either countable or $|\Gamma_S| = \mathfrak{c}$.

Definition (Let $q_n = \frac{u_{n+1}}{u_n}$.)

Theorem (Egglestone 1952: $|\Gamma_S|$ depends on q_n)

(a) $|\Gamma_{S}| = \mathfrak{c}$ if $q_{n} \to \infty$; (b) Γ_{S} is countable if (q_{n}) is bounded.

Neither (a) nor (b) are necessary conditions.

Theorem (C. Kraaikamp and P. Liardet 1991)

If $u_n = a_n u_{n-1} + u_{n-2}$ and $u_1 = 1$, then TFAE: (a) Γ_S is countable; (b) q_n is bounded; (c) Γ_S is cyclic.

 q_n is bounded iff a_n is bounded, so (b) \rightarrow (c) is Larcher's theorem.

Theorem (J.P. Borel 1983, A. Bíró, J.-M.Deshouillers, V.Sós 2001)

Every countable subgroup H of \mathbb{T} has a characterizing sequence.

Bíró, Deshouillers and Sós conjectured that this can be extended to all compact metrizable abelian groups G in place of \mathbb{T} .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

When a subgroup *H* of \mathbb{T} has the form $H = \Gamma_S$ for some $S \in \mathcal{Z}$?

Call such an *S* a *characterizing sequence* for *H* and *H* – a *characterizable subgroup* of \mathbb{T} . Some cyclic $H = \langle \alpha \rangle$ have a characterizing sequence (e.g., $\langle \frac{1+\sqrt{5}}{2} \rangle$ Larcher's theorem) The case $H = \mathbb{Q}/\mathbb{Z}$. Now $\mathbb{Q}/\mathbb{Z} \subseteq \Gamma_{(n!)}$, but the inclusion is proper (as $|\Gamma_{(n)}| = c$ by Egglestone's theorem). To get a characterizing

sequence S^* for \mathbb{Q}/\mathbb{Z} add to (n!) also all multiples k(n!) with k = 2, 3, ..., n to get $\mathbb{Q}/\mathbb{Z} = \Gamma_{S^*} \subseteq \Gamma_{(n!)}$.

Theorem (J.P. Borel 1983, A. Bíró, J.-M.Deshouillers, V.Sós 2001)

Every countable subgroup H of \mathbb{T} has a characterizing sequence.

Bíró, Deshouillers and Sós conjectured that this can be extended to all compact metrizable abelian groups G in place of \mathbb{T} .

< ロ > < 同 > < 回 > < 回 >

When a subgroup H of \mathbb{T} has the form $H = \Gamma_S$ for some $S \in \mathbb{Z}$? Call such an S a *characterizing sequence* for Hand H – a *characterizable subgroup* of \mathbb{T} .

Some cyclic $H = \langle \alpha \rangle$ have a characterizing sequence (e.g., $\langle \frac{1+\sqrt{5}}{2} \rangle$, Larcher's theorem)

The case $H = \mathbb{Q}/\mathbb{Z}$. Now $\mathbb{Q}/\mathbb{Z} \subseteq \Gamma_{(n!)}$, but the inclusion is proper (as $|\Gamma_{(n!)}| = \mathfrak{c}$ by Egglestone's theorem). To get a characterizing sequence S^* for \mathbb{Q}/\mathbb{Z} add to (n!) also all multiples k(n!) with $k = 2, 3, \ldots, n$ to get $\mathbb{Q}/\mathbb{Z} = \Gamma_{S^*} \subseteq \Gamma_{(n!)}$.

Theorem (J.P. Borel 1983, A. Bíró, J.-M.Deshouillers, V.Sós 2001)

Every countable subgroup H of \mathbb{T} has a characterizing sequence.

Bíró, Deshouillers and Sós conjectured that this can be extended to all compact metrizable abelian groups G in place of \mathbb{T} .

・ロト ・同ト ・ヨト ・ヨト

Theorem (J.P. Borel 1983, A. Bíró, J.-M.Deshouillers, V.Sós 2001)

Every countable subgroup H of \mathbb{T} has a characterizing sequence.

Bíró, Deshouillers and Sós conjectured that this can be extended to all compact metrizable abelian groups G in place of \mathbb{T} .

・ロト ・同ト ・ヨト ・ヨト

Theorem (J.P. Borel 1983, A. Bíró, J.-M.Deshouillers, V.Sós 2001)

Every countable subgroup H of \mathbb{T} has a characterizing sequence.

Bíró, Deshouillers and Sós conjectured that this can be extended to all compact metrizable abelian groups G in place of \mathbb{T} .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (J.P. Borel 1983, A. Bíró, J.-M.Deshouillers, V.Sós 2001)

Every countable subgroup H of \mathbb{T} has a characterizing sequence.

Bíró, Deshouillers and Sós conjectured that this can be extended to all compact metrizable abelian groups G in place of \mathbb{T} .

(a)

Theorem (J.P. Borel 1983, A. Bíró, J.-M.Deshouillers, V.Sós 2001)

Every countable subgroup H of \mathbb{T} has a characterizing sequence.

Bíró, Deshouillers and Sós conjectured that this can be extended to all compact metrizable abelian groups G in place of \mathbb{T} .

イロン 不同 とくほう イロン

Theorem (J.P. Borel 1983, A. Bíró, J.-M.Deshouillers, V.Sós 2001)

Every countable subgroup H of \mathbb{T} has a characterizing sequence.

Bíró, Deshouillers and Sós conjectured that this can be extended to all compact metrizable abelian groups G in place of \mathbb{T} .

