Topological games and Alster spaces

Rodrigo Roque Dias coauthor: Leandro F. Aurichi

Instituto de Matemática e Estatística Universidade de São Paulo roque@ime.usp.br

> STW 2013, São Sebastião, Brazil

In honour of Ofelia T. Alas

Rodrigo Roque Dias (IME-USP)

Topological games and Alster spaces

STW 2013 1 / 14

Topological games The Rothberger game

Definition (Rothberger 1938)

A topological space X is *Rothberger* if, for every sequence $(\mathcal{U}_n)_{n \in \omega}$ of open covers of X, there is a sequence $(U_n)_{n \in \omega}$ satisfying $X = \bigcup_{n \in \omega} U_n$ with $U_n \in \mathcal{U}_n$ for all $n \in \omega$.

Definition (Galvin 1978)

The *Rothberger game* in a topological space X is played according to the following rules: in each inning $n \in \omega$, One chooses an open cover \mathcal{U}_n of X, and then Two chooses $U_n \in \mathcal{U}_n$; the play is won by Two if $X = \bigcup_{n \in \omega} U_n$, otherwise One is the winner.

Theorem (Pawlikowski 1994) Two \uparrow Rothberger(X) \Rightarrow One $\cancel{}$ Rothberger(X) \Leftrightarrow X is Rothberger.

Rodrigo Roque Dias (IME-USP)

Topological games The Rothberger game

Definition (Rothberger 1938)

A topological space X is *Rothberger* if, for every sequence $(\mathcal{U}_n)_{n \in \omega}$ of open covers of X, there is a sequence $(U_n)_{n \in \omega}$ satisfying $X = \bigcup_{n \in \omega} U_n$ with $U_n \in \mathcal{U}_n$ for all $n \in \omega$.

Definition (Galvin 1978)

The *Rothberger game* in a topological space X is played according to the following rules: in each inning $n \in \omega$, One chooses an open cover \mathcal{U}_n of X, and then Two chooses $U_n \in \mathcal{U}_n$; the play is won by Two if $X = \bigcup_{n \in \omega} U_n$, otherwise One is the winner.

Theorem (Pawlikowski 1994)

Two \uparrow Rothberger(X) \Rightarrow One $\cancel{}$ Rothberger(X) \Leftrightarrow X is Rothberger.

Rodrigo Roque Dias (IME-USP)

Topological games The Rothberger game

Definition (Rothberger 1938)

A topological space X is *Rothberger* if, for every sequence $(\mathcal{U}_n)_{n \in \omega}$ of open covers of X, there is a sequence $(U_n)_{n \in \omega}$ satisfying $X = \bigcup_{n \in \omega} U_n$ with $U_n \in \mathcal{U}_n$ for all $n \in \omega$.

Definition (Galvin 1978)

The *Rothberger game* in a topological space X is played according to the following rules: in each inning $n \in \omega$, One chooses an open cover \mathcal{U}_n of X, and then Two chooses $U_n \in \mathcal{U}_n$; the play is won by Two if $X = \bigcup_{n \in \omega} U_n$, otherwise One is the winner.

Theorem (Pawlikowski 1994)

Two \uparrow Rothberger(X) \Rightarrow One $\cancel{}$ Rothberger(X) \Leftrightarrow X is Rothberger.

Rodrigo Roque Dias (IME-USP)

Definition (Hurewicz 1926)

A topological space X is *Menger* if, for every sequence $(\mathcal{U}_n)_{n\in\omega}$ of open covers of X, there is a sequence $(\mathcal{F}_n)_{n\in\omega}$ satisfying $X = \bigcup \bigcup_{n\in\omega} \mathcal{F}_n$ with $\mathcal{F}_n \in [\mathcal{U}_n]^{<\aleph_0}$ for all $n \in \omega$.

Definition (Telgársky 1984)

The *Menger game* in a topological space X is played as follows: in each inning $n \in \omega$, One chooses an open cover \mathcal{U}_n of X, and then Two chooses a finite subset \mathcal{F}_n of \mathcal{U}_n ; Two wins the play if $\bigcup_{n \in \omega} \mathcal{F}_n$ is a cover of X, otherwise One is the winner.

Theorem (Hurewicz 1926)

Two \uparrow Menger $(X) \Rightarrow$ One $\cancel{}$ Menger $(X) \Leftrightarrow X$ is Menger.

