Winter School in Abstract Analysis section Set Theory & Topology

25th Jan — 1st Feb 2014

TUTORIAL SPEAKERS

Antonio Avilés Jaroslav Nešetřil Dilip Raghavan Matteo Viale DEADLINES SUPPORT early Dec 2013 REGISTRATION 30th Dec 2013

D

WINEL

www.winterschool.eu

PID and ω_1 -towers in $\mathcal{P}(\omega)$

David Chodounský

Institute of Mathematics AS CR

joint work with Piotr Borodulin-Nadzieja

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

We say that $\mathcal{T} = (\mathcal{T}_{\alpha})_{\alpha \in \omega_1}$ is a *tower* if

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $T_{\alpha} \subset \omega$ for each $\alpha \in \omega_1$

•
$$T_{\alpha} \setminus T_{\beta} =^* \emptyset$$
 iff $\alpha \leq \beta$

We say that $\mathcal{T} = (\mathcal{T}_{\alpha})_{\alpha \in \omega_1}$ is a *tower* if

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- $T_{\alpha} \subset \omega$ for each $\alpha \in \omega_1$
- $T_{\alpha} \setminus T_{\beta} =^* \emptyset$ iff $\alpha \leq \beta$

Question How does (\mathcal{T}, \subset) look like?

We say that $\mathcal{T} = (\mathcal{T}_{\alpha})_{\alpha \in \omega_1}$ is a *tower* if

ション ふゆ く 山 マ チャット しょうくしゃ

- $T_{\alpha} \subset \omega$ for each $\alpha \in \omega_1$
- $T_{\alpha} \setminus T_{\beta} =^* \emptyset$ iff $\alpha \leq \beta$

Question How does (\mathcal{T}, \subset) look like?

 $\langle \mathcal{T} \rangle$. . . ideal generated by \mathcal{T}

We say that $\mathcal{T} = (\mathcal{T}_{\alpha})_{\alpha \in \omega_1}$ is a *tower* if

- $T_{\alpha} \subset \omega$ for each $\alpha \in \omega_1$
- $T_{\alpha} \setminus T_{\beta} =^* \emptyset$ iff $\alpha \leq \beta$

Question How does (\mathcal{T}, \subset) look like?

 $\langle \mathcal{T} \rangle$. . . ideal generated by \mathcal{T}

Question

Relations between properties of (\mathcal{T}, \subset) and $\langle \mathcal{T} \rangle$?

ション ふゆ く 山 マ チャット しょうくしゃ

Definition Let $\mathcal{T} = (\mathcal{T}_{\alpha})_{\alpha \in \omega_1}$ be a tower. We say that \mathcal{T} satisfies condition $\blacktriangleright (\mathcal{K}) \dots$ if $\mathcal{T}_{\alpha} \not\subset \mathcal{T}_{\beta}$ for $\alpha \neq \beta$

Let $\mathcal{T}=(\mathcal{T}_{lpha})_{lpha\in\omega_1}$ be a tower. We say that \mathcal{T} satisfies condition

- (K) ... if $T_{\alpha} \not\subset T_{\beta}$ for $\alpha \neq \beta$
- (H) ... if for each $\beta \in \omega_1$, $n \in \omega$ the set

$$H_{\beta}(n) = \{ \alpha < \beta \colon T_{\alpha} \setminus T_{\beta} \subset n \}$$
 is finite.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Let $\mathcal{T}=(\mathcal{T}_{lpha})_{lpha\in\omega_1}$ be a tower. We say that \mathcal{T} satisfies condition

- (K) ... if $T_{\alpha} \not\subset T_{\beta}$ for $\alpha \neq \beta$
- (H) ... if for each $\beta \in \omega_1$, $n \in \omega$ the set

$$H_{\beta}(n) = \{ \alpha < \beta \colon T_{\alpha} \setminus T_{\beta} \subset n \}$$
 is finite.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Definition

Let \mathcal{T} be a tower. We say that \mathcal{T} is

► Special . . . if *T* has a cofinal subtower with property (K).

Let $\mathcal{T}=(\mathcal{T}_{lpha})_{lpha\in\omega_1}$ be a tower. We say that \mathcal{T} satisfies condition

- (K) ... if $T_{\alpha} \not\subset T_{\beta}$ for $\alpha \neq \beta$
- (H) ... if for each $\beta \in \omega_1$, $n \in \omega$ the set

$$H_{\beta}(n) = \{ \alpha < \beta \colon T_{\alpha} \setminus T_{\beta} \subset n \}$$
 is finite.