- * 同 * * ヨ * * ヨ * - ヨ

For a compact abelian group G let \widehat{G} be the group of all characters of G, i.e., all continuous homomorphisms $G \to \mathbb{T}$. Now, for a sequence $S = (u_n)$ in \widehat{G} let

$$\Gamma_{S}(G) = \{x \in G : u_{n}(x) \to 0 \text{ in } \mathbb{T}\}\$$

If S is not definitely zero, then again $\Gamma_S(G) \neq G$.

Call a subgroup *H* of *G* of the form $H = \Gamma_S(G)$ a *characterizable* subgroup of *G*.

 $\Gamma_{S}(G)$ is a Borel subset (actually, an $F_{\sigma\delta}$ -set) of X as

$$\Gamma_{\mathcal{S}}(X) = \bigcap_{0 < M < \omega} \bigcup_{m \ge M} \left(\bigcap_{n \ge M} \left\{ x \in X : \|v_n(x)\| \le \frac{1}{M} \right\} \right).$$

For a compact abelian group G let \widehat{G} be the group of all characters of G, i.e., all continuous homomorphisms $G \to \mathbb{T}$. Now, for a sequence $S = (u_n)$ in \widehat{G} let

$$\Gamma_{\mathcal{S}}(\mathcal{G}) = \{ x \in \mathcal{G} : u_n(x) \to 0 \text{ in } \mathbb{T} \}$$

If S is not definitely zero, then again $\Gamma_S(G) \neq G$. Call a subgroup H of G of the form $H = \Gamma_S(G)$ a *characterizable* subgroup of G.

 $\Gamma_{S}(G)$ is a Borel subset (actually, an $F_{\sigma\delta}$ -set) of X as

$$\Gamma_{\mathcal{S}}(X) = \bigcap_{0 < M < \omega} \bigcup_{m \ge M} \left(\bigcap_{n \ge M} \left\{ x \in X : \|v_n(x)\| \le \frac{1}{M} \right\} \right).$$

For a compact abelian group G let \widehat{G} be the group of all characters of G, i.e., all continuous homomorphisms $G \to \mathbb{T}$. Now, for a sequence $S = (u_n)$ in \widehat{G} let

$$\Gamma_{\mathcal{S}}(G) = \{x \in G : u_n(x) \to 0 \text{ in } \mathbb{T}\}\$$

If S is not definitely zero, then again $\Gamma_S(G) \neq G$.

Call a subgroup H of G of the form $H = \Gamma_S(G)$ a *characterizable* subgroup of G.

 $\Gamma_{S}(G)$ is a Borel subset (actually, an $F_{\sigma\delta}$ -set) of X as

$$\Gamma_{\mathcal{S}}(X) = \bigcap_{0 < M < \omega} \bigcup_{m \ge M} \left(\bigcap_{n \ge M} \left\{ x \in X : \|v_n(x)\| \le \frac{1}{M} \right\} \right).$$

For a compact abelian group G let \widehat{G} be the group of all characters of G, i.e., all continuous homomorphisms $G \to \mathbb{T}$. Now, for a sequence $S = (u_n)$ in \widehat{G} let

$$\Gamma_{\mathcal{S}}(G) = \{ x \in G : u_n(x) \to 0 \text{ in } \mathbb{T} \}$$

If S is not definitely zero, then again $\Gamma_S(G) \neq G$. Call a subgroup H of G of the form $H = \Gamma_S(G)$ a *characterizable* subgroup of G.

 $\Gamma_{S}(G)$ is a Borel subset (actually, an $F_{\sigma\delta}$ -set) of X as

$$\Gamma_{\mathcal{S}}(X) = \bigcap_{0 < M < \omega} \bigcup_{m \ge M} \left(\bigcap_{n \ge M} \left\{ x \in X : \|v_n(x)\| \le \frac{1}{M} \right\} \right).$$

For a compact abelian group G let \widehat{G} be the group of all characters of G, i.e., all continuous homomorphisms $G \to \mathbb{T}$. Now, for a sequence $S = (u_n)$ in \widehat{G} let

$$\Gamma_{\mathcal{S}}(G) = \{ x \in G : u_n(x) \to 0 \text{ in } \mathbb{T} \}$$

If S is not definitely zero, then again $\Gamma_S(G) \neq G$.

Call a subgroup *H* of *G* of the form $H = \Gamma_S(G)$ a *characterizable* subgroup of *G*.

 $\Gamma_{S}(G)$ is a Borel subset (actually, an $F_{\sigma\delta}$ -set) of X as

$$\Gamma_{\mathcal{S}}(X) = \bigcap_{0 < M < \omega} \bigcup_{m \ge M} \left(\bigcap_{n \ge M} \left\{ x \in X : \|v_n(x)\| \le \frac{1}{M} \right\} \right).$$

For a compact abelian group G let \widehat{G} be the group of all characters of G, i.e., all continuous homomorphisms $G \to \mathbb{T}$. Now, for a sequence $S = (u_n)$ in \widehat{G} let

$$\Gamma_{\mathcal{S}}(G) = \{ x \in G : u_n(x) \to 0 \text{ in } \mathbb{T} \}$$

If S is not definitely zero, then again $\Gamma_S(G) \neq G$.

Call a subgroup *H* of *G* of the form $H = \Gamma_S(G)$ a *characterizable* subgroup of *G*.