Rodrigo Roque Dias (IME-USP)

Definition (Hurewicz 1926)

A topological space X is *Menger* if, for every sequence $(\mathcal{U}_n)_{n\in\omega}$ of open covers of X, there is a sequence $(\mathcal{F}_n)_{n\in\omega}$ satisfying $X = \bigcup \bigcup_{n\in\omega} \mathcal{F}_n$ with $\mathcal{F}_n \in [\mathcal{U}_n]^{<\aleph_0}$ for all $n \in \omega$.

Definition (Telgársky 1984)

The *Menger game* in a topological space X is played as follows: in each inning $n \in \omega$, One chooses an open cover \mathcal{U}_n of X, and then Two chooses a finite subset \mathcal{F}_n of \mathcal{U}_n ; Two wins the play if $\bigcup_{n \in \omega} \mathcal{F}_n$ is a cover of X, otherwise One is the winner.

Theorem (Hurewicz 1926)

Two \uparrow Menger(X) \Rightarrow One \Uparrow Menger(X) \Leftrightarrow X is Menger.

Rodrigo Roque Dias (IME-USP)

Definition (Hurewicz 1926)

A topological space X is *Menger* if, for every sequence $(\mathcal{U}_n)_{n\in\omega}$ of open covers of X, there is a sequence $(\mathcal{F}_n)_{n\in\omega}$ satisfying $X = \bigcup \bigcup_{n\in\omega} \mathcal{F}_n$ with $\mathcal{F}_n \in [\mathcal{U}_n]^{<\aleph_0}$ for all $n \in \omega$.

Definition (Telgársky 1984)

The *Menger game* in a topological space X is played as follows: in each inning $n \in \omega$, One chooses an open cover \mathcal{U}_n of X, and then Two chooses a finite subset \mathcal{F}_n of \mathcal{U}_n ; Two wins the play if $\bigcup_{n \in \omega} \mathcal{F}_n$ is a cover of X, otherwise One is the winner.

Theorem (Hurewicz 1926)

Two \uparrow Menger(X) \Rightarrow One \Uparrow Menger(X) \Leftrightarrow X is Menger.

Rodrigo Roque Dias (IME-USP)

Definition (Galvin 1978)

The *point-open game* in a topological space X is played as follows: in each inning $n \in \omega$, One picks a point $x_n \in X$, and then Two chooses an open set $U_n \subseteq X$ with $x_n \in U_n$; the play is won by One if $X = \bigcup_{n \in \omega} U_n$, otherwise Two is the winner.

Theorem (Galvin 1978)

- · One \uparrow Rothberger(X) \Leftrightarrow Two \uparrow point-open(X);
- · Two \uparrow Rothberger(X) \Leftrightarrow One \uparrow point-open(X).

Rodrigo Roque Dias (IME-USP)

Definition (Galvin 1978)

The *point-open game* in a topological space X is played as follows: in each inning $n \in \omega$, One picks a point $x_n \in X$, and then Two chooses an open set $U_n \subseteq X$ with $x_n \in U_n$; the play is won by One if $X = \bigcup_{n \in \omega} U_n$, otherwise Two is the winner.

Theorem (Galvin 1978)

- · One \uparrow Rothberger(X) \Leftrightarrow Two \uparrow point-open(X);
- · Two \uparrow Rothberger(X) \Leftrightarrow One \uparrow point-open(X).

Rodrigo Roque Dias (IME-USP)

Rodrigo Roque Dias (IME-USP)

Topological games and Alster spaces

STW 2013 5 / 14

Theorem (Telgársky 1983-84)

Let X be a regular space. TFAE:

- (a) Two \uparrow Menger(X);
- (b) One \uparrow compact-open(X);
- (c) One \uparrow compact- $G_{\delta}(X)$.

Question (Telgársky 1984)

Is Two \uparrow compact-open equivalent to One \uparrow Menger?

Or, equivalently:

Does the Menger property imply Two *∦* compact-open?

Rodrigo Roque Dias (IME–USP)

Theorem (Telgársky 1983-84)

Let X be a regular space. TFAE:

- (a) Two \uparrow Menger(X);
- (b) One \uparrow compact-open(X);
- (c) One \uparrow compact- $G_{\delta}(X)$.

Question (Telgársky 1984)

Is Two \uparrow compact-open equivalent to One \uparrow Menger?

Or, equivalently:

Does the Menger property imply Two # compact-open?

Rodrigo Roque Dias (IME–USP)

Theorem (Telgársky 1983-84)

Let X be a regular space. TFAE:

- (a) Two \uparrow Menger(X);
- (b) One \uparrow compact-open(X);
- (c) One \uparrow compact- $G_{\delta}(X)$.