Definition

Let ${\mathcal T}$ be a tower. We say that ${\mathcal T}$ is

- Special ... if \mathcal{T} has a cofinal subtower with property (K).
- Hausdorff ... if \mathcal{T} has a cofinal subtower with property (H).

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Let $\mathcal{T}=(\mathcal{T}_{lpha})_{lpha\in\omega_1}$ be a tower. We say that \mathcal{T} satisfies condition

- (K) ... if $T_{\alpha} \not\subset T_{\beta}$ for $\alpha \neq \beta$
- (H) ... if for each $\beta \in \omega_1$, $n \in \omega$ the set

$$H_{\beta}(n) = \{ \alpha < \beta \colon T_{\alpha} \setminus T_{\beta} \subset n \}$$
 is finite.

Definition

Let \mathcal{T} be a tower. We say that \mathcal{T} is

- Special ... if \mathcal{T} has a cofinal subtower with property (K).
- Hausdorff ... if \mathcal{T} has a cofinal subtower with property (H).

ション ふゆ く 山 マ チャット しょうくしゃ

• Suslin ... if \mathcal{T} is not special.

Let $\mathcal{T}=(\mathcal{T}_{lpha})_{lpha\in\omega_1}$ be a tower. We say that \mathcal{T} satisfies condition

- (K) ... if $T_{\alpha} \not\subset T_{\beta}$ for $\alpha \neq \beta$
- (H) ... if for each $\beta \in \omega_1$, $n \in \omega$ the set

$$H_{\beta}(n) = \{ \alpha < \beta \colon T_{\alpha} \setminus T_{\beta} \subset n \}$$
 is finite.

Definition

Let \mathcal{T} be a tower. We say that \mathcal{T} is

- Special ... if \mathcal{T} has a cofinal subtower with property (K).
- Hausdorff ... if \mathcal{T} has a cofinal subtower with property (H).
- Suslin ... if \mathcal{T} is not special.

Fact

Every Hausdorff tower is special.

► A Hausdorff tower always exists (ZFC).

- A Hausdorff tower always exists (ZFC).
- (MA) implies that every tower is Hausdorff.

- A Hausdorff tower always exists (ZFC).
- (MA) implies that every tower is Hausdorff.
- (OCA) implies that every tower is special.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- A Hausdorff tower always exists (ZFC).
- (MA) implies that every tower is Hausdorff.
- (OCA) implies that every tower is special.
- (T_α ∩ c)_{α∈ω1} is Suslin for a Cohen real c and each groundmodel tower T = (T_α)_{α∈ω1}.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Corollary

If $\mathfrak{b} = \omega_1$ then there is a Suslin tower.

Corollary

If $\mathfrak{b} = \omega_1$ then there is a Suslin tower.

Theorem

Tower \mathcal{T} is Hausdorff iff $(\langle \mathcal{T} \rangle, \subset)$ is Tukey equivalent to $([\omega_1]^{\leq \omega}, \subset)$ (i.e. Tukey maximal).

(ロ) (型) (E) (E) (E) (O)

Corollary

If $\mathfrak{b} = \omega_1$ then there is a Suslin tower.

Theorem

Tower \mathcal{T} is Hausdorff iff $(\langle \mathcal{T} \rangle, \subset)$ is Tukey equivalent to $([\omega_1]^{<\omega}, \subset)$ (i.e. Tukey maximal).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Theorem

Assume PID. TFAE

Every tower is Hausdorff

$$\blacktriangleright \ \mathfrak{b} > \omega_1$$

Corollary

If $\mathfrak{b} = \omega_1$ then there is a Suslin tower.

Theorem

Tower \mathcal{T} is Hausdorff iff $(\langle \mathcal{T} \rangle, \subset)$ is Tukey equivalent to $([\omega_1]^{<\omega}, \subset)$ (i.e. Tukey maximal).

Theorem

Assume PID. TFAE

- Every tower is Hausdorff
- $\blacktriangleright \ \mathfrak{b} > \omega_1$

Theorem (Raghavan, Todorcevic)

Assume PID. TFAE

• There is no Tukey type between $\omega imes \omega_1$ and $[\omega_1]^{<\omega}$

• $\min(\mathfrak{b}, \operatorname{cof}(F_{\sigma})) > \omega_1$

Let $\mathcal{T} = (\mathcal{T}_{\alpha})_{\alpha \in \omega_1}$ be a tower, assume PID and $\mathfrak{b} > \omega_1$. The tower \mathcal{T} is Hausdorff.