 $\Gamma_{S}(G)$ is a Borel subset (actually, an $F_{\sigma\delta}$ -set) of X as

$$\Gamma_{\mathcal{S}}(X) = \bigcap_{0 < M < \omega} \bigcup_{m \ge M} \left(\bigcap_{n \ge M} \left\{ x \in X : \|v_n(x)\| \le \frac{1}{M} \right\} \right).$$

For a compact abelian group G let \widehat{G} be the group of all characters of G, i.e., all continuous homomorphisms $G \to \mathbb{T}$. Now, for a sequence $S = (u_n)$ in \widehat{G} let

$$\Gamma_{\mathcal{S}}(G) = \{ x \in G : u_n(x) \to 0 \text{ in } \mathbb{T} \}$$

If S is not definitely zero, then again $\Gamma_S(G) \neq G$.

Call a subgroup *H* of *G* of the form $H = \Gamma_S(G)$ a *characterizable* subgroup of *G*.

 $\Gamma_{\mathcal{S}}(G)$ is a Borel subset (actually, an $F_{\sigma\delta}$ -set) of X as

$$\Gamma_{\mathcal{S}}(X) = \bigcap_{0 < M < \omega} \bigcup_{m \ge M} \left(\bigcap_{n \ge M} \left\{ x \in X : \|v_n(x)\| \le \frac{1}{M} \right\} \right).$$

Are F_{σ} -subgroups (of \mathbb{T}) characterizable

Question [Kunen, DD]

When F_{σ^-} subgroups H of compact metrizable abelian groups are characterizable ?

If H contains a compact subgroup K of G with countable torsion quotient H/K (so that H is even a countable union of compact subgroups [KK & DD]). Here "torsion" can be relaxed as the countable subgroup H/K of the compact metrizable group G/K is characterizable.

Theorem (Andras Bíró)

An F_{σ} - subgroups of \mathbb{T} need not be characterizable.

Bíró discovered a new property of the characterizable subgroups they are Polishable (i.e., they admit a finer Polish group topology).

Are F_{σ} -subgroups (of \mathbb{T}) characterizable

Question [Kunen, DD]

When F_{σ^-} subgroups H of compact metrizable abelian groups are characterizable ?

If H contains a compact subgroup K of G with countable torsion quotient H/K (so that H is even a countable union of compact subgroups [KK & DD]). Here "torsion" can be relaxed as the countable subgroup H/K of the compact metrizable group G/K is characterizable.

Theorem (Andras Bíró)

An F_{σ} - subgroups of \mathbb{T} need not be characterizable.

Bíró discovered a new property of the characterizable subgroups — they are Polishable (i.e., they admit a finer Polish group topology).

Are F_{σ} -subgroups (of \mathbb{T}) characterizable

Question [Kunen, DD]

When F_{σ^-} subgroups H of compact metrizable abelian groups are characterizable ?

If H contains a compact subgroup K of G with countable torsion quotient H/K (so that H is even a countable union of compact subgroups [KK & DD]). Here "torsion" can be relaxed as the countable subgroup H/K of the compact metrizable group G/K is characterizable.

Theorem (Andras Bíró)

An F_{σ} - subgroups of \mathbb{T} need not be characterizable.

Bíró discovered a new property of the characterizable subgroups — they are Polishable (i.e., they admit a finer Polish group topology).

Are F_{σ} -subgroups (of \mathbb{T}) characterizable

Question [Kunen, DD]

When F_{σ^-} subgroups H of compact metrizable abelian groups are characterizable ?

If *H* contains a compact subgroup *K* of *G* with countable torsion quotient H/K (so that *H* is even a countable union of compact subgroups [KK & DD]). Here "torsion" can be relaxed as the countable subgroup H/K of the compact metrizable group G/K is characterizable.

Theorem (Andras Bíró)

An F_{σ} - subgroups of \mathbb{T} need not be characterizable.

Bíró discovered a new property of the characterizable subgroups — they are Polishable (i.e., they admit a finer Polish group topology).

- 4 同 6 4 日 6 4 日 6

Are F_{σ} -subgroups (of \mathbb{T}) characterizable

Question [Kunen, DD]

When F_{σ^-} subgroups H of compact metrizable abelian groups are characterizable ?

If H contains a compact subgroup K of G with countable torsion quotient H/K (so that H is even a countable union of compact subgroups [KK & DD]). Here "torsion" can be relaxed as the countable subgroup H/K of the compact metrizable group G/K is characterizable.

Theorem (Andras Bíró)

An F_{σ} - subgroups of \mathbb{T} need not be characterizable.

Bíró discovered a new property of the characterizable subgroups — they are Polishable (i.e., they admit a finer Polish group topology).

ロト ・ 同ト ・ ヨト ・ ヨト

Are F_{σ} -subgroups (of \mathbb{T}) characterizable

Question [Kunen, DD]

When F_{σ^-} subgroups H of compact metrizable abelian groups are characterizable ?

If *H* contains a compact subgroup *K* of *G* with countable torsion quotient H/K (so that *H* is even a countable union of compact subgroups [KK & DD]). Here "torsion" can be relaxed as the countable subgroup H/K of the compact metrizable group G/K is characterizable.

Theorem (Andras Bíró)

An F_{σ} - subgroups of \mathbb{T} need not be characterizable.

Bíró discovered a new property of the characterizable subgroups — they are Polishable (i.e., they admit a finer Polish group topology).

- 4 同 6 4 日 6 4 日 6
Are F_{σ} -subgroups (of \mathbb{T}) characterizable

Question [Kunen, DD]

When F_{σ^-} subgroups H of compact metrizable abelian groups are characterizable ?

If H contains a compact subgroup K of G with countable torsion quotient H/K (so that H is even a countable union of compact subgroups [KK & DD]). Here "torsion" can be relaxed as the countable subgroup H/K of the compact metrizable group G/K is characterizable.