Question (Telgársky 1984)

Is Two \uparrow compact-open equivalent to One \uparrow Menger?

Or, equivalently:

Does the Menger property imply Two $\cancel{1}$ compact-open?

Rodrigo Roque Dias (IME–USP)

Playing with k-covers

Definition

An open cover \mathcal{U} of a topological space X is a *k*-cover ($\mathcal{U} \in \mathcal{K}_X$) if every compact subset of X is included in an element of \mathcal{U} .

Definition

The game $G_1(\mathcal{K}, \mathcal{O})$ on a topological space X is played as follows: in each inning $n \in \omega$, One chooses $\mathcal{U}_n \in \mathcal{K}_X$, and then Two chooses $\mathcal{U}_n \in \mathcal{U}_n$; Two wins the play if $X = \bigcup_{n \in \omega} \mathcal{U}_n$, otherwise One is the winner.

Proposition (Telgársky 1983, Galvin 1978)

The game $G_1(\mathcal{K}, \mathcal{O})$ and the compact-open game are dual.

Corollary

If Two \uparrow compact-open(X), then $S_1(\mathcal{K}_X, \mathcal{O}_X)$ holds — i.e., for every sequence $(\mathcal{U}_n)_{n \in \omega}$ of k-covers of X, there is a sequence $(\mathcal{U}_n)_{n \in \omega}$ with $U_n \in \mathcal{U}_n$ for all $n \in \omega$ and $X = \bigcup_{n \in \omega} U_n$.

Rodrigo Roque Dias (IME-USP)

Playing with k-covers

Definition

An open cover \mathcal{U} of a topological space X is a *k*-cover ($\mathcal{U} \in \mathcal{K}_X$) if every compact subset of X is included in an element of \mathcal{U} .

Definition

The game $G_1(\mathcal{K}, \mathcal{O})$ on a topological space X is played as follows: in each inning $n \in \omega$, One chooses $\mathcal{U}_n \in \mathcal{K}_X$, and then Two chooses $\mathcal{U}_n \in \mathcal{U}_n$; Two wins the play if $X = \bigcup_{n \in \omega} \mathcal{U}_n$, otherwise One is the winner.

Proposition (Telgársky 1983, Galvin 1978)

The game $G_1(\mathcal{K}, \mathcal{O})$ and the compact-open game are dual.

Corollary

If Two $\not\uparrow$ compact-open(X), then $S_1(\mathcal{K}_X, \mathcal{O}_X)$ holds — i.e., for every sequence $(\mathcal{U}_n)_{n \in \omega}$ of k-covers of X, there is a sequence $(\mathcal{U}_n)_{n \in \omega}$ with $U_n \in \mathcal{U}_n$ for all $n \in \omega$ and $X = \bigcup_{n \in \omega} U_n$.

Rodrigo Roque Dias (IME-USP)

Playing with k-covers

Definition

An open cover \mathcal{U} of a topological space X is a *k*-cover ($\mathcal{U} \in \mathcal{K}_X$) if every compact subset of X is included in an element of \mathcal{U} .

Definition

The game $G_1(\mathcal{K}, \mathcal{O})$ on a topological space X is played as follows: in each inning $n \in \omega$, One chooses $\mathcal{U}_n \in \mathcal{K}_X$, and then Two chooses $\mathcal{U}_n \in \mathcal{U}_n$; Two wins the play if $X = \bigcup_{n \in \omega} \mathcal{U}_n$, otherwise One is the winner.

Proposition (Telgársky 1983, Galvin 1978)

The game ${\sf G}_1({\cal K},{\cal O})$ and the compact-open game are dual.

Corollary

If Two $\not\uparrow$ compact-open(X), then $S_1(\mathcal{K}_X, \mathcal{O}_X)$ holds — i.e., for every sequence $(\mathcal{U}_n)_{n \in \omega}$ of k-covers of X, there is a sequence $(\mathcal{U}_n)_{n \in \omega}$ with $\mathcal{U}_n \in \mathcal{U}_n$ for all $n \in \omega$ and $X = \bigcup_{n \in \omega} \mathcal{U}_n$.

Rodrigo Roque Dias (IME-USP)

Playing with k-covers

Definition

An open cover \mathcal{U} of a topological space X is a *k*-cover ($\mathcal{U} \in \mathcal{K}_X$) if every compact subset of X is included in an element of \mathcal{U} .

