Compact indestructibility

 \mathcal{O} denotes the collection of all open covers of a space X.

The Rothberger game of length α $G_1^{\alpha}(\mathcal{O}, \mathcal{O})$ is played as follows: at the β inning 1 chooses an open cover $\mathcal{U}_{\beta} \in \mathcal{O}$ and 2 responds by taking $U_{\beta} \in \mathcal{U}_{\beta}$. At the end, 2 wins if and only if $\{U_{\beta} : \beta < \alpha\} \in \mathcal{O}$.

The selection principle $S_1^{\alpha}(\mathcal{O}, \mathcal{O})$ is the assertion "for every sequence $\{\mathcal{U}_{\beta} : \beta < \alpha\} \subseteq \mathcal{O}$ one may pick $U_{\beta} \in \mathcal{U}_{\beta}$ in such a way that $\{U_{\beta} : \beta < \alpha\} \in \mathcal{O}$ ".

Proposition. If 1 has no winning strategy in $G_1^{\alpha}(\mathcal{O}, \mathcal{O})$, then $S_1^{\alpha}(\mathcal{O}, \mathcal{O})$.

A space is Rothberger if $S_1^{\omega}(\mathcal{O}, \mathcal{O})$ holds.

Theorem. (Pawlikowski, 1994) $S_1^{\omega}(\mathcal{O}, \mathcal{O}) \Rightarrow 1$ does not have a winning strategy in $G_1^{\omega}(\mathcal{O}, \mathcal{O})$.

A compact space is indestructible if it remains compact in any countably closed forcing extension.

Proposition 1. (Scheepers-Tall) A compact space X is indestructibly compact if and only if 1 does not have a winning strategy in $G_1^{\omega_1}(\mathcal{O}, \mathcal{O})$.

Some facts discovered by Dias and Tall are:

– Every compact hereditarily Lindelöf space is indestructible.

- The one-point compactification of a discrete space is indestructible.
- CH A first countable compact T_2 space is indestructible.
- If a compact space contains a closed copy of 2^{ω_1} , then it is desctructible.
- A compact T_2 indestructible space contains a non-trivial convergent sequence.

Theorem 1. Every compact indestructible space is sequentially compact.

Sketch. Let X be a compact non sequentially compact space.

Fix a sequence $\langle a_n : n < \omega \rangle$ with no convergent subsequence and let $A_0 = \{a_n : n < \omega\}$. For each $x \in X$ there is an open set U_x^1 such that $x \in U_x^1$ and $|A_0 \setminus U_x^1| = \aleph_0$. The first move of 1 is the open cover $\mathcal{U}_1 = \{U_x^1 : x \in X\}$.

If 2 responds by choosing $V_1 \in \mathcal{U}_1$, then let $A_1 = A_0 \setminus V_1$. For each $x \in X$ there is an open set U_x^2 such that $x \in U_x^2$ and $|A_1 \setminus U_x^2| = \aleph_0$. The second move of 1 is the open cover $\mathcal{U}_2 = \{U_x^2 : x \in X\}$.

In general, at the α -th inning the moves of the two players have defined a mod finite decreasing family $\{A_{\beta} : \beta < \alpha\}$ of infinite subsets of A_0 . Then 1 fixes an infinite set $B_{\alpha} \subseteq A_0$ such that $B_{\alpha} \subseteq^* A_{\beta}$ for each $\beta < \alpha$ and he plays $\mathcal{U}_{\alpha} = \{U_x^{\alpha} : x \in X\}$, where U_x^{α} is an open set such that $x \in U_x^{\alpha}$ and $|B_{\alpha} \setminus U_x^{\alpha}| = \aleph_0$ and so on.

At the end of the game, the set resulting from the moves of 2 is a collection $\mathcal{V} = \{V_{\alpha} : 1 \leq \alpha < \omega_1\}$ and for each α there is an infinite set $A_{\alpha} \subseteq X \setminus V_{\alpha}$ such that $\{A_{\alpha} : \alpha < \omega_1\}$ is a mod finite decreasing sequence.

The compactness of X implies that \mathcal{V} cannot be a cover and so 1 wins.

A space X has the *finite derived set* (briefly FDS) property provided that every infinite set of X contains an infinite subset with at most finitely many accumulation points.

Proposition. (Alas-Tkachenko-Tkachuk-Wilson, 2005) Every hereditarily Lindelöf T_2 space has the FDS property.

Proposition. (Tall, 1995) Hereditarily Lindelöf \Rightarrow Indestructibily Lindelöf.

Theorem 2. A Lindelöf T_2 indestructible space has the finite derived set property.

A space X is pseudoradial provided that for any non-closed set $A \subseteq X$ there exists a well-ordered net $S \subseteq A$ which converges to a point outside A.