Theorem (Andras Bíró)

An F_{σ} - subgroups of \mathbb{T} need not be characterizable.

Bíró discovered a new property of the characterizable subgroups — they are Polishable (i.e., they admit a finer Polish group topology).

(4) (3) (4) (4) (4)

The Polish topology of a characterizable subgroup $H = \Gamma_S$ of \mathbb{T}

We can assume wlog that $u_0 = 1$, then the homomorphism $d_S : H \to \mathbb{T}^{\mathbb{N}}$ defined by $d_S(x) = (u_n x) \in \mathbb{T}^{\mathbb{N}}$ is injective and $d_S(H) \subseteq \{(z_n) \in \mathbb{T}^{\mathbb{N}} : z_n \to 0\} =: c_0(\mathbb{T})$ and $H \to d_S(H)$ is a topological isomorphism when H and $c_0(\mathbb{T})$ carry the induced topologies (from \mathbb{T} and $\mathbb{T}^{\mathbb{N}}$, resp.). The metric topology of $\mathbb{T}^{\mathbb{N}}$ determined by the sup-norm (i.e., $|z|_S = \sup_n ||z_n||$ for $z = (z_n) \in \mathbb{T}^{\mathbb{N}}$) induces on $c_0(\mathbb{T})$ a Polish group topology finer than the product topology, so the topology τ_S of H transferred to H via d_S is a finer Polish that does not depend of S (i.e., if $H = \Gamma_{S'}$ as well, then $\tau_{S'} = \tau_S$).

Theorem (Bíró 2008)

If K is an uncountable Kronecker set of \mathbb{T} , then the F_{σ} -subgroup $\langle K \rangle$ is not Polishable (so, $\langle K \rangle$ is not characterizable).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Polish topology of a characterizable subgroup $H = \Gamma_S$ of \mathbb{T} We can assume wlog that $u_0 = 1$, then the homomorphism $d_S: H \to \mathbb{T}^{\mathbb{N}}$ defined by $d_S(x) = (u_n x) \in \mathbb{T}^{\mathbb{N}}$ is injective and $d_{\mathcal{S}}(H) \subseteq \{(z_n) \in \mathbb{T}^{\mathbb{N}} : z_n \to 0\} =: c_0(\mathbb{T})$

Theorem (Bíró 2008)

If K is an uncountable Kronecker set of \mathbb{T} , then the F_{σ} -subgroup $\langle K \rangle$ is not Polishable (so, $\langle K \rangle$ is not characterizable).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Subgroups of ${\mathbb T}$ determined by a sequence

Weyl's uniform distribution modulo 1 theorem The set Γ_S The subgroups Γ_S cover \mathbb{T} The size of Γ_S Characterized subgroup

The Polish topology of a characterizable subgroup $H = \Gamma_S$ of \mathbb{T} We can assume wlog that $u_0 = 1$, then the homomorphism $d_S: H \to \mathbb{T}^{\mathbb{N}}$ defined by $d_S(x) = (u_n x) \in \mathbb{T}^{\mathbb{N}}$ is injective and $d_{\mathcal{S}}(H) \subseteq \{(z_n) \in \mathbb{T}^{\mathbb{N}} : z_n \to 0\} =: c_0(\mathbb{T})$ and $H \to d_{S}(H)$ is a topological isomorphism when H and $c_{0}(\mathbb{T})$ carry the induced topologies (from \mathbb{T} and $\mathbb{T}^{\mathbb{N}}$, resp.).

Theorem (Bíró 2008)

If K is an uncountable Kronecker set of \mathbb{T} , then the F_{σ} -subgroup $\langle K \rangle$ is not Polishable (so, $\langle K \rangle$ is not characterizable).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Subgroups of $\ensuremath{\mathbb{T}}$ determined by a sequence

The Polish topology of a characterizable subgroup $H = \Gamma_S$ of \mathbb{T} We can assume wlog that $u_0 = 1$, then the homomorphism $d_{S}: H \to \mathbb{T}^{\mathbb{N}}$ defined by $d_{S}(x) = (u_{n}x) \in \mathbb{T}^{\mathbb{N}}$ is injective and $d_{\mathsf{S}}(H) \subset \{(z_n) \in \mathbb{T}^{\mathbb{N}} : z_n \to 0\} =: c_0(\mathbb{T})$ and $H \to d_S(H)$ is a topological isomorphism when H and $c_0(\mathbb{T})$ carry the induced topologies (from \mathbb{T} and $\mathbb{T}^{\mathbb{N}}$, resp.). The metric topology of $\mathbb{T}^{\mathbb{N}}$ determined by the sup-norm (i.e., $|z|_{S} = \sup_{n} ||z_{n}||$ for $z = (z_{n}) \in \mathbb{T}^{\mathbb{N}}$ induces on $c_{0}(\mathbb{T})$ a Polish group topology finer than the product topology, so the topology τ_{S} of H transferred to H via d_{S} is a finer Polish that does not depend of S (i.e., if $H = \Gamma_{S'}$ as well, then $\tau_{S'} = \tau_S$).