Definition

The game $G_1(\mathcal{K}, \mathcal{O})$ on a topological space X is played as follows: in each inning $n \in \omega$, One chooses $\mathcal{U}_n \in \mathcal{K}_X$, and then Two chooses $\mathcal{U}_n \in \mathcal{U}_n$; Two wins the play if $X = \bigcup_{n \in U} U_n$, otherwise One is the winner.

Proposition (Telgársky 1983, Galvin 1978)

The game $G_1(\mathcal{K}, \mathcal{O})$ and the compact-open game are dual.

Corollary

If Two \cancel{T} compact-open(X), then $S_1(\mathcal{K}_X, \mathcal{O}_X)$ holds — i.e., for every sequence $(\mathcal{U}_n)_{n \in \omega}$ of k-covers of X, there is a sequence $(\mathcal{U}_n)_{n \in \omega}$ with $U_n \in \mathcal{U}_n$ for all $n \in \omega$ and $X = \bigcup_{n \in \omega} U_n$.

Rodrigo Roque Dias (IME-USP)

$\begin{array}{l} \textit{Corollary}\\ \mathsf{Two}\ \texttt{\r{T}}\ \mathsf{compact-open}\ \Rightarrow\ \mathsf{S}_1(\mathcal{K},\mathcal{O})\ \Rightarrow\ \mathsf{Menger}. \end{array}$

Question (Telgársky 1984)

Does the Menger property imply Two *∦* compact-open?

We will now partially answer this question in the negative by giving consistent examples of Menger regular spaces that do not satisfy $S_1(\mathcal{K}, \mathcal{O})$.

Rodrigo Roque Dias (IME-USP)

Corollary

 $\mathsf{Two} \not\uparrow \mathsf{compact-open} \Rightarrow \mathsf{S}_1(\mathcal{K}, \mathcal{O}) \Rightarrow \mathsf{Menger}.$

Question (Telgársky 1984)

Does the Menger property imply Two $\cancel{1}$ compact-open?

We will now partially answer this question in the negative by giving consistent examples of Menger regular spaces that do not satisfy $S_1(\mathcal{K}, \mathcal{O})$.

Rodrigo Roque Dias (IME-USP)

Corollary

Two \cancel{T} compact-open \Rightarrow $S_1(\mathcal{K}, \mathcal{O}) \Rightarrow$ Menger.

Question (Telgársky 1984)

Does the Menger property imply Two $\cancel{1}$ compact-open?

We will now partially answer this question in the negative by giving consistent examples of Menger regular spaces that do not satisfy $S_1(\mathcal{K}, \mathcal{O})$.

Lemma

Let X be a topological space such that every compact subspace of X has an isolated point. Then X satisfies $S_1(\mathcal{K}, \mathcal{O})$ if and only if X is Rothberger.

Example

If $cov(\mathcal{M}) < \mathfrak{d}$, then any non-Rothberger subspace of \mathbb{R} of size $cov(\mathcal{M})$ is Menger but does not satisfy $S_1(\mathcal{K}, \mathcal{O})$.

Example

Any Sierpiński subset of the real line (which exists e.g. under CH) endowed with the Sorgenfrey topology is a Menger regular space that does not satisfy $S_1(\mathcal{K}, \mathcal{O})$.

Problem

Is it consistent with ZFC that every Menger regular space satisfies $S_1(\mathcal{K}, \mathcal{O})$?

Rodrigo Roque Dias (IME–USP)

Lemma

Let X be a topological space such that every compact subspace of X has an isolated point. Then X satisfies $S_1(\mathcal{K}, \mathcal{O})$ if and only if X is Rothberger.

Example

If $cov(\mathcal{M}) < \mathfrak{d}$, then any non-Rothberger subspace of \mathbb{R} of size $cov(\mathcal{M})$ is Menger but does not satisfy $S_1(\mathcal{K}, \mathcal{O})$.

Example

Any Sierpiński subset of the real line (which exists e.g. under CH) endowed with the Sorgenfrey topology is a Menger regular space that does not satisfy $S_1(\mathcal{K}, \mathcal{O})$.

Problem

Is it consistent with ZFC that every Menger regular space satisfies $S_1(\mathcal{K}, \mathcal{O})$?

Rodrigo Roque Dias (IME–USP)

Lemma

Let X be a topological space such that every compact subspace of X has an isolated point. Then X satisfies $S_1(\mathcal{K}, \mathcal{O})$ if and only if X is Rothberger.

