Domination by metric spaces

David Guerrero Sánchez

UMU

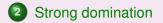
Brasil 2013

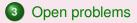
David Guerrero Sánchez Domination by metric spaces

(日)

臣

Contents





David Guerrero Sánchez Domination by metric spaces

æ.

Definition (Cascales, Orihuela, Tkachuk)

A family \mathcal{B} is called *M*-ordered for some space *M* if $\mathcal{B} = \{B_K : K \in \mathcal{K}(M)\}$ while $K \subset L$ implies $B_K \subset B_L$. A space *X* is dominated by a space *M* if it has an *M*-ordered compact cover. The space *X* is strongly *M*-dominated if it has an *M*-ordered fundamental compact cover \mathcal{C} .

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

Given a space X let *M* be the space obtained by giving $\mathcal{K}(X)$ the discrete topology. It is clear that X is strongly dominated by *M*. The fact that every topological space is dominated by a metric space motivates the following.

Definition (GS)

For a space X the (strong) metric domination index of X denoted by dm(X), (sdm(X)) is the cardinal defined by $dm(X) = min\{w(M) : M \text{ is a metric space that (strongly)} dominates X\}.$

Basic facts

For any space X the following hold:

- $dm(X) \leq \ell \Sigma(X)$
- If dm(X) ≤ κ then the metric domination index of any continuous image of X is also not greater than κ.
- If dm(X) ≤ κ and Y is any closed subset of X then dm(Y) ≤ κ.

• If
$$X = \bigcup_{i \in \omega} X_i$$
 and $dm(X_i) \le \kappa$ then $dm(X) \le \kappa$.

•
$$ext(X) \leq dm(X)$$
.

dm vs other invariants

Tkachuk constructed a space *X* which is not Lindelöf but $dm(X) \leq \omega$. Also, Cascales, Muñoz and Orihuela attributed to J. Pelant an example of a space for which $\omega = dm(X) < \ell \Sigma(X)$. However, C.O.T. proved that for any space *X* we have $\ell \Sigma(C_p(X)) \leq \omega$, if and only if $dm(C_p(X)) \leq \omega$, they also showed that the equivalence $dm(Y) \leq \omega$ if and only if $\ell \Sigma(Y) \leq \omega$ is true for any space in which every relatively countably compact subset has compact closure, for instance in $C_p(K)$ -spaces. Actually both cardinal invariants dm and $\ell \Sigma$ coincide in the class of $C_p(K)$ -spaces.

・ロ・ ・ 四・ ・ 回・ ・ 回・

dm vs *K*-analycity

M. Talagrand proved that for a compact space K we have $dm(C_{\rho}(K)) \leq \omega$ if and only if $C_{\rho}(K)$ is K-analytic. Later, V. Tkachuk generalized Talagrand's result for any space $C_{\rho}(X)$.

Metrizability

Christensen proved that a second countable space is strongly dominated by the irrationals if and only if it is completely metrizable. This result cannot be extended to metric spaces of arbitrary weight.

Theorem

If *M* is a metric space of weight κ then *M* admits a family of compact sets swallowing compact sets $\{K_{\alpha} : \alpha \in ([k^{\omega}]^{<\omega})^{\omega}\}$. **Proof:** Since *M* contains at most κ^{ω} compact subsets. Therefore we can write $\{C_{\beta} : \beta \in \xi\}$ the family of all the non void compact subsets of *M* for some $\xi \leq \kappa^{\omega}$. Let $L_{\beta} = C_{\beta}$ if β, ξ and $L_{\beta} = \emptyset$ if $\xi \leq \beta < \kappa^{\omega}$. Let $\alpha \in ([\kappa^{\omega}]^{<\omega})^{\omega}$ so $\alpha = (s_0, s_1, ...)$ with s_n a finite subset of κ^{ω} . Define $K_{\alpha} = \bigcup \{L_{\beta} : \beta \in s_0\}$. Clearly the family $\{K_{\alpha} : \alpha \in ([\kappa^{\omega}]^{<\omega})^{\omega}\}$ is as required.

Metrizability of compact spaces

Cascales and Orihuela showed that a compact space *K* is metrizable if $K^2 \setminus \Delta$ is strongly dominated by the irrationals. Later, assuming either $t(K) \leq \omega$ or $MA(\omega_1)$, C.O.T. proved if $K^2 \setminus \Delta$) is ω^{ω} -dominated then *K* is metrizable.

Definition (Kakol)

Given a topological group $G \ a \ G$ -base of the identity $e \in E$ is a topological local base \mathcal{U} of e such that $\mathcal{U} = \{U_{\mathcal{K}} : \mathcal{K} \in \mathcal{K}(\omega^{\omega})\}$ and $\mathcal{K} \subset L$ implies $U_{\mathcal{K}} \subset U_{L}$.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Metrizability of compact spaces

Theorem

Assume that K is a compact space in a topological group E that has a \mathcal{G} -base $\mathcal{U} = \{U_{\mathcal{C}} : \mathcal{C} \in \mathcal{K}(\omega^{\omega})\}$ of the identity, then K is metrizable.