Theorem (Bíró 2008)

If K is an uncountable Kronecker set of \mathbb{T} , then the F_{σ} -subgroup $\langle K \rangle$ is not Polishable (so, $\langle K \rangle$ is not characterizable).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

-

Subgroups of $\ensuremath{\mathbb{T}}$ determined by a sequence

The Polish topology of a characterizable subgroup $H = \Gamma_S$ of \mathbb{T} We can assume wlog that $u_0 = 1$, then the homomorphism $d_{S}: H \to \mathbb{T}^{\mathbb{N}}$ defined by $d_{S}(x) = (u_{n}x) \in \mathbb{T}^{\mathbb{N}}$ is injective and $d_{\mathsf{S}}(H) \subset \{(z_n) \in \mathbb{T}^{\mathbb{N}} : z_n \to 0\} =: c_0(\mathbb{T})$ and $H \to d_S(H)$ is a topological isomorphism when H and $c_0(\mathbb{T})$ carry the induced topologies (from \mathbb{T} and $\mathbb{T}^{\mathbb{N}}$, resp.). The metric topology of $\mathbb{T}^{\mathbb{N}}$ determined by the sup-norm (i.e., $|z|_{S} = \sup_{n} ||z_{n}||$ for $z = (z_{n}) \in \mathbb{T}^{\mathbb{N}}$ induces on $c_{0}(\mathbb{T})$ a Polish group topology finer than the product topology, so the topology τ_{S} of H transferred to H via d_{S} is a finer Polish that does not depend of S (i.e., if $H = \Gamma_{S'}$ as well, then $\tau_{S'} = \tau_S$).

Theorem (Bíró 2008)

If K is an uncountable Kronecker set of \mathbb{T} , then the F_{σ} -subgroup $\langle K \rangle$ is not Polishable (so, $\langle K \rangle$ is not characterizable).

< ロ > < 同 > < 回 > < 回 >

-

Definition

A non empty compact subset K of an infinite compact metrizable abelian group X is called a Kronecker set, if for every continuous function $f: K \to \mathbb{T}$ and $\varepsilon > 0$ there exists a $v \in \hat{X}$ such that

$$\max \{ \|f(x) - v(x)\| : x \in K \} < \varepsilon.$$

Gabriyelyan extended Bíró's theorem for infinite compact metrizable abelian group:

Theorem (Gabriyelyan 2009)

Let X be a compact metrizable abelian group. Then

(a) $\Gamma_S(X)$ is Polishable for every sequence S of characters of X;

(b) if K is an uncountable Kronecker set in X, then $\langle K \rangle$ is not Polishable; in particular, $\langle K \rangle$ is not characterizable.

Moreover, Gabriyelyan produced a compact metrizable group Xwith a Polishable F_{σ} -subgroup that is not characterizable? \Rightarrow \Rightarrow joint work with D. Impieri On the Borel Complexity of Characterizable Subgroups

Definition

A non empty compact subset K of an infinite compact metrizable abelian group X is called a Kronecker set, if for every continuous function $f: K \to \mathbb{T}$ and $\varepsilon > 0$ there exists a $v \in \hat{X}$ such that

$$\max \{ \|f(x) - v(x)\| : x \in K \} < \varepsilon.$$

Gabriyelyan extended Bíró's theorem for infinite compact metrizable abelian group:

Theorem (Gabriyelyan 2009)

Let X be a compact metrizable abelian group. Then
(a) Γ_S(X) is Polishable for every sequence S of characters of X;
(b) if K is an uncountable Kronecker set in X, then (K) is not Polishable; in particular, (K) is not characterizable.

Moreover, Gabriyelyan produced a compact metrizable group Xwith a Polishable F_{σ} -subgroup that is not characterizable? \Rightarrow \Rightarrow \Rightarrow joint work with D. Impieri On the Borel Complexity of Characterizable Subgroups

Definition

A non empty compact subset K of an infinite compact metrizable abelian group X is called a Kronecker set, if for every continuous function $f: K \to \mathbb{T}$ and $\varepsilon > 0$ there exists a $v \in \hat{X}$ such that

$$\max\left\{\|f(x)-v(x)\|:x\in K\right\}<\varepsilon.$$

Gabriyelyan extended Bíró's theorem for infinite compact metrizable abelian group:

Theorem (Gabriyelyan 2009)

Let X be a compact metrizable abelian group. Then

- (a) $\Gamma_S(X)$ is Polishable for every sequence S of characters of X;
- (b) if K is an uncountable Kronecker set in X, then $\langle K \rangle$ is not Polishable; in particular, $\langle K \rangle$ is not characterizable.

Moreover, Gabriyelyan produced a compact metrizable group Xwith a Polishable F_{σ} -subgroup that is not characterizable A = 2joint work with D. Impieri On the Borel Complexity of Characterizable Subgroups

Definition

A non empty compact subset K of an infinite compact metrizable abelian group X is called a Kronecker set, if for every continuous function $f: K \to \mathbb{T}$ and $\varepsilon > 0$ there exists a $v \in \hat{X}$ such that

$$\max\left\{\|f(x)-v(x)\|:x\in K\right\}<\varepsilon.$$

Gabriyelyan extended Bíró's theorem for infinite compact metrizable abelian group:

Theorem (Gabriyelyan 2009)

Let X be a compact metrizable abelian group. Then

- (a) $\Gamma_S(X)$ is Polishable for every sequence S of characters of X;
- (b) if K is an uncountable Kronecker set in X, then $\langle K \rangle$ is not Polishable; in particular, $\langle K \rangle$ is not characterizable.

Moreover, Gabriyelyan produced a compact metrizable group Xwith a Polishable F_{σ} -subgroup that is not characterizable.

Example (uncountable characterizable F_{σ} -subgroups)

(a) [Gabriyelyan 2012] if j : R → T² is a dense continuous monomorphism, then j(R) is characterizable.
(b) if a subgroup H of a compact metrizable group G contains a compact subgroup K such that H/K is countable, then H is characterizable.