Example

If $cov(\mathcal{M}) < \mathfrak{d}$, then any non-Rothberger subspace of \mathbb{R} of size $cov(\mathcal{M})$ is Menger but does not satisfy $S_1(\mathcal{K}, \mathcal{O})$.

Example

Any Sierpiński subset of the real line (which exists e.g. under CH) endowed with the Sorgenfrey topology is a Menger regular space that does not satisfy $S_1(\mathcal{K}, \mathcal{O})$.

Problem

Is it consistent with ZFC that every Menger regular space satisfies $S_1(\mathcal{K}, \mathcal{O})$?

Rodrigo Roque Dias (IME–USP)

Lemma

Let X be a topological space such that every compact subspace of X has an isolated point. Then X satisfies $S_1(\mathcal{K}, \mathcal{O})$ if and only if X is Rothberger.

Example

If $cov(\mathcal{M}) < \mathfrak{d}$, then any non-Rothberger subspace of \mathbb{R} of size $cov(\mathcal{M})$ is Menger but does not satisfy $S_1(\mathcal{K}, \mathcal{O})$.

Example

Any Sierpiński subset of the real line (which exists e.g. under CH) endowed with the Sorgenfrey topology is a Menger regular space that does not satisfy $S_1(\mathcal{K}, \mathcal{O})$.

Problem

Is it consistent with ZFC that every Menger regular space satisfies $S_1(\mathcal{K},\mathcal{O})?$

Rodrigo Roque Dias (IME–USP)

Definition (Alster 1988)

A topological space X is Alster if every k_{δ} -cover of X — i.e., every G_{δ} -cover W of X such that

for every compact $K \subseteq X$ there is $W \in W$ with $K \subseteq W$ — has a countable subcover.

Problem (Tamano)

Characterize (internally) the *productively Lindelöf spaces*, i.e. the spaces X such that $X \times Y$ is Lindelöf whenever Y is Lindelöf.

Theorem (Alster 1988)

Alster spaces are productively Lindelöf. Assuming CH, productively Lindelöf regular spaces of weight not exceeding \aleph_1 are Alster.

Problem (Alster 1988)

Is every productively Lindelöf (regular) space Alster?

Rodrigo Roque Dias (IME–USP)

Definition (Alster 1988)

A topological space X is Alster if every k_{δ} -cover of X — i.e., every G_{δ} -cover W of X such that

for every compact $K \subseteq X$ there is $W \in \mathcal{W}$ with $K \subseteq W$

- has a countable subcover.

Problem (Tamano)

Characterize (internally) the *productively Lindelöf spaces*, i.e. the spaces X such that $X \times Y$ is Lindelöf whenever Y is Lindelöf.

Theorem (Alster 1988)

Alster spaces are productively Lindelöf. Assuming CH, productively Lindelöf regular spaces of weight not exceeding \aleph_1 are Alster.

Problem (Alster 1988)

Is every productively Lindelöf (regular) space Alster?

Rodrigo Roque Dias (IME–USP)

Definition (Alster 1988)

A topological space X is Alster if every k_{δ} -cover of X — i.e., every G_{δ} -cover W of X such that

for every compact $K \subseteq X$ there is $W \in \mathcal{W}$ with $K \subseteq W$

- has a countable subcover.

Problem (Tamano)

Characterize (internally) the *productively Lindelöf spaces*, i.e. the spaces X such that $X \times Y$ is Lindelöf whenever Y is Lindelöf.

Theorem (Alster 1988)

Alster spaces are productively Lindelöf. Assuming CH, productively Lindelöf regular spaces of weight not exceeding \aleph_1 are Alster.

Problem (Alster 1988)

Is every productively Lindelöf (regular) space Alster?

Rodrigo Roque Dias (IME–USP)

Definition (Alster 1988)

A topological space X is Alster if every k_{δ} -cover of X — i.e., every G_{δ} -cover W of X such that

for every compact $K \subseteq X$ there is $W \in \mathcal{W}$ with $K \subseteq W$

— has a countable subcover.

Problem (Tamano)

Characterize (internally) the *productively Lindelöf spaces*, i.e. the spaces X such that $X \times Y$ is Lindelöf whenever Y is Lindelöf.

Theorem (Alster 1988)

Alster spaces are productively Lindelöf. Assuming CH, productively Lindelöf regular spaces of weight not exceeding \aleph_1 are Alster.

Problem (Alster 1988)

Is every productively Lindelöf (regular) space Alster?