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

Let $\mathcal{T} = (\mathcal{T}_{\alpha})_{\alpha \in \omega_1}$ be a tower, assume PID and $\mathfrak{b} > \omega_1$. The tower \mathcal{T} is Hausdorff.

Definition (PID)

Let $\mathcal{I} \subset [\omega_1]^{\leq \omega}$ be a P-ideal. One of the following holds:

1. There is an uncountable $K \subset \omega_1$ such that $[K]^{\omega} \subset \mathcal{I}$;

2. $\omega_1 = \bigcup_{n \in \omega} A_n$ and $A_n \cap I$ is finite for each $n \in \omega$ and $I \in \mathcal{I}$.

ション ふゆ く 山 マ チャット しょうくしゃ

Let $\mathcal{T} = (\mathcal{T}_{\alpha})_{\alpha \in \omega_1}$ be a tower, assume PID and $\mathfrak{b} > \omega_1$. The tower \mathcal{T} is Hausdorff.

Definition (PID)

Let $\mathcal{I} \subset [\omega_1]^{\leq \omega}$ be a P-ideal. One of the following holds:

1. There is an uncountable $K \subset \omega_1$ such that $[K]^{\omega} \subset \mathcal{I}$;

2. $\omega_1 = \bigcup_{n \in \omega} A_n$ and $A_n \cap I$ is finite for each $n \in \omega$ and $I \in \mathcal{I}$.

Define $\mathcal{I} \subset [\omega_1]^{\leq \omega}$ by $I \in \mathcal{I}$ iff $C^n_{\alpha}(I) = \{\xi \in \alpha \cap I : T_{\xi} \setminus T_{\alpha} \subset n\}$ is finite for each $\alpha \in \omega_1, n \in \omega$.

Let $\mathcal{T} = (T_{\alpha})_{\alpha \in \omega_1}$ be a tower, assume PID and $\mathfrak{b} > \omega_1$. The tower \mathcal{T} is Hausdorff.

Definition (PID)

Let $\mathcal{I} \subset [\omega_1]^{\leq \omega}$ be a P-ideal. One of the following holds:

1. There is an uncountable $K \subset \omega_1$ such that $[K]^{\omega} \subset \mathcal{I}$;

2. $\omega_1 = \bigcup_{n \in \omega} A_n$ and $A_n \cap I$ is finite for each $n \in \omega$ and $I \in \mathcal{I}$.

Define $\mathcal{I} \subset [\omega_1]^{\leq \omega}$ by $I \in \mathcal{I}$ iff

$$C^n_{\alpha}(I) = \{ \xi \in \alpha \cap I : T_{\xi} \setminus T_{\alpha} \subset n \}$$

ション ふゆ く 山 マ チャット しょうくしゃ

is finite for each $\alpha \in \omega_1, n \in \omega$.

We want to show that 1. of PID holds.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 $\begin{array}{l} \text{Claim} \\ \mathcal{I} \text{ is an ideal.} \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Claim \mathcal{I} is an ideal. $I \subset J \Rightarrow C_{\alpha}^{n}(I) \subset C_{\alpha}^{n}(J)$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Claim \mathcal{I} is an ideal. $I \subset J \Rightarrow C_{\alpha}^{n}(I) \subset C_{\alpha}^{n}(J), \ C_{\alpha}^{n}(I \cup J) = C_{\alpha}^{n}(I) \cup C_{\alpha}^{n}(J)$

Claim

 ${\mathcal I}$ is an ideal.

$$I \subset J \Rightarrow C^n_{\alpha}(I) \subset C^n_{\alpha}(J), \ C^n_{\alpha}(I \cup J) = C^n_{\alpha}(I) \cup C^n_{\alpha}(J)$$

Lemma

 \mathcal{I} is a P-ideal.

We need to show that for each (pairwise disjoint) $\{I_{\ell} : \ell \in \omega\} \subset \mathcal{I}$ there is $I \in \mathcal{I}$ such that $I_{\ell} \subset^* I$ for each ℓ .

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

We need to show that for each (pairwise disjoint) $\{I_{\ell} : \ell \in \omega\} \subset \mathcal{I}$ there is an $I \in \mathcal{I}$ such that $I_{\ell} \subset^* I$ for each ℓ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We need to show that for each (pairwise disjoint) $\{I_{\ell} : \ell \in \omega\} \subset \mathcal{I}$ there is an $I \in \mathcal{I}$ such that $I_{\ell} \subset^* I$ for each ℓ .