Item (a) can be generalized as follows:

Theorem (Gabriele Negro, answering a question of Gabriyelyan)

If G is a compact metrizable abelian group, H is a metrizable LCA group and $j : H \hookrightarrow G$ is a continuous monomorphism, then j(H) is characterizable.

Example (uncountable characterizable F_{σ} -subgroups)

(a) [Gabriyelyan 2012] if $j : \mathbb{R} \hookrightarrow \mathbb{T}^2$ is a dense continuous monomorphism, then $j(\mathbb{R})$ is characterizable.

(b) if a subgroup H of a compact metrizable group G contains a compact subgroup K such that H/K is countable, then H is characterizable.

Item (a) can be generalized as follows:

Theorem (Gabriele Negro, answering a question of Gabriyelyan)

If G is a compact metrizable abelian group, H is a metrizable LCA group and $j : H \hookrightarrow G$ is a continuous monomorphism, then j(H) is characterizable.

(日) (同) (三) (三)

Example (uncountable characterizable F_{σ} -subgroups)

(a) [Gabriyelyan 2012] if $j : \mathbb{R} \hookrightarrow \mathbb{T}^2$ is a dense continuous monomorphism, then $j(\mathbb{R})$ is characterizable. (b) if a subgroup H of a compact metrizable group G contains a compact subgroup K such that H/K is countable, then H is characterizable.

Item (a) can be generalized as follows:

Theorem (Gabriele Negro, answering a question of Gabriyelyan)

If G is a compact metrizable abelian group, H is a metrizable LCA group and $j : H \hookrightarrow G$ is a continuous monomorphism, then j(H) is characterizable.

(日) (同) (三) (三)

Example (uncountable characterizable F_{σ} -subgroups)

(a) [Gabriyelyan 2012] if $j : \mathbb{R} \hookrightarrow \mathbb{T}^2$ is a dense continuous monomorphism, then $j(\mathbb{R})$ is characterizable. (b) if a subgroup H of a compact metrizable group G contains a compact subgroup K such that H/K is countable, then H is characterizable.

Item (a) can be generalized as follows:

Theorem (Gabriele Negro, answering a question of Gabriyelyan)

If G is a compact metrizable abelian group, H is a metrizable LCA group and $j : H \hookrightarrow G$ is a continuous monomorphism, then j(H) is characterizable.

(日) (同) (三) (三)

Example (uncountable characterizable F_{σ} -subgroups)

(a) [Gabriyelyan 2012] if j : R → T² is a dense continuous monomorphism, then j(R) is characterizable.
(b) if a subgroup H of a compact metrizable group G contains a compact subgroup K such that H/K is countable, then H is characterizable.

Item (a) can be generalized as follows:

Theorem (Gabriele Negro, answering a question of Gabriyelyan)

If G is a compact metrizable abelian group, H is a metrizable LCA group and $j : H \hookrightarrow G$ is a continuous monomorphism, then j(H) is characterizable.

(日) (同) (三) (三)

-

Theorem (Gabriyelyan 2013)

All characterizable subgroups of compact metrizable abelian group are F_{σ} iff G has finite exponent.

Consequently, all compact metrizable abelian groups of infinite exponent contain a characterizable subgroup that is not an F_{σ} -set.

Example (characterizable, non- F_{σ} -subgroups of \mathbb{T})

(a) [Bukovský, Kholshevikova, Repický 1994] Γ_S is not an F_σ-subgroup of T for S = (2^{2ⁿ}).
(b) [Gabriyelyan 2013] Γ_S is not an F_σ-subgroup of T for S = (n!).

Is there something common between (a) and (b) ? In both cases $u_n|u_{n+1}$ in $S=(u_n)$ and $q_n=rac{u_{n+1}}{u_n} o\infty$

・ロト ・回ト ・ヨト ・ヨト

Theorem (Gabriyelyan 2013)

All characterizable subgroups of compact metrizable abelian group are F_{σ} iff G has finite exponent.

Consequently, all compact metrizable abelian groups of infinite exponent contain a characterizable subgroup that is not an F_{σ} -set.

Example (characterizable, non- F_{σ} -subgroups of \mathbb{T})

(a) [Bukovský, Kholshevikova, Repický 1994] Γ_S is not an F_σ-subgroup of T for S = (2^{2ⁿ}).
(b) [Gabriyelyan 2013] Γ_S is not an F_σ-subgroup of T for S = (n!).

Is there something common between (a) and (b) ? In both cases $u_n|u_{n+1}$ in $S=(u_n)$ and $q_n=rac{u_{n+1}}{u_n} o\infty$

・ロト ・回ト ・ヨト ・ヨト

Theorem (Gabriyelyan 2013)

All characterizable subgroups of compact metrizable abelian group are F_{σ} iff G has finite exponent.

Consequently, all compact metrizable abelian groups of infinite exponent contain a characterizable subgroup that is not an F_{σ} -set.

Example (characterizable, non- F_{σ} -subgroups of \mathbb{T})

(a) [Bukovský, Kholshevikova, Repický 1994] Γ_S is not an F_σ-subgroup of T for S = (2^{2ⁿ}).
(b) [Gabriyelyan 2013] Γ_S is not an F_σ-subgroup of T for S = (n!).

Is there something common between (a) and (b) ? In both cases $u_n|u_{n+1}$ in $S=(u_n)$ and $q_n=rac{u_{n+1}}{u_n} o\infty$

・ロト ・回ト ・ヨト ・ヨト

Theorem (Gabriyelyan 2013)

All characterizable subgroups of compact metrizable abelian group are F_{σ} iff G has finite exponent.

