Countably compact group topologies on abelian groups from selective ultrafilters

Ana Carolina Boero

UFABC, Brazil

(joint work with A. H. Tomita)

Brazilian Conference on General Topology and Set Theory, 2013

э

In 1990, Tkachenko showed that the free abelian group of size $\mathfrak c$ can be endowed with a countably compact Hausdorff group topology under CH.

In 1990, Tkachenko showed that the free abelian group of size c can be endowed with a countably compact Hausdorff group topology under CH. Ten years later, Koszmider, Tomita and Watson obtained such a topology from MA(countable).

In 1990, Tkachenko showed that the free abelian group of size c can be endowed with a countably compact Hausdorff group topology under CH.

Ten years later, Koszmider, Tomita and Watson obtained such a topology from MA(countable).

In 2007, Madariaga-Garcia and Tomita showed that MA was not necessary: the existence of \mathfrak{c} many pairwise incomparable selective ultrafilters implies the existence of a countably compact Hausdorff group topology on the free abelian group of size \mathfrak{c} .

-

In 1990, Tkachenko showed that the free abelian group of size c can be endowed with a countably compact Hausdorff group topology under CH.

Ten years later, Koszmider, Tomita and Watson obtained such a topology from MA(countable).

In 2007, Madariaga-Garcia and Tomita showed that MA was not necessary: the existence of \mathfrak{c} many pairwise incomparable selective ultrafilters implies the existence of a countably compact Hausdorff group topology on the free abelian group of size \mathfrak{c} .

In this talk, I will try to give an idea of how their construction can be adapted in order to endow the additive group of the real line with a countably compact Hausdorff group topology (without non-trivial convergent sequences).

-

We will identify $\mathbb R$ with $\mathbb Q^{(\mathfrak c)}$ and construct a group monomorphism

 $\Phi:\mathbb{Q}^{(\mathfrak{c})}\to\mathbb{T}^{\mathfrak{c}}$

so that $\Phi[\mathbb{Q}^{(\mathfrak{c})}]$ is countably compact and has no convergent sequences (except the trivial ones) when considered with the subspace topology induced by $\mathbb{T}^{\mathfrak{c}}$.

3

化压力 化压力

We will identify $\mathbb R$ with $\mathbb Q^{(\mathfrak c)}$ and construct a group monomorphism

 $\Phi:\mathbb{Q}^{(\mathfrak{c})}\to\mathbb{T}^{\mathfrak{c}}$

so that $\Phi[\mathbb{Q}^{(\mathfrak{c})}]$ is countably compact and has no convergent sequences (except the trivial ones) when considered with the subspace topology induced by $\mathbb{T}^{\mathfrak{c}}$.

How such embedding will be constructed?

We will associate to each $\alpha < \mathfrak{c}$ a group homomorphism $\phi_{\alpha} : \mathbb{Q}^{(\mathfrak{c})} \to \mathbb{T}$ satisfying two conditions and Φ will be given by

$$egin{array}{ccc} \Phi : & \mathbb{Q}^{(\mathfrak{c})} &
ightarrow & \mathbb{T}^{\mathfrak{c}} \ & J & \mapsto & \Phi(J) \end{array}$$

where

$$\Phi(J)(\alpha) = \phi_{\alpha}(J), \text{ for every } \alpha < \mathfrak{c}.$$

э.

э

Each ϕ_{α} will be settled in two stages:

Each ϕ_{α} will be settled in two stages:

(1) We will first construct a group homomorphism ϕ from a countable subgroup of $\mathbb{Q}^{(\mathfrak{c})}$ to \mathbb{T} by induction;

Each ϕ_{α} will be settled in two stages:

- We will first construct a group homomorphism φ from a countable subgroup of Q^(c) to T by induction;
- (2) We will extend ϕ to $\mathbb{Q}^{(\mathfrak{c})}$ and, then, obtain ϕ_{α} .

Each ϕ_{α} will be settled in two stages:

- We will first construct a group homomorphism φ from a countable subgroup of Q^(c) to T by induction;
- (2) We will extend ϕ to $\mathbb{Q}^{(\mathfrak{c})}$ and, then, obtain ϕ_{α} .