Fix enumerations $I_{\ell} = \{\xi_{\ell}^k : k \in \omega\}.$ For $\alpha \in \omega_1$ and $n \in \omega$ define $f_{\alpha}^n : \omega \to \omega$

$$f^n_lpha(\ell) = \max\left\{k\colon \xi^\ell_k\in C^n_lpha(I_\ell)
ight\}$$

ション ふゆ く 山 マ チャット しょうくしゃ

$$I \in \mathcal{I}$$
 iff $C_{\alpha}^{n}(I) = \{\xi \in \alpha \cap I : T_{\xi} \setminus T_{\alpha} \subset n\}$ is finite

We need to show that for each (pairwise disjoint) $\{I_{\ell} : \ell \in \omega\} \subset \mathcal{I}$ there is an $I \in \mathcal{I}$ such that $I_{\ell} \subset^* I$ for each ℓ .

Fix enumerations $I_{\ell} = \{\xi_{\ell}^k : k \in \omega\}.$ For $\alpha \in \omega_1$ and $n \in \omega$ define $f_{\alpha}^n : \omega \to \omega$

$$f^n_lpha(\ell) = \max\left\{k \colon \xi^\ell_k \in C^n_lpha(I_\ell)
ight\}$$

Let $g: \omega \to \omega$ be a function \leq^* -dominating $\{f_{\alpha}^n : \alpha \in \omega_1, n \in \omega\}$. Let

$$I = \bigcup_{\ell \in \omega} I_{\ell} \setminus \left\{ \xi_n^k \colon k \leq g(\ell) \right\}.$$

ション ふゆ く 山 マ チャット しょうくしゃ

$$I \in \mathcal{I}$$
 iff $C_{\alpha}^{n}(I) = \{\xi \in \alpha \cap I : T_{\xi} \setminus T_{\alpha} \subset n\}$ is finite

Lemma

Alternative 2. of PID fails.

We show that for each uncountable $K \subset \omega_1$ there is $I \in \mathcal{I} \cap [K]^{\omega}$.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

$$I \in \mathcal{I}$$
 iff $C_{\alpha}^{n}(I) = \{\xi \in \alpha \cap I : T_{\xi} \setminus T_{\alpha} \subset n\}$ is finite

Lemma

Alternative 2. of PID fails.

We show that for each uncountable $K \subset \omega_1$ there is $I \in \mathcal{I} \cap [K]^{\omega}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Claim

There is $x \in 2^{\omega}$ such that $x \in \overline{\{T_{\alpha} : \alpha \in K\}}$, $x \notin \langle \mathcal{T} \rangle$.

$$I \in \mathcal{I}$$
 iff $C_{\alpha}^{n}(I) = \{\xi \in \alpha \cap I : T_{\xi} \setminus T_{\alpha} \subset n\}$ is finite

Lemma

Alternative 2. of PID fails.

We show that for each uncountable $K \subset \omega_1$ there is $I \in \mathcal{I} \cap [K]^{\omega}$.

Claim

There is $x \in 2^{\omega}$ such that $x \in \overline{\{T_{\alpha} \colon \alpha \in K\}}$, $x \notin \langle \mathcal{T} \rangle$.

If $\overline{\{T_{\alpha} \colon \alpha \in K\}} \subset \langle \mathcal{T} \rangle$, then $\langle \mathcal{T} \rangle$ is generated by this closed set and is a Borel (P-)ideal.

$$I \in \mathcal{I}$$
 iff $C_{\alpha}^{n}(I) = \{\xi \in \alpha \cap I : T_{\xi} \setminus T_{\alpha} \subset n\}$ is finite

Lemma

Alternative 2. of PID fails.

We show that for each uncountable $K \subset \omega_1$ there is $I \in \mathcal{I} \cap [K]^{\omega}$.

Claim

There is
$$x \in 2^{\omega}$$
 such that $x \in \overline{\{T_{\alpha} \colon \alpha \in K\}}$, $x \notin \langle \mathcal{T} \rangle$.

If $\{T_{\alpha} : \alpha \in K\} \subset \langle T \rangle$, then $\langle T \rangle$ is generated by this closed set and is a Borel (P-)ideal.