Consequently, all compact metrizable abelian groups of infinite exponent contain a characterizable subgroup that is not an F_{σ} -set.

Example (characterizable, non- F_{σ} -subgroups of \mathbb{T})

(a) [Bukovský, Kholshevikova, Repický 1994]

 Γ_S is not an F_{σ} -subgroup of \mathbb{T} for $S = (2^{2^n})$.

(b) [Gabriyelyan 2013] Γ_S is not an F_σ -subgroup of $\mathbb T$ for S=(n!).

Is there something common between (a) and (b) ? In both cases $u_n|u_{n+1}$ in $S=(u_n)$ and $q_n=rac{u_{n+1}}{u_n} o\infty$

イロト 不得 トイヨト イヨト 二日

Theorem (Gabriyelyan 2013)

All characterizable subgroups of compact metrizable abelian group are F_{σ} iff G has finite exponent.

Consequently, all compact metrizable abelian groups of infinite exponent contain a characterizable subgroup that is not an F_{σ} -set.

Example (characterizable, non- F_{σ} -subgroups of \mathbb{T})

(a) [Bukovský, Kholshevikova, Repický 1994]

 Γ_S is not an F_{σ} -subgroup of \mathbb{T} for $S = (2^{2^n})$.

(b) [Gabriyelyan 2013] Γ_S is not an F_{σ} -subgroup of \mathbb{T} for S = (n!).

Is there something common between (a) and (b) ? In both cases $u_n|u_{n+1}$ in $S=(u_n)$ and $q_n=rac{u_{n+1}}{u_n} o\infty$.

Theorem (Gabriyelyan 2013)

All characterizable subgroups of compact metrizable abelian group are F_{σ} iff G has finite exponent.

Consequently, all compact metrizable abelian groups of infinite exponent contain a characterizable subgroup that is not an F_{σ} -set.

Example (characterizable, non- F_{σ} -subgroups of \mathbb{T})

(a) [Bukovský, Kholshevikova, Repický 1994] Γ_S is not an F_{σ} -subgroup of \mathbb{T} for $S = (2^{2^n})$.

(b) [Gabriyelyan 2013] Γ_S is not an F_{σ} -subgroup of \mathbb{T} for S = (n!).

Is there something common between (a) and (b) ?

In both cases $u_n|u_{n+1}$ in $S=(u_n)$ and $q_n=rac{u_{n+1}}{u_n} o c$

イロト イポト イヨト イヨト 二日

Theorem (Gabriyelyan 2013)

All characterizable subgroups of compact metrizable abelian group are F_{σ} iff G has finite exponent.

Consequently, all compact metrizable abelian groups of infinite exponent contain a characterizable subgroup that is not an F_{σ} -set.

Example (characterizable, non- F_{σ} -subgroups of \mathbb{T})

(a) [Bukovský, Kholshevikova, Repický 1994]

 Γ_S is not an F_{σ} -subgroup of \mathbb{T} for $S = (2^{2^n})$.

(b) [Gabriyelyan 2013] Γ_S is not an F_{σ} -subgroup of \mathbb{T} for S = (n!).

Is there something common between (a) and (b) ? In both cases $u_n|u_{n+1}$ in $S = (u_n)$ and $q_n = \frac{u_{n+1}}{u_n} \to \infty$.

イロト イポト イヨト イヨト 二日

Definition (Call a sequence $S = (u_n)$ of positive integers an artimotic sequence (briefly, an a sequence) if $u_n|u_{n+1}$ for all but finitely many n.)

Theorem (Impieri, DD 2013)

The following are equivalent for an a-sequence $S = (u_n) \in \mathcal{Z}$:

- (a) $\Gamma_S \leq \mathbb{Q}/\mathbb{Z}$;
- (b) (q_n) is bounded;
- (c) Γ_S is countable;
- (d) Γ_S is an F_{σ} -set.
- (e) τ_S is discrete.

(a) and (b) are specific properties of \mathbb{T} , while (c)—(e) can be discussed for every metrizable compact abelian group G in place of \mathbb{T} and (c) \Leftrightarrow (e) holds true in general, (c) \Leftrightarrow (d) is preprieven in \mathbb{T} .

Definition (Call a sequence $S = (u_n)$ of positive integers an artitmetic sequence (briefly, an a-sequence) if $u_n|u_{n+1}$ for all but finitely many n.)

Theorem (Impieri, DD 2013)

The following are equivalent for an a-sequence $S = (u_n) \in \mathcal{Z}$:

- (a) $\Gamma_S \leq \mathbb{Q}/\mathbb{Z}$;
- (b) (q_n) is bounded;
- (c) Γ_S is countable;
- (d) Γ_S is an F_{σ} -set.
- (e) τ_S is discrete.

(a) and (b) are specific properties of \mathbb{T} , while (c)—(e) can be discussed for every metrizable compact abelian group G in place of \mathbb{T} and (c) \Leftrightarrow (e) holds true in general, (c) \Leftrightarrow (d) is preparent in \mathbb{T} .

Definition (Call a sequence $S = (u_n)$ of positive integers an artitmetic sequence (briefly, an a-sequence) if $u_n|u_{n+1}$ for all but finitely many n.)

Theorem (Impieri, DD 2013)

The following are equivalent for an a-sequence $S = (u_n) \in \mathcal{Z}$:

- (a) $\Gamma_S \leq \mathbb{Q}/\mathbb{Z}$;
- (b) (q_n) is bounded;
- (c) Γ_S is countable;
- (d) Γ_S is an F_{σ} -set.
- (e) τ_S is discrete.