Lemma. (Dias-Tall) A compact T_2 space which is not first countable at any point is destructible.

Theorem 3. Any compact T_2 indestructible space is pseudoradial.

Sketch. Let X be a compact T_2 indestructible space and let A be a non-closed subset. WLOG we assume $X = \overline{A}$. Let λ be the smallest cardinal such that there exists a non-empty closed G_{λ} -set $H \subseteq X \setminus A$. As X is indestructible, so is H and by the lemma H is first countable at some point p. Clearly, $\{p\}$ is a G_{λ} -set in X. Now, the minimality of λ and the compactness of X suffice to find a well-ordered net in A which converges to p. \Box Theorem 3 is no longer true for Lindelöf spaces.

Proposition. (Koszmider-Tall, 2002) There is a model of ZFC+CH with a regular Lindelöf P-space Z of cardinality \aleph_2 without Lindelöf subspaces of size \aleph_1 .

 ${\cal Z}$ is indestructibily Lindelöf, because a Lindelöf P-space is Rothberger.

Z is not pseudoradial, because any subset of Z of size \aleph_1 is radially closed but not closed.

Theorem 3 is far to be invertible:

Proposition. (Dias-Tall) There exists a desctructible compact LOTS.

Theorem 4. CH Every compact sequential T_2 space is indestructible.

As CH is consistent with the existence of a compact T_2 space of countable tightness which is not sequentially compact, in Theorem 4 "sequential" cannot be weakened to "countable tightness".

Question 1. CH Is a compact T_2 pseudoradial space of countable tightness indestructible?

A space X is weakly Whyburn provided that for any non-closed set $A \subseteq X$ there exists a set $B \subseteq A$ such that $|\overline{B} \setminus A| = 1$.

Every sequential T_2 space is weakly Whyburn and every compact T_2 weakly Whyburn space is pseudoradial.

Thanks to a recent result of Alas and Wilson, we can prove:

Theorem 5. CH Every compact weakly Whyburn space of countable tightness is indestructible.

Theorem. (Pawlikowski, 1994) $S_1^{\omega}(\mathcal{O}, \mathcal{O})$ implies 1 does not have a winning strategy in $G_1^{\omega}(\mathcal{O}, \mathcal{O})$.

Proposition. (Dias-Tall) [CH] There exists a destructible compact spaces which satisfies the selection principle $S_1^{\omega_1}(\mathcal{O}, \mathcal{O})$.

Question 2. Let X be a compact (or compact T_2) space satisfying $S_1^{\omega_1}(\mathcal{O}, \mathcal{O})$. Is X sequentially compact?

Question 2⁺. Is it true that any compact T_2 space satisfying $S_1^{\omega_1}(\mathcal{O}, \mathcal{O})$ contains a non-trivial convergent sequence?

Any counterexample to Question 2^+ would be an Efimov space.

Theorem A. (Arhangel'skiĭ, 1969) If X is a first countable Lindelöf T_2 space, then $|X| \leq 2^{\aleph_0}$.

Theorem B. (Gorelic, 1993) In a model of ZFC there exists a Lindelöf T_2 space X with points G_{δ} in which 1 does not have a winning strategy in $G_1^{\omega_1}(\mathcal{O}, \mathcal{O})$ and $|X| > 2^{\aleph_0}$.

Theorem C. (Scheepers-Tall, 2010) If X is a space with points G_{δ} and $2 \uparrow G_1^{\omega_1}(\mathcal{O}, \mathcal{O})$, then $|X| \leq 2^{\aleph_0}$.

The game $G_{\text{fin}}^{\alpha}(\mathcal{O}, \mathcal{O})$ is played as follows: at the β -inning 1 chooses $\mathcal{U}_{\beta} \in \mathcal{O}$ and 2 responds by taking a finite set $\mathcal{V}_{\beta} \subseteq \mathcal{U}_{\beta}$. 2 wins if and only if $\bigcup \{\mathcal{V}_{\beta} : \beta < \alpha\} \in \mathcal{O}$.

$$2\uparrow \mathrm{G}_{1}^{\omega_{1}}(\mathcal{O},\mathcal{O}) \Rightarrow 2\uparrow \mathrm{G}_{\mathrm{fin}}^{\omega_{1}}(\mathcal{O},\mathcal{O})$$

Problem. Does Theorem C continue to hold for $G_{\text{fin}}^{\omega_1}$?

Given a space X, a K-cover is an open collection \mathcal{U} such that for every compact set $K \subseteq X$ there is some $U \in \mathcal{U}$ such that $K \subseteq U$.

 \mathcal{K} is the collection of all K-covers.

Let \mathcal{O}^* be the collection of all open covers which are closed under finite unions.