Rodrigo Roque Dias (IME–USP)

Of course, σ -compact spaces are Alster.

Theorem (Aurichi, Tall 2012)

Alster spaces are Menger.

In view of the fact that σ -compact \Rightarrow Two \uparrow Menger \Rightarrow Menger,

Question (Tall 2013) Does Two ↑ Menger imply Alster? Does the converse hold?

Rodrigo Roque Dias (IME-USP)

Of course, σ -compact spaces are Alster.

Theorem (Aurichi, Tall 2012)

Alster spaces are Menger.

In view of the fact that σ -compact \Rightarrow Two \uparrow Menger \Rightarrow Menger,

Question (Tall 2013) Does Two ↑ Menger imply Alster? Does the converse hold?

Rodrigo Roque Dias (IME-USP)

Of course, σ -compact spaces are Alster.

Theorem (Aurichi, Tall 2012)

Alster spaces are Menger.

```
In view of the fact that \sigma-compact \Rightarrow Two \uparrow Menger \Rightarrow Menger,
```

Question (Tall 2013)

Does Two ↑ Menger imply Alster? Does the converse hold?

Rodrigo Roque Dias (IME-USP)

Of course, σ -compact spaces are Alster.

Theorem (Aurichi, Tall 2012)

Alster spaces are Menger.

```
In view of the fact that \sigma-compact \Rightarrow Two \uparrow Menger \Rightarrow Menger,
```

Question (Tall 2013)

Does Two \uparrow Menger imply Alster? Does the converse hold?

Rodrigo Roque Dias (IME–USP)

Alster spaces A selective characterization

Proposition

A topological space X is Alster if and only if it satisfies $S_1(\mathcal{K}^{\delta}, \mathcal{O}^{\delta})$.

Proposition

The game $\mathsf{G}_1(\mathcal{K}^\delta,\mathcal{O}^\delta)$ and the compact- G_δ game are dual.

Corollary

Two \uparrow compact- $G_{\delta} \Rightarrow$ Alster.

Rodrigo Roque Dias (IME-USP)

Alster spaces A selective characterization

Proposition

A topological space X is Alster if and only if it satisfies $S_1(\mathcal{K}^{\delta}, \mathcal{O}^{\delta})$.

Proposition

The game $G_1(\mathcal{K}^{\delta}, \mathcal{O}^{\delta})$ and the compact- G_{δ} game are dual.

Corollary

Two $\cancel{7}$ compact- $G_{\delta} \Rightarrow$ Alster.

Rodrigo Roque Dias (IME-USP)

Alster spaces A selective characterization

Proposition

A topological space X is Alster if and only if it satisfies $S_1(\mathcal{K}^{\delta}, \mathcal{O}^{\delta})$.

Proposition

The game $G_1(\mathcal{K}^{\delta}, \mathcal{O}^{\delta})$ and the compact- G_{δ} game are dual.

Corollary

Two \uparrow compact- $G_{\delta} \Rightarrow$ Alster.

Alster spaces Alster 0×1 Two \uparrow Menger Corollary Two \uparrow compact- $G_{\delta} \Rightarrow$ Alster.

Theorem (Telgársky 1983-84)

Let X be a regular space. TFAE:

- (a) Two \uparrow Menger(X);
- (b) One \uparrow compact-open(X);
- (c) One \uparrow compact- $G_{\delta}(X)$.

Corollary

If X is regular and Two \uparrow Menger(X), then X is Alster.

Example (Telgársky 1983)

There is a regular space in which the compact- G_{δ} game is undetermined — hence a regular Alster space in which Two \cancel{T} Menger.

Rodrigo Roque Dias (IME–USP)

Alster spaces Alster 0×1 Two \uparrow Menger Corollary Two \uparrow compact- $G_{\delta} \Rightarrow$ Alster.

Theorem (Telgársky 1983-84) Let X be a regular space. TFAE:

(a) Two \uparrow Menger(X);

(b) One \uparrow compact-open(X);

(c) One \uparrow compact- $G_{\delta}(X)$.

Corollary

If X is regular and Two \uparrow Menger(X), then X is Alster.

Example (Telgársky 1983)

There is a regular space in which the compact- G_{δ} game is undetermined — hence a regular Alster space in which Two $\cancel{7}$ Menger.