Borel P-ideals cannot be generated by $< \mathfrak{d}$ many sets.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

There is $x \in 2^{\omega}$ such that $x \in \overline{\{T_{\alpha} : \alpha \in K\}}$, $x \notin \langle \mathcal{T} \rangle$.

There is $x \in 2^{\omega}$ such that $x \in \overline{\{T_{\alpha} : \alpha \in K\}}$, $x \notin \langle \mathcal{T} \rangle$.

Fix $I \in [K]^{\omega}$ such that $\{T_{\alpha} : \alpha \in I\}$ is a sequence converging to x.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

There is $x \in 2^{\omega}$ such that $x \in \overline{\{T_{\alpha} \colon \alpha \in K\}}$, $x \notin \langle \mathcal{T} \rangle$.

Fix $I \in [K]^{\omega}$ such that $\{T_{\alpha} : \alpha \in I\}$ is a sequence converging to x. Claim $I \in \mathcal{I}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

There is $x \in 2^{\omega}$ such that $x \in \overline{\{T_{\alpha} : \alpha \in K\}}$, $x \notin \langle \mathcal{T} \rangle$.

Fix $I \in [K]^{\omega}$ such that $\{T_{\alpha} : \alpha \in I\}$ is a sequence converging to x. Claim $I \in \mathcal{I}$ Suppose $C_{\beta}^{n}(I)$ is infinite for some $\beta \in \omega_{1}, n \in \omega$. I.e. $T_{\alpha} \subset T_{\beta} \cup n$ for infinitely many $\alpha \in I$.

ション ふゆ く 山 マ チャット しょうくしゃ

There is $x \in 2^{\omega}$ such that $x \in \overline{\{T_{\alpha} \colon \alpha \in K\}}$, $x \notin \langle \mathcal{T} \rangle$.

Fix $I \in [K]^{\omega}$ such that $\{T_{\alpha} : \alpha \in I\}$ is a sequence converging to x. Claim $I \in \mathcal{I}$ Suppose $C_{\beta}^{n}(I)$ is infinite for some $\beta \in \omega_{1}, n \in \omega$. I.e. $T_{\alpha} \subset T_{\beta} \cup n$ for infinitely many $\alpha \in I$. $\{y \in 2^{\omega} : y \subset T_{\beta} \cup n\}$ is closed, thus

$$x \in \overline{C_{\beta}^n(I)} \subset \{y \colon y \subset T_{\beta} \cup n\} \subset \langle T \rangle$$

The limit point of $C^n_{\beta}(I)$ is a subset of $T_{\beta} \cup n$ and hence in $\langle T \rangle$, a contradiction.

Assume $t = \omega_1$. Is there a Hausdorff tower T such that $\langle T \rangle$ is a tall ideal?

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Assume $t = \omega_1$. Is there a Hausdorff tower T such that $\langle T \rangle$ is a tall ideal?

Question

Assume $\mathfrak{t} = \omega_1$. Is there a tower \mathcal{T} such that $\langle \mathcal{T} \rangle$ is a meager tall ideal?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Assume $t = \omega_1$. Is there a Hausdorff tower T such that $\langle T \rangle$ is a tall ideal?

Question

Assume $\mathfrak{t} = \omega_1$. Is there a tower \mathcal{T} such that $\langle \mathcal{T} \rangle$ is a meager tall ideal?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

YES if one of:

```
\blacktriangleright \ \mathfrak{b} > \omega_1
```

Assume $t = \omega_1$. Is there a Hausdorff tower T such that $\langle T \rangle$ is a tall ideal?

Question

Assume $\mathfrak{t} = \omega_1$. Is there a tower \mathcal{T} such that $\langle \mathcal{T} \rangle$ is a meager tall ideal?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

YES if one of:

- $\blacktriangleright \ \mathfrak{b} > \omega_1$
- $\blacktriangleright \operatorname{non}(\mathcal{M}) = \omega_1$

Assume $t = \omega_1$. Is there a Hausdorff tower T such that $\langle T \rangle$ is a tall ideal?

Question

Assume $\mathfrak{t} = \omega_1$. Is there a tower \mathcal{T} such that $\langle \mathcal{T} \rangle$ is a meager tall ideal?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

YES if one of:

- $\blacktriangleright \ \mathfrak{b} > \omega_1$
- $\operatorname{non}(\mathcal{M}) = \omega_1$

Reference

Piotr Borodulin-Nadzieja, David Chodounský, Hausdorff gaps and towers in $P(\omega)$ /Fin, arXiv:1302.4550 [math.LO]

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()