Since $\mathcal{O}^* \subseteq \mathcal{K} \subseteq \mathcal{O}$, we have:

 $2\uparrow \mathrm{G}_{1}^{\omega_{1}}(\mathcal{O},\mathcal{O}) \Rightarrow 2\uparrow \mathrm{G}_{1}^{\omega_{1}}(\mathcal{K},\mathcal{O}) \Rightarrow 2\uparrow \mathrm{G}_{1}^{\omega_{1}}(\mathcal{O}^{*},\mathcal{O}) \equiv 2\uparrow \mathrm{G}_{\mathrm{fin}}^{\omega_{1}}(\mathcal{O},\mathcal{O})$

 2^{ω_1} witnesses $2 \uparrow \mathrm{G}_1^{\omega_1}(\mathcal{K}, \mathcal{O}) \not\Rightarrow 2 \uparrow \mathrm{G}_1^{\omega_1}(\mathcal{O}, \mathcal{O}).$

Lemma 1. (Gryzlov) Let X be a space with points G_{δ} . If K is a compact subset of X, then there is a collection of open sets \mathcal{U} such that $K = \bigcap \mathcal{U}$ and $|\mathcal{U}| \leq 2^{\aleph_0}$.

Lemma 2. If σ is a winning strategy for 2 in $G_1^{\omega_1}(\mathcal{K}, \mathcal{O})$ played on X, then for any sequence $\{U_\beta : \beta < \alpha\}$ of K-covers there exists a compact set $K \subseteq X$ such that for any open set $U \supseteq K$ there exists a K-cover \mathcal{V} satisfying $\sigma(\{U_\beta : \beta < \alpha\} \frown \mathcal{V}) = V$.

Theorem 1. Let X be a space with points G_{δ} . If $2 \uparrow G_1^{\omega_1}(\mathcal{K}, \mathcal{O})$, then $|X| \leq 2^{\aleph_0}$.

Theorem 2. Let X be a Tychonoff space. $2 \uparrow G_{\text{fin}}^{\omega_1}(\mathcal{O}, \mathcal{O}) \Rightarrow 2 \uparrow G_1^{\mathfrak{c}}(\mathcal{K}, \mathcal{O}).$

Corollary. CH If X is a Tychonoff space with points G_{δ} and $2 \uparrow G_{\text{fin}}^{\omega_1}(\mathcal{O}, \mathcal{O})$, then $|X| \leq 2^{\aleph_0}$.

A space X is weakly Lindelöf if every open cover \mathcal{U} has a countable subfamily \mathcal{V} such that $\bigcup \mathcal{V}$ is dense in X.

Question 3. (Bell-Ginsburg-Woods, 1978) Let X be a first countable regular weakly Lindelöf space. Is $|X| \leq 2^{\aleph_0}$?

For a given space X, \mathcal{D} denotes the collection of all open families \mathcal{U} such that $\bigcup \mathcal{U}$ is dense in X.

 $2 \uparrow \mathcal{G}_1^{\omega_1}(\mathcal{O}, \mathcal{O}) \Rightarrow 2 \uparrow \mathcal{G}_1^{\omega_1}(\mathcal{O}, \mathcal{D})$

Fact 1. $ccc \Rightarrow 2 \uparrow G_1^{\omega_1}(\mathcal{O}, \mathcal{D}) \Rightarrow wL(X) \leq \aleph_1.$

Fact 2. $MA + \neg CH \ 1 \uparrow G_1^{\omega_1}(\mathcal{O}, \mathcal{D})$ in ω^* .

Fact 3. CH $2 \uparrow G_1^{\omega_1}(\mathcal{O}, \mathcal{D})$ in ω^* .

Theorem 3. Let X be a first countable regular space. If $2 \uparrow G_1^{\omega_1}(\mathcal{O}, \mathcal{D})$, then $|X| \leq 2^{\aleph_0}$.

Question 4. Let X be a first countable regular weakly Lindelöf space. Is $2 \uparrow G_1^{\omega_1}(\mathcal{O}, \mathcal{D})$ true?

A space is homogeneous if for any pair of points there is a homeomorphism sending one point to the other. A space is power homogeneous if some power of it is homogeneous.

Theorem. (Ridderbos, 2006 - van Mill, 2005 for compact spaces) If X is a regular power homogeneous space, then $|X| \leq 2^{c(X)\pi\chi(X)}$.

$$ccc \Rightarrow 2 \uparrow \mathbf{G}_1^{\omega_1}(\mathcal{D}, \mathcal{D}) \Rightarrow c(X) \leq \aleph_1$$

Theorem 4. Let X be a regular power homogeneous space of countable π character. If $2 \uparrow G_1^{\omega_1}(\mathcal{D}, \mathcal{D})$, then $|X| \leq 2^{\aleph_0}$.

Power homogeneous is necessary: $\beta \omega!$