In every inductive step, we will approximate the values of ϕ by non-empty open arcs of $\mathbb{T}.$

Each ϕ_{α} will be settled in two stages:

- (1) We will first construct a group homomorphism ϕ from a countable subgroup of $\mathbb{Q}^{(\mathfrak{c})}$ to \mathbb{T} by induction;
- (2) We will extend ϕ to $\mathbb{Q}^{(\mathfrak{c})}$ and, then, obtain ϕ_{α} .

In every inductive step, we will approximate the values of ϕ by non-empty open arcs of \mathbb{T} . To make this possible, we will deal only with sequences where there is enough "freedom" to prescribe a pre-determined accumulation point.

- 4 漢字 4 漢字 5

If $J \in \mathbb{Q}^{(\mathfrak{c})}$ and $\mu \in \operatorname{supp} J$, then

$$J(\mu) = \frac{p(J,\mu)}{q(J,\mu)}$$

where $q(J,\mu) > 0$ and $gcd(p(J,\mu),q(J,\mu)) = 1$. Define

$$d(J) = \operatorname{lcm} \{q(J,\mu) : \mu \in \operatorname{supp} J\}$$
 and $a(J,\mu) = d(J) \cdot J(\mu)$.

Define, also,

$$|p(J)| = \max\{|p(J,\mu)|: \mu \in \operatorname{supp} J\}$$

and

$$|q(J)| = \max\{q(J,\mu) : \mu \in \operatorname{supp} J\}.$$

(B)

If $J \in \mathbb{Q}^{(\mathfrak{c})}$ and $\mu \in \operatorname{supp} J$, then

$$J(\mu) = \frac{p(J,\mu)}{q(J,\mu)}$$

where $q(J,\mu) > 0$ and $\gcd(p(J,\mu),q(J,\mu)) = 1$. Define

$$d(J) = \operatorname{lcm} \{q(J,\mu) : \mu \in \operatorname{supp} J\}$$
 and $a(J,\mu) = d(J) \cdot J(\mu)$.

Define, also,

$$|p(J)| = \max\{|p(J,\mu)| : \mu \in \operatorname{supp} J\}$$

and

$$|q(J)| = \max\{q(J,\mu) : \mu \in \operatorname{supp} J\}.$$

Definition

We say that $f : \omega \to \mathbb{Q}^{(c)}$ is of type *i* if *f* satisfies condition (i) described below:

(1)
$$\operatorname{supp} f(n) \setminus \bigcup_{m < n} \operatorname{supp} f(m) \neq \emptyset$$
, for every $n \in \omega$;
(2) $|q(f(n))| > n$, for every $n \in \omega$;
(3) $\{|q(f(n))| : n \in \omega\}$ is finite and $|p(f(n))| > n$, for every $n \in \omega$.

Proposition

If $f : \omega \to \mathbb{Q}^{(c)}$, there exists $j : \omega \to \omega$ strictly increasing such that $f \circ j$ is either constant or of type *i*, for some $i \in \{1, 2, 3\}$.

< 3 > < 3 >

-

Proposition

If $f : \omega \to \mathbb{Q}^{(c)}$, there exists $j : \omega \to \omega$ strictly increasing such that $f \circ j$ is either constant or of type *i*, for some $i \in \{1, 2, 3\}$.

Let \mathcal{F} be the set of all sequences in $\mathbb{Q}^{(\mathfrak{c})}$ that are of type 1, 2 or 3. Fix $\{f_{\xi}: 0 < \xi < \mathfrak{c}\}$ an enumeration of \mathcal{F} such that

$$\bigcup_{n\in\omega}\operatorname{supp} f_{\xi}(n)\subset\xi, \text{ for every }\xi\in]0,\mathfrak{c}[.$$

Proposition

If $f : \omega \to \mathbb{Q}^{(c)}$, there exists $j : \omega \to \omega$ strictly increasing such that $f \circ j$ is either constant or of type *i*, for some $i \in \{1, 2, 3\}$.