Rodrigo Roque Dias (IME–USP)

- Alster spaces Alster 0×1 Two \uparrow Menger Corollary Two \uparrow compact- $G_{\delta} \Rightarrow$ Alster.
- Theorem (Telgársky 1983-84) Let X be a regular space. TFAE:
- (a) Two \uparrow Menger(X);
- (b) One \uparrow compact-open(X);
- (c) One \uparrow compact- $G_{\delta}(X)$.

Corollary

If X is regular and Two \uparrow Menger(X), then X is Alster.

Example (Telgársky 1983)

There is a regular space in which the compact- G_{δ} game is undetermined — hence a regular Alster space in which Two $\cancel{}$ Menger.

Rodrigo Roque Dias (IME–USP)

- Alster spaces Alster 0×1 Two \uparrow Menger Corollary Two \uparrow compact- $G_{\delta} \Rightarrow$ Alster. Theorem (Telgársky 1983-84)
- Let X be a regular space. TFAE:
- (a) Two \uparrow Menger(X);
- (b) One \uparrow compact-open(X);
- (c) One \uparrow compact- $G_{\delta}(X)$.

Corollary

If X is regular and Two \uparrow Menger(X), then X is Alster.

Example (Telgársky 1983)

There is a regular space in which the compact- G_{δ} game is undetermined — hence a regular Alster space in which Two $\cancel{}$ Menger.

Rodrigo Roque Dias (IME-USP)

Rodrigo Roque Dias (IME-USP)

Topological games and Alster spaces

STW 2013 13 / 14

Theorem

Two \uparrow Rothberger(X) \Rightarrow X_{δ} is Lindelöf (\Rightarrow X is Rothberger).

Sketch of proof.

Let $\sigma : {}^{<\omega}\tau \to X$ be a winning strategy for One in point-open(X). Now let \mathcal{W} be a cover of X by G_{δ} subsets. For each $\mathcal{W} \in \mathcal{W}$, fix a sequence $(U(\mathcal{W}, n))_{n \in \omega}$ of open sets with $\mathcal{W} = \bigcap_{n \in \omega} U(\mathcal{W}, n)$. Proceeding by induction on $n \in \omega$, we shall assign to each $s \in {}^{n}\omega$ an element \mathcal{W}_{s} of \mathcal{W} as follows.

First, pick $W_{\emptyset} \in \mathcal{W}$ such that $\sigma(\emptyset) \in W_{\emptyset}$. Now let $n \in \omega$ be such that $W_s \in \mathcal{W}$ has already been defined for all $s \in {}^{n}\omega$. For each $s \in {}^{n}\omega$ and each $k \in \omega$, choose $W_{s^{\frown}k} \in \mathcal{W}$ satisfying $\sigma(t_{s,k}) \in W_{s^{\frown}k}$, where $t_{s,k} \in {}^{n+1}\tau$ is the sequence defined by $t_{s,k}(i) = U(W_{s|i}, s(i))$ for all i < n and $t_{s,k}(n) = U(W_s, k)$. Since the strategy σ is winning, it follows that (...) $\{W_s : s \in {}^{<\omega}\omega\} \subseteq \mathcal{W}$

is a cover of X.

Rodrigo Roque Dias (IME-USP)

Theorem

Two \uparrow Rothberger(X) \Rightarrow X_{δ} is Lindelöf (\Rightarrow X is Rothberger).

Sketch of proof.

Let $\sigma : {}^{<\omega}\tau \to X$ be a winning strategy for One in point-open(X). Now let \mathcal{W} be a cover of X by G_{δ} subsets. For each $W \in \mathcal{W}$, fix a sequence $(U(W, n))_{n \in \omega}$ of open sets with $W = \bigcap_{n \in \omega} U(W, n)$. Proceeding by induction on $n \in \omega$, we shall assign to each $s \in {}^{n}\omega$ an element W_{s} of \mathcal{W} as follows.

First, pick $W_{\emptyset} \in \mathcal{W}$ such that $\sigma(\emptyset) \in W_{\emptyset}$. Now let $n \in \omega$ be such that $W_s \in \mathcal{W}$ has already been defined for all $s \in {}^{n}\omega$. For each $s \in {}^{n}\omega$ and each $k \in \omega$, choose $W_{s \cap k} \in \mathcal{W}$ satisfying $\sigma(t_{s,k}) \in W_{s \cap k}$, where $t_{s,k} \in {}^{n+1}\tau$ is the sequence defined by $t_{s,k}(i) = U(W_{s \mid i}, s(i))$ for all i < n and $t_{s,k}(n) = U(W_s, k)$. Since the strategy σ is winning, it follows that $(...) \{W_s : s \in {}^{<\omega}\omega\} \subseteq \mathcal{W}$ is a cover of X.