Proof: Let $X = (K \times K) \setminus \Delta$. For each $C \in \mathcal{K}(\omega^{\omega})$ the set $W_C = \{(x, y) \in X : xy^{-1} \notin U_C\}$ is closed in X, so it is compact. Moreover, the cover $\mathcal{W} = \{ W_C : C \in \mathcal{K}(\omega^{\omega}) \}$ is ω^{ω} -ordered. For each $C \in \mathcal{K}(\omega^{\omega})$ the set $V_C := \{(x, y) \in X : xy^{-1} \notin \overline{U_C}\}$ is open and $V_C \subset W_C$. Take $T \in \mathcal{K}(X)$ compact. For every $p = (x, y) \in T$ there is $C(p) \in \mathcal{K}(\omega^{\omega})$ such that $xy^{-1} \notin \overline{U_{C(p)}}$ therefore $p \in V_{C(p)}$. There is a finite set $F = \{p_0, ..., p_n\}$ such that $T \subset \bigcup \{V_{C(p)} : p \in F\}$. Find $L \in \mathcal{K}(\omega^{\omega})$ such that $C(p) \subset L$ for every $p \in F$. It follows from the definition of the V_C 's that $T \subset V_L \subset W_L$. So the family $\{W_C : C \in \mathcal{K}(\omega^{\omega})\}$ swallows all compact sets in X and hence K is metrtizable.

David Guerrero Sánchez

Domination by metric spaces

Metrizability of function spaces

C.O.T. proved under CH in that if K is compact and $C_p(K)$ is strongly dominated by a second countable space then K is countable and hence $C_p(K)$ is metrizable.

Lemma (GS)

Given an infinite cardinal κ , if X is a space of cardinality κ with a unique non-isolated point and $C_p(X)$ is strongly dominated by some space M then \mathbb{R}^{κ} is strongly by dominated by M.

Corollary (GS)

Define the cardinal $l = min\{\gamma : \mathbb{R}^{\gamma} \text{ does not contain a closed discrete set of cardinality } \gamma\}$, observe that $\omega_1 < l$. Suppose $\kappa < l$. If *X* is a space of cardinality κ with a unique non-isolated point and $C_p(X)$ is strongly dominated by some metric space *M* then $\kappa \leq w(M)$. So, if $\kappa < l$ and *X* is a space with a unique non-isolated point such that $sdm(C_p(X)) \leq \kappa$, then $|X| \leq \kappa$.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Theorem (GS)

For a space X such that $C_p(X)$ is strongly dominated by a second countable space the following hold:

- If X is separable then it is countable.
- If X is scattered then it is countable.
- Every second countable continuous image of X is countable.
- If X is compact then it is countable.
- If X is pseudocompact then it is countable.
- If $K \subset X$ is compact then K is scattered.
- If X is Lindelöf-p then X is the union of countably many compact scattered subsets.

Open problems

Problem (GS)

Is it true that $dm(C_p(X) = \ell \Sigma(C_p(X))$ for every Tychonoff space X?

Problem (Kakol)

Is it true that every Frechet-Urysohn topological group which is Frechet-Urysohn and has a G-base is metrizable?

Problem

Is it possible to give a direct prove in ZFC that if $S_{\kappa} = \{x \in \{0,1\}^{\kappa} : x-1(1) \text{ is finite}\}$ is strongly dominated by a second countable space then $\kappa \leq \omega$?

(日)

Cascales B., Muñoz M., Orihuela J., *The number of K-determination of topological spaces*, Topology Appl.,Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM (2012).

- Cascales B., Orihuela J., Tkachuk V., Domination by second countable spaces and Lindelöf Σ-property, Topology Appl., **158** (2011), 204-214.
- Guerrero S. D., *Domination by metric spaces,* Topology Appl., online (2013).
- Kampoukos, K. K.; Mercourakis, S. K. A new class of weakly countably determined Banach spaces. Fund. Math. 208:2 (2010), 155-171.
- E. Michael, ℵ₀-spaces, Journal of Math. and Mech., 15:6(1966), 983-1002.

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

- Talagrand, M. Espaces de Banach faiblement K-analytiques. Ann. of Math. 2: 110(3)(1979), 407Đ438.
- V.V. Tkachuk, *Growths over discretes: some applications.* Mosk. Univ., Math. Bull. **45:4** (1990), 19D2.
- V.V. Tkachuk, A space $C_p(X)$ is dominated by irrationals if and only if it is K-analytic, Acta Math. Hung., **107(4)**(2005), 253-265.

< 日 > < 回 > < 回 > < 回 > < 回 > <