COMPACT INDESTRUCTIBILITY

O denotes the collection of all open covers of a space X.

The Rothberger game of length a G (O, O) is played as follows: at the -
inning 1 chooses an open cover Ug € O and 2 responds by taking Ug € Ug. At
the end, 2 wins if and only if {Usg : 8 < a} € O.

The selection principle S{(O, O) is the assertion “for every sequence {U3 :
B < a} € O one may pick Ug € Up in such a way that {Ug: 5 < a} € O”.

Proposition. If 1 has no winning strategy in G (O, O), then ST (O, O).

A space is Rothberger if S7 (O, O) holds.

Theorem. (Pawlikowski, 1994) S7 (O, O) = 1 does not have a winning strat-
egy in G (O, 0).



A compact space is indestructible if it remains compact in any countably
closed forcing extension.

Proposition 1. (Scheepers-Tall) A compact space X is indestructibly compact
if and only if 1 does not have a winning strategy in G7' (O, O).

Some facts discovered by Dias and Tall are:
— Every compact hereditarily Lindelof space is indestructible.

— The one-point compactification of a discrete space is indestructible.
— CH A first countable compact 15 space is indestructible.
— If a compact space contains a closed copy of 2*!, then it is desctructible.

— A compact 15 indestructible space contains a non-trivial convergent sequence.



Theorem 1. Every compact indestructible space is sequentially compact.

Sketch. Let X be a compact non sequentially compact space.

Fix a sequence (a, : n < w) with no convergent subsequence and let Ag =
{a, : n < w}. For each x € X there is an open set Ul such that z € U} and
|Ag \ Ul| = Ny. The first move of 1 is the open cover U; = {Ul : x € X}.

If 2 responds by choosing Vi € Uy, then let A1 = Ag \ V4. For each z € X
there is an open set U2 such that x € U2 and |A; \ U2| = Rg. The second move
of 1 is the open cover Uy = {UZ? : z € X }.

In general, at the a-th inning the moves of the two players have defined a
mod finite decreasing family {Az : < «} of infinite subsets of Ag. Then
1 fixes an infinite set B, € Aj such that B, C* Ag for each 8 < o and he
plays U, = {US : x € X}, where UY is an open set such that x € US and
|Bo, \ U%| = Yy and so on.

At the end of the game, the set resulting from the moves of 2 is a collection
YV ={V,:1 < a<w} and for each a there is an infinite set A, C X \ V, such
that {A, : @ < wy} is a mod finite decreasing sequence.

The compactness of X implies that V cannot be a cover and so 1 wins. []



A space X has the finite derived set (briefly FDS) property provided that
every infinite set of X contains an infinite subset with at most finitely many
accumulation points.

Proposition. (Alas-Tkachenko-Tkachuk-Wilson, 2005) Every
hereditarily Lindelof T5 space has the FDS property.

Proposition. (Tall, 1995) Hereditarily Lindelof = Indestructibily Lindelof.

Theorem 2. A LindelofT5 indestructible space has the finite derived set prop-
erty.



A space X is pseudoradial provided that for any non-closed set A C X there
exists a well-ordered net S C A which converges to a point outside A.

Lemma. (Dias-Tall) A compact Ty space which is not first countable at any
point is destructible.

Theorem 3. Any compact 15 indestructible space is pseudoradial.

Sketch. Let X be a compact T5 indestructible space and let A be a non-closed
subset. WLOG we assume X = A. Let )\ be the smallest cardinal such that
there exists a non-empty closed Gy-set H C X \ A. As X is indestructible, so
is H and by the lemma H is first countable at some point p. Clearly, {p} is
a Gy-set in X. Now, the minimality of A and the compactness of X suffice to
find a well-ordered net in A which converges to p. [



Theorem 3 is no longer true for Lindelof spaces.

Proposition. (Koszmider-Tall, 2002) There is a model of ZFC+CH with a
regular Lindelof P-space Z of cardinality No without Lindelof subspaces of size
N;.

Z is indestructibily Lindelof, because a Lindelot P-space is Rothberger.

Z is not pseudoradial, because any subset of Z of size Ny is radially closed
but not closed.



Theorem 3 is far to be invertible:

Proposition. (Dias-Tall) There exists a desctructible compact LOTS.

Theorem 4. CH Every compact sequential Ty space is indestructible.

As CH is consistent with the existence of a compact T, space of countable
tightness which is not sequentially compact, in Theorem 4 “sequential” cannot
be weakened to “countable tightness”.