Rodrigo Roque Dias (IME-USP)

Theorem

Two \uparrow Rothberger(X) \Rightarrow X_{δ} is Lindelöf (\Rightarrow X is Rothberger).

Sketch of proof.

Let $\sigma : {}^{<\omega}\tau \to X$ be a winning strategy for One in point-open(X). Now let \mathcal{W} be a cover of X by G_{δ} subsets. For each $W \in \mathcal{W}$, fix a sequence $(U(W, n))_{n \in \omega}$ of open sets with $W = \bigcap_{n \in \omega} U(W, n)$. Proceeding by induction on $n \in \omega$, we shall assign to each $s \in {}^{n}\omega$ an element W_{s} of \mathcal{W} as follows.

First, pick $W_{\emptyset} \in \mathcal{W}$ such that $\sigma(\emptyset) \in W_{\emptyset}$. Now let $n \in \omega$ be such that $W_s \in \mathcal{W}$ has already been defined for all $s \in {}^{n}\omega$. For each $s \in {}^{n}\omega$ and each $k \in \omega$, choose $W_{s \cap k} \in \mathcal{W}$ satisfying $\sigma(t_{s,k}) \in W_{s \cap k}$, where $t_{s,k} \in {}^{n+1}\tau$ is the sequence defined by $t_{s,k}(i) = U(W_{s \mid i}, s(i))$ for all i < n and $t_{s,k}(n) = U(W_s, k)$. Since the strategy σ is winning, it follows that $(...) \{W_s : s \in {}^{<\omega}\omega\} \subseteq \mathcal{W}$ is a cover of X.

Rodrigo Roque Dias (IME-USP)

Theorem

Two \uparrow Rothberger(X) \Rightarrow X_{δ} is Lindelöf (\Rightarrow X is Rothberger).

Sketch of proof.

Let $\sigma : {}^{<\omega}\tau \to X$ be a winning strategy for One in point-open(X). Now let \mathcal{W} be a cover of X by G_{δ} subsets. For each $\mathcal{W} \in \mathcal{W}$, fix a sequence $(U(\mathcal{W}, n))_{n \in \omega}$ of open sets with $\mathcal{W} = \bigcap_{n \in \omega} U(\mathcal{W}, n)$. Proceeding by induction on $n \in \omega$, we shall assign to each $s \in {}^{n}\omega$ an element \mathcal{W}_{s} of \mathcal{W} as follows.

First, pick $W_{\emptyset} \in \mathcal{W}$ such that $\sigma(\emptyset) \in W_{\emptyset}$. Now let $n \in \omega$ be such that $W_s \in \mathcal{W}$ has already been defined for all $s \in {}^{n}\omega$. For each $s \in {}^{n}\omega$ and each $k \in \omega$, choose $W_{s^{\frown}k} \in \mathcal{W}$ satisfying $\sigma(t_{s,k}) \in W_{s^{\frown}k}$, where $t_{s,k} \in {}^{n+1}\tau$ is the sequence defined by $t_{s,k}(i) = U(W_{s \upharpoonright i}, s(i))$ for all i < n and $t_{s,k}(n) = U(W_s, k)$. Since the strategy σ is winning, it follows that (...) $\{W_s : s \in {}^{<\omega}\omega\} \subseteq \mathcal{W}$ is a cover of X.

Rodrigo Roque Dias (IME-USP)

References

- K. Alster, On the class of all spaces of weight not greater than ω₁ whose cartesian product with every Lindelöf space is Lindelöf, Fund. Math. **129** (1988), 133–140.
- L. F. Aurichi and R. R. Dias, *Topological games and Alster spaces*, arXiv:1306.5463 [math.GN]
- L. F. Aurichi and F. D. Tall, *Lindelöf spaces which are indestructible, productive, or D*, Topology Appl. **159** (2012), 331–340.
- F. Galvin, *Indeterminacy of point-open games*, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. **26** (1978), 445–449.
- F. D. Tall, *Productively Lindelöf spaces may all be D*, Canad. Math. Bull. **56** (2013), 203–212.
- R. Telgársky, *Spaces defined by topological games, II*, Fund. Math. **116** (1983), 189–207.
- R. Telgársky, On games of Topsøe, Math. Scand. 54 (1984), 170–176.

Rodrigo Roque Dias (IME-USP)