Let \mathcal{F} be the set of all sequences in $\mathbb{Q}^{(\mathfrak{c})}$ that are of type 1, 2 or 3. Fix $\{f_{\xi}: 0 < \xi < \mathfrak{c}\}$ an enumeration of \mathcal{F} such that

$$igcup_{n\in\omega} ext{ supp } f_{\xi}(n)\subset \xi, ext{ for every } \xi\in]0, \mathfrak{c}[.$$

Fix also $\{p_{\xi} : 0 < \xi < \mathfrak{c}\}$ a family of pairwise incomparable selective ultrafilters and $\{J_{\alpha} : \alpha < \mathfrak{c}\}$ an enumeration of $\mathbb{Q}^{(\mathfrak{c})}$.

1

Proposition

If $f : \omega \to \mathbb{Q}^{(c)}$, there exists $j : \omega \to \omega$ strictly increasing such that $f \circ j$ is either constant or of type *i*, for some $i \in \{1, 2, 3\}$.

Let \mathcal{F} be the set of all sequences in $\mathbb{Q}^{(\mathfrak{c})}$ that are of type 1, 2 or 3. Fix $\{f_{\xi}: 0 < \xi < \mathfrak{c}\}$ an enumeration of \mathcal{F} such that

$$igcup_{n\in\omega} ext{ supp } f_{\xi}(n)\subset \xi, ext{ for every } \xi\in]0, \mathfrak{c}[.$$

Fix also $\{p_{\xi} : 0 < \xi < \mathfrak{c}\}$ a family of pairwise incomparable selective ultrafilters and $\{J_{\alpha} : \alpha < \mathfrak{c}\}$ an enumeration of $\mathbb{Q}^{(\mathfrak{c})}$.

Proposition

For every $\alpha < \mathfrak{c}$, there exists $\phi_{\alpha} : \mathbb{Q}^{(\mathfrak{c})} \to \mathbb{T}$ a group homomorphism such that:

(i)
$$\phi_{\alpha}(J_{\alpha}) \neq 0 + \mathbb{Z}$$
;
(ii) $\phi_{\alpha}(\chi_{\xi}) = p_{\xi} - \lim \{\phi_{\alpha}(f_{\xi}(n)) : n \in \omega\}$, for every $\xi \in]0, \mathfrak{c}[$.

Under the existence of c many pairwise incomparable selective ultrafilters, the additive group of the real line admits a countably compact group topology without non-trivial convergent sequences.

Under the existence of c many pairwise incomparable selective ultrafilters, the additive group of the real line admits a countably compact group topology without non-trivial convergent sequences.

Proof.

Consider $f : \omega \to \mathbb{Q}^{(\mathfrak{c})}$.

Under the existence of c many pairwise incomparable selective ultrafilters, the additive group of the real line admits a countably compact group topology without non-trivial convergent sequences.

Proof.

Consider $f : \omega \to \mathbb{Q}^{(c)}$. If f is non-trivial, then f has two constant and distinct subsequences or f has an injective subsequence.

э

Under the existence of c many pairwise incomparable selective ultrafilters, the additive group of the real line admits a countably compact group topology without non-trivial convergent sequences.

Proof.

Consider $f: \omega \to \mathbb{Q}^{(c)}$. If f is non-trivial, then f has two constant and distinct subsequences or f has an injective subsequence. If $f \circ j_1$ is an injective subsequence of f, there exists $j_2: \omega \to \omega$ strictly increasing such that $n \mapsto f \circ j_1 \circ j_2(2n)$ and $n \mapsto f \circ j_1 \circ j_2(2n+1)$ belongs to \mathcal{F} . So, they are given respectively by f_{ξ_0} and f_{ξ_1} , for some $\xi_0, \xi_1 \in]0, c[$.

э

Under the existence of c many pairwise incomparable selective ultrafilters, the additive group of the real line admits a countably compact group topology without non-trivial convergent sequences.

Proof.