Question 1. CH Is a compact 15 pseudoradial space of countable tightness
indestructible?

A space X is weakly Whyburn provided that for any non-closed set A C X
there exists a set B C A such that |B\ A| = 1.

Every sequential 15 space is weakly Whyburn and every compact 15 weakly
Whyburn space is pseudoradial.

Thanks to a recent result of Alas and Wilson, we can prove:

Theorem 5. CH Every compact weakly Whyburn space of countable tightness
is indestructible.



Theorem. (Pawlikowski, 1994) Sy (O, Q) implies 1 does not have a winning
strategy in G7 (O, O).

Proposition. (Dias-Tall) [CH] There exists a destructible compact spaces
which satisfies the selection principle S7* (O, O).

Question 2. Let X be a compact (or compact T, ) space satisfying S7* (O, O).
Is X sequentially compact?

Question 2. Is it true that any compact Ty space satisfying S7* (O, O) con-
tains a non-trivial convergent sequence?

Any counterexample to Question 27 would be an Efimov space.



SOME CARDINAL INEQUALITIES

Theorem A. (Arhangel’skii, 1969) If X is a first countable Lindel6f Ts space,
then | X| < 2%o,

Theorem B. (Gorelic, 1993) In a model of ZFC there exists a Lindel6f Ty space
X with points Gs in which 1 does not have a winning strategy in G;* (O, O)
and | X| > 2%o.

Theorem C. (Scheepers-Tall, 2010) If X is a space with points G5 and 2 1
G (0, 0), then | X| < 2%,

The game G, (O, O) is played as follows: at the S-inning 1 chooses Uz € O
and 2 responds by taking a finite set Vg C Us. 2 wins if and only if [ J{Vs : B <
af € O.

21 GYH(0,0) = 21 G0, 0)

Problem. Does Theorem C continue to hold for GE’;?
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Given a space X, a K-cover is an open collection U such that for every
compact set K C X there is some U € U such that K C U.

IC is the collection of all K-covers.

Let O* be the collection of all open covers which are closed under finite
unions.

Since O* C L C O, we have:

21 G (0,0) = 21 G (K,0) = 21 G (0%, 0) = 21 G2 (0, 0)

21 witnesses 2 1T G7H(K,0) & 21 G (0O, 0).
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Lemma 1. (Gryzlov) Let X be a space with points Gs. If K is a compact
subset of X, then there is a collection of open sets U such that K = (U and
| < 2%,

Lemma 2. If o is a winning strategy for 2 in Gy* (K, O) played on X, then for
any sequence {Up : f < a} of K-covers there exists a compact set K C X such

that for any open set U O K there exists a K-cover V satisfying c({Us : B <
at ~V)=V.

Theorem 1. Let X be a space with points Gs. If 21 G7* (K, O), then | X| <
2%,

Theorem 2. Let X be a Tychonoff space. 21 Gi*(0,0) = 21 Gi(K, O).

Corollary. CH If X is a Tychonoff space with points Gs and 2 T G5} (O, O),
then | X| < 2%o,
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A space X is weakly Lindelof if every open cover U has a countable subfamily
V such that [ JV is dense in X.

Question 3. (Bell-Ginsburg-Woods, 1978) Let X be a first countable regular
weakly Lindelof space. Is | X| < 2R0?

For a given space X, D denotes the collection of all open families ¢/ such
that | JU is dense in X.

21 Gy (0,0)=21G{(0,D)
Fact 1. ccc = 21 G7*(O0,D) = wL(X) < Nj.
Fact 2. MA+—-CH 11 G7*(O,D) in w*.
Fact 3. CH21 G{*(O,D) in w*.

Theorem 3. Let X be a first countable regular space. If 21 Gy* (O, D), then
| X | < 2%,

Question 4. Let X be a first countable regular weakly Lindelof space. Is
21 GO0, D) true?
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A space is homogeneous if for any pair of points there is a homeomorphism
sending one point to the other. A space is power homogeneous if some power
of it is homogeneous.

Theorem. (Ridderbos, 2006 - van Mill, 2005 for compact spaces) If X is a
regular power homogeneous space, then | X| < 2¢(X)™x(X),

ccc =21 Gy (D,D) = c(X) <y

Theorem 4. Let X be a regular power homogeneous space of countable -
character. If 21 G¢* (D, D), then | X| < 2%0,

Power homogeneous is necessary: Sw!