(a) and (b) are specific properties of \mathbb{T} , while (c)—(e) can be discussed for every metrizable compact abelian group G in place of \mathbb{T} and (c) \Leftrightarrow (e) holds true in general, (c) \Leftrightarrow (d) is preparent even in \mathbb{T} .

Definition (Call a sequence $S = (u_n)$ of positive integers an artitmetic sequence (briefly, an a-sequence) if $u_n|u_{n+1}$ for all but finitely many n.)

Theorem (Impieri, DD 2013)

The following are equivalent for an a-sequence $S = (u_n) \in \mathcal{Z}$:

- (a) $\Gamma_S \leq \mathbb{Q}/\mathbb{Z}$;
- (b) (q_n) is bounded;
- (c) Γ_S is countable;
- (d) Γ_S is an F_{σ} -set.
- (e) τ_S is discrete.

(a) and (b) are specific properties of \mathbb{T} , while (c)—(e) can be discussed for every metrizable compact abelian group G in place of \mathbb{T} and (c) \Leftrightarrow (e) holds true in general, (c) \Leftrightarrow (d) is open even in \mathbb{T} .

Subgroups of \mathbb{T} determined by a sequence The set Γ_S The subgroups Γ_S cover \mathbb{T} The size of Γ_S Characterized subgroup

Removing the hypothesis "a-sequence" in the theorem leads to

- (a) $\Gamma_{\mathcal{S}} \leq \mathbb{Q}/\mathbb{Z};$
- (b) (q_n) is bounded;
- (c) Γ_S is countable;
- (d) Γ_S is an F_{σ} -set.
- (e) τ_S is discrete.

∃ >

Open questions

Question

If Γ_S is an F_{σ} -set of \mathbb{T} for some $S \in \mathbb{Z}^{\mathbb{N}}$, must Γ_S be necessarily countable?

The answer is positive if S is an a-sequence.

Question

If *H* is a countable subgroup of \mathbb{T} , does there exist a characterizing sequence $S \in \mathbb{Z}^{\mathbb{N}}$ of *H* with bounded sequence of ratios (q_n) ?

Question

Does every Polishable F_{σ} -subgroup of \mathbb{T} admit a characterizing sequence?

Open questions

Question

If Γ_S is an F_{σ} -set of \mathbb{T} for some $S \in \mathbb{Z}^{\mathbb{N}}$, must Γ_S be necessarily countable?

The answer is positive if S is an a-sequence.

Question

If *H* is a countable subgroup of \mathbb{T} , does there exist a characterizing sequence $S \in \mathbb{Z}^{\mathbb{N}}$ of *H* with bounded sequence of ratios (q_n) ?

Question

Does every Polishable F_{σ} -subgroup of \mathbb{T} admit a characterizing sequence?

Open questions

Question

If Γ_S is an F_{σ} -set of \mathbb{T} for some $S \in \mathbb{Z}^{\mathbb{N}}$, must Γ_S be necessarily countable?

The answer is positive if *S* is an a-sequence.

Question

If *H* is a countable subgroup of \mathbb{T} , does there exist a characterizing sequence $S \in \mathbb{Z}^{\mathbb{N}}$ of *H* with bounded sequence of ratios (q_n) ?

Question

Does every Polishable F_{σ} -subgroup of $\mathbb T$ admit a characterizing sequence?

Open questions

Question

If Γ_S is an F_{σ} -set of \mathbb{T} for some $S \in \mathbb{Z}^{\mathbb{N}}$, must Γ_S be necessarily countable?

The answer is positive if S is an a-sequence.

Question

If *H* is a countable subgroup of \mathbb{T} , does there exist a characterizing sequence $S \in \mathbb{Z}^{\mathbb{N}}$ of *H* with bounded sequence of ratios (q_n) ?

Question

Does every Polishable F_{σ} -subgroup of \mathbb{T} admit a characterizing sequence?

Open questions

Question

If Γ_S is an F_{σ} -set of \mathbb{T} for some $S \in \mathbb{Z}^{\mathbb{N}}$, must Γ_S be necessarily countable?

The answer is positive if S is an a-sequence.

Question

If *H* is a countable subgroup of \mathbb{T} , does there exist a characterizing sequence $S \in \mathbb{Z}^{\mathbb{N}}$ of *H* with bounded sequence of ratios (q_n) ?

Question

Does every Polishable F_{σ} -subgroup of \mathbb{T} admit a characterizing sequence?

Open questions

Question

If Γ_S is an F_{σ} -set of \mathbb{T} for some $S \in \mathbb{Z}^{\mathbb{N}}$, must Γ_S be necessarily countable?

The answer is positive if S is an a-sequence.

Question

If *H* is a countable subgroup of \mathbb{T} , does there exist a characterizing sequence $S \in \mathbb{Z}^{\mathbb{N}}$ of *H* with bounded sequence of ratios (q_n) ?

Question

Does every Polishable F_{σ} -subgroup of $\mathbb T$ admit a characterizing sequence?

Open questions

Question

If Γ_S is an F_{σ} -set of \mathbb{T} for some $S \in \mathbb{Z}^{\mathbb{N}}$, must Γ_S be necessarily countable?

The answer is positive if S is an a-sequence.

Question

If *H* is a countable subgroup of \mathbb{T} , does there exist a characterizing sequence $S \in \mathbb{Z}^{\mathbb{N}}$ of *H* with bounded sequence of ratios (q_n) ?

Question

Does every Polishable F_{σ} -subgroup of \mathbb{T} admit a characterizing sequence?