Consider $f: \omega \to \mathbb{Q}^{(\mathfrak{c})}$. If f is non-trivial, then f has two constant and distinct subsequences or f has an injective subsequence. If $f \circ j_1$ is an injective subsequence of f, there exists $j_2: \omega \to \omega$ strictly increasing such that $n \mapsto f \circ j_1 \circ j_2(2n)$ and $n \mapsto f \circ j_1 \circ j_2(2n+1)$ belongs to \mathcal{F} . So, they are given respectively by f_{ξ_0} and f_{ξ_1} , for some $\xi_0, \xi_1 \in]0, \mathfrak{c}[$. Since $\phi_\alpha(\chi_{\xi_i}) = p_{\xi_i} - \lim\{\phi_\alpha(f_{\xi_i}(n)): n \in \omega\}$ for every $\alpha < \mathfrak{c}$, we have $\Phi(\chi_{\xi_i}) = p_{\xi_i} - \lim\{\Phi(f_{\xi_i}(n)): n \in \omega\}$. Thus, χ_{ξ_0} and χ_{ξ_1} are (distinct) accumulation points of $\{f(n): n \in \omega\}$.

- 4 (E. 5) - 4

-

Under the existence of c many pairwise incomparable selective ultrafilters, the additive group of the real line admits a countably compact group topology without non-trivial convergent sequences.

Proof.

Consider $f: \omega \to \mathbb{Q}^{(c)}$. If f is non-trivial, then f has two constant and distinct subsequences or f has an injective subsequence. If $f \circ j_1$ is an injective subsequence of f, there exists $j_2: \omega \to \omega$ strictly increasing such that $n \mapsto f \circ j_1 \circ j_2(2n)$ and $n \mapsto f \circ j_1 \circ j_2(2n + 1)$ belongs to \mathcal{F} . So, they are given respectively by f_{ξ_0} and f_{ξ_1} , for some $\xi_0, \xi_1 \in]0, c[$. Since $\phi_\alpha(\chi_{\xi_i}) = p_{\xi_i} - \lim\{\phi_\alpha(f_{\xi_i}(n)): n \in \omega\}$ for every $\alpha < c$, we have $\Phi(\chi_{\xi_i}) = p_{\xi_i} - \lim\{\Phi(f_{\xi_i}(n)): n \in \omega\}$. Thus, χ_{ξ_0} and χ_{ξ_1} are (distinct) accumulation points of $\{f(n): n \in \omega\}$. It implies that f is not convergent and that $\tau = \{\Phi^{-1}(U \cap \Phi[\mathbb{Q}^{(c)}]): U$ is an open set of $\mathbb{T}^c\}$ is a countably compact group topology on $\mathbb{Q}^{(c)}$.

- < 同 > < 三 > < 三 >

э

Fix $\alpha < \mathfrak{c}$ and let $E \in [\mathfrak{c}]^{\omega}$ be such that:

- supp $J_{\alpha} \subset E$;
- $\bigcup_{n \in \omega} f_{\xi}(n) \subset E$, for every $\xi \in E \setminus \{0\}$.

Fix $\alpha < \mathfrak{c}$ and let $E \in [\mathfrak{c}]^{\omega}$ be such that:

- supp $J_{\alpha} \subset E$;
- $\bigcup_{n \in \omega} f_{\xi}(n) \subset E$, for every $\xi \in E \setminus \{0\}$.

We obtain $\{E_k : k \in \omega\} \subset [E]^{<\omega}$, $\{b_k : k \in \omega\}$ strictly increasing, $\{r_k : k \in \omega\}$ and $i : \omega \to E \setminus \{0\}$ such that:

• supp
$$J \subset E_0$$
 and $E = \bigcup_{k \in \omega} E_k$;

•
$$i(k) \in E_k$$
 and $E_{k+1} \supset E_k \cup \operatorname{supp} f_{i(k)}(b_k)$;

•
$$\{b_k : k \in i^{-1}(\{\xi\})\} \in p_{\xi};$$

•
$$f_{i(k)}$$
 of type 1: supp $f_{i(k)}(b_k) \setminus E_k \neq \emptyset$;

- $f_{i(k)}$ of type 2: $|q(f_{i(k)}(b_k))| \cdot r_k > d(J) \cdot \prod_{m < k} d(f_{i(m)}(b_m)) =: c_k;$
- $f_{i(k)}$ of type 3: $|a(f_{i(k)}(b_k))| \cdot r_k > 4 \cdot d(f_{i(k)}(b_k));$

•
$$r_0 = \frac{1}{4 \cdot \sum_{\mu \in \text{supp } J} |a(J,\mu)|};$$

• $r_{k+1} = \frac{r_k}{2 \cdot \sum_{\mu \in \text{supp } f_i(k)(b_k)} |a(f_i(k)(b_k),\mu)|}, \text{ for every } k \in \omega$

э.

Let $\{p_j : j \in \omega\}$ be a family of pairwise incomparable selective ultrafilters. For each $j \in \omega$, let $\{a_k^j : k \in \omega\} \in p_j$ be an increasing sequence such that $k < a_k^j$ for every $k \in \omega$. Then, there exists a family $\{I_j : j \in \omega\}$ of pairwise disjoint subsets of ω such that:

(i)
$$\{a_k^j : k \in I_j\} \in p_j$$
, for every $j \in \omega$;

(ii) $\{[k, a_k^J] : k \in I_j, j \in \omega\}$ is a family of pairwise disjoint intervals of ω .

How to construct $\phi : \mathbb{Q}^{(E)} \to \mathbb{T}$?

First, we guarantee that $\phi(J_{\alpha}) \neq 0$ associating to each $\xi \in E_0$ an open arc $\psi_0(\xi)$ with diameter $r_0/d(J)$ such that $0 + \mathbb{Z} \notin \sum_{\xi \in \text{supp } J} a(J, \xi) \cdot \psi_0(\xi)$.

化压力 化压力

э.

How to construct $\phi : \mathbb{Q}^{(\mathcal{E})} \to \mathbb{T}$? First, we guarantee that $\phi(J_{\alpha}) \neq 0$ associating to each $\xi \in E_0$ an open arc $\psi_0(\xi)$ with diameter $r_0/d(J)$ such that $0 + \mathbb{Z} \notin \sum_{\xi \in \text{supp } J} a(J, \xi) \cdot \psi_0(\xi)$.

In a successor step k + 1, we will associate to each $\xi \in E_{k+1}$ an open arc $\psi_{k+1}(\xi)$ such that:

(1)
$$d(f_{i(k)}(b_k)) \cdot \overline{\psi_{k+1}(\xi)} \subset \psi_k(\xi)$$
, if $\xi \in E_k$;
(2) $c_k \cdot d(f_{i(k)}(b_k)) \cdot \delta(\psi_{k+1}(\xi)) = r_{k+1} \ \forall \xi \in E_{k+1}$;
(3) $\delta(\sum_{\xi \in \text{supp } f_{i(k)}(b_k)} a(f_{i(k)}(b_k), \xi) \cdot \psi_{k+1}(\xi)) \le r_k/c_k$;
(4) $\psi_k(i(k)) \cap \sum_{\xi \in \text{supp } f_{i(k)}(b_k)} a(f_{i(k)}(b_k), \xi) \cdot \psi_{k+1}(\xi) \ne \emptyset$;

How to construct $\phi : \mathbb{Q}^{(E)} \to \mathbb{T}$? First, we guarantee that $\phi(J_{\alpha}) \neq 0$ associating to each $\xi \in E_0$ an open arc $\psi_0(\xi)$ with diameter $r_0/d(J)$ such that $0 + \mathbb{Z} \notin \sum_{\xi \in \text{supp } J} a(J, \xi) \cdot \psi_0(\xi)$.

In a successor step k + 1, we will associate to each $\xi \in E_{k+1}$ an open arc $\psi_{k+1}(\xi)$ such that:

(1)
$$d(f_{i(k)}(b_k)) \cdot \overline{\psi_{k+1}(\xi)} \subset \psi_k(\xi)$$
, if $\xi \in E_k$;
(2) $c_k \cdot d(f_{i(k)}(b_k)) \cdot \delta(\psi_{k+1}(\xi)) = r_{k+1} \quad \forall \xi \in E_{k+1}$;
(3) $\delta(\sum_{\xi \in \text{supp } f_{i(k)}(b_k)} a(f_{i(k)}(b_k), \xi) \cdot \psi_{k+1}(\xi)) \leq r_k/c_k$;
(4) $\psi_k(i(k)) \cap \sum_{\xi \in \text{supp } f_{i(k)}(b_k)} a(f_{i(k)}(b_k), \xi) \cdot \psi_{k+1}(\xi) \neq \emptyset$;
If we define $\phi(\gamma_{\xi}) = \bigcap_{x \in Y_k} c_k \cdot \psi_k(\xi)$ where $N_{\xi} = \min\{n \in \psi : \xi \in E_k\}$

If we define $\phi(\chi_{\xi}) = \bigcap_{k \ge N_{\xi}} c_k \cdot \psi_k(\xi)$ where $N_{\xi} = \min\{n \in \omega : \xi \in E_n\}$ we conclude that

$$\{\phi(f_{i(k)}(b_k))\}: k \in i^{-1}(\{\xi\})\} \to \phi(\chi_{\xi})$$

and, therefore, that $\phi(\chi_{\xi}) = p_{\xi} - \lim \{\phi(f_{\xi}(n)) : n \in \omega\}.$

For every $\alpha < \mathfrak{c}$, there exists $\phi_{\alpha} : \mathbb{Q}^{(\mathfrak{c})} \to \mathbb{T}$ a group homomorphism such that:

(i)
$$\phi_{\alpha}(J_{\alpha}) \neq 0$$
;
(ii) $\phi_{\alpha}(\chi_{\xi}) = p_{\xi} - \lim\{\phi_{\alpha}(f_{\xi}(n)) : n \in \omega\}$, for every $\xi \in]0, \mathfrak{c}[$.

문어 문

For every $\alpha < \mathfrak{c}$, there exists $\phi_{\alpha} : \mathbb{Q}^{(\mathfrak{c})} \to \mathbb{T}$ a group homomorphism such that:

(i)
$$\phi_{\alpha}(J_{\alpha}) \neq 0$$
;
(ii) $\phi_{\alpha}(\chi_{\xi}) = p_{\xi} - \lim \{\phi_{\alpha}(f_{\xi}(n)) : n \in \omega\}$, for every $\xi \in]0, \mathfrak{c}[.$

Proof.

We have $\phi : \mathbb{Q}^{(E)} \to \mathbb{T}$ satisfying (i) and (ii) for each $\xi \in E \setminus \{0\}$.

문어 문어

For every $\alpha < \mathfrak{c}$, there exists $\phi_{\alpha} : \mathbb{Q}^{(\mathfrak{c})} \to \mathbb{T}$ a group homomorphism such that:

(i)
$$\phi_{\alpha}(J_{\alpha}) \neq 0$$
;
(ii) $\phi_{\alpha}(\chi_{\xi}) = p_{\xi} - \lim \{\phi_{\alpha}(f_{\xi}(n)) : n \in \omega\}$, for every $\xi \in]0, \mathfrak{c}[$.

Proof.

We have $\phi : \mathbb{Q}^{(E)} \to \mathbb{T}$ satisfying (i) and (ii) for each $\xi \in E \setminus \{0\}$. Let $\{\alpha_{\xi} : \xi < \mathfrak{c}\}$ be a strictly increasing enumeration of $\mathfrak{c} \setminus E$.

For every $\alpha < \mathfrak{c}$, there exists $\phi_{\alpha} : \mathbb{Q}^{(\mathfrak{c})} \to \mathbb{T}$ a group homomorphism such that:

(i)
$$\phi_{\alpha}(J_{\alpha}) \neq 0$$
;
(ii) $\phi_{\alpha}(\chi_{\xi}) = p_{\xi} - \lim\{\phi_{\alpha}(f_{\xi}(n)) : n \in \omega\}$, for every $\xi \in]0, \mathfrak{c}[.$

Proof.

We have $\phi : \mathbb{Q}^{(E)} \to \mathbb{T}$ satisfying (i) and (ii) for each $\xi \in E \setminus \{0\}$. Let $\{\alpha_{\xi} : \xi < \mathfrak{c}\}$ be a strictly increasing enumeration of $\mathfrak{c} \setminus E$. Define $\phi(\chi_{\alpha_0}) = p_{\alpha_0} - \lim\{\phi(f_{\alpha_0}(n)) : n \in \omega\}$ and extend ϕ to a group homomorphism from $\langle \mathbb{Q}^{(E)} \cup \{\alpha_0\} \rangle$ to \mathbb{T} .

For every $\alpha < \mathfrak{c}$, there exists $\phi_{\alpha} : \mathbb{Q}^{(\mathfrak{c})} \to \mathbb{T}$ a group homomorphism such that:

(i)
$$\phi_{\alpha}(J_{\alpha}) \neq 0$$
;
(ii) $\phi_{\alpha}(\chi_{\xi}) = p_{\xi} - \lim\{\phi_{\alpha}(f_{\xi}(n)) : n \in \omega\}$, for every $\xi \in]0, \mathfrak{c}[.$

Proof.

We have $\phi : \mathbb{Q}^{(E)} \to \mathbb{T}$ satisfying (i) and (ii) for each $\xi \in E \setminus \{0\}$. Let $\{\alpha_{\xi} : \xi < \mathfrak{c}\}$ be a strictly increasing enumeration of $\mathfrak{c} \setminus E$. Define $\phi(\chi_{\alpha_0}) = p_{\alpha_0} - \lim\{\phi(f_{\alpha_0}(n)) : n \in \omega\}$ and extend ϕ to a group homomorphism from $\langle \mathbb{Q}^{(E)} \cup \{\alpha_0\} \rangle$ to \mathbb{T} . Since \mathbb{T} is a divisible group, it is possible to extend ϕ to a group homomorphism from $\mathbb{Q}^{(E \cup \{\alpha_0\})}$ to \mathbb{T} .

For every $\alpha < \mathfrak{c}$, there exists $\phi_{\alpha} : \mathbb{Q}^{(\mathfrak{c})} \to \mathbb{T}$ a group homomorphism such that:

(i)
$$\phi_{\alpha}(J_{\alpha}) \neq 0$$
;
(ii) $\phi_{\alpha}(\chi_{\xi}) = p_{\xi} - \lim\{\phi_{\alpha}(f_{\xi}(n)) : n \in \omega\}$, for every $\xi \in]0, \mathfrak{c}[$.

Proof.

We have $\phi : \mathbb{Q}^{(E)} \to \mathbb{T}$ satisfying (i) and (ii) for each $\xi \in E \setminus \{0\}$. Let $\{\alpha_{\xi} : \xi < \mathfrak{c}\}$ be a strictly increasing enumeration of $\mathfrak{c} \setminus E$. Define $\phi(\chi_{\alpha_0}) = p_{\alpha_0} - \lim\{\phi(f_{\alpha_0}(n)) : n \in \omega\}$ and extend ϕ to a group homomorphism from $\langle \mathbb{Q}^{(E)} \cup \{\alpha_0\} \rangle$ to \mathbb{T} . Since \mathbb{T} is a divisible group, it is possible to extend ϕ to a group homomorphism from $\mathbb{Q}^{(E \cup \{\alpha_0\})}$ to \mathbb{T} . Repeating inductively this construction, we obtain $\phi_{\alpha} : \mathbb{Q}^{(\mathfrak{c})} \to \mathbb{T}$ satisfying (i) and (ii).

-

An abelian group G is said to be *almost torsion-free* if

$$G[n] = \{x \in G : nx = 0\}$$

is finite for each positive integer n.

3

38 N.

An abelian group G is said to be *almost torsion-free* if

$$G[n] = \{x \in G : nx = 0\}$$

is finite for each positive integer n.

Theorem (B.-Tomita, Houston J. Math. (2013))

Under the existence of c many pairwise incomparable selective ultrafilters, if G is an abelian almost torsion-free group such that |G| = c, then G can be endowed with a countably compact group topology without non-trivial convergent sequences.