Productively countably tight spaces

Leandro F. Aurichi ${ }^{1}$
Joint work with Angelo Bella

ICMC-USP
${ }^{1}$ Sponsored by FAPESP

Productively countably tight spaces

Recall that a topological space X has countable tightness at a point $x \in X$ if, for every $A \subset X$ such that $x \in \bar{A}$, there is a countable subset $B \subset A$ such that $x \in \bar{B}$.

Productively countably tight spaces

Recall that a topological space X has countable tightness at a point $x \in X$ if, for every $A \subset X$ such that $x \in \bar{A}$, there is a countable subset $B \subset A$ such that $x \in \bar{B}$. We say that a space X is productively countably tight at $x \in X$ if, for every space Y and every $y \in Y$ such that Y has countable tightness at $y, X \times Y$ has countable tightness at (x, y).

Productively countably tight spaces

Recall that a topological space X has countable tightness at a point $x \in X$ if, for every $A \subset X$ such that $x \in \bar{A}$, there is a countable subset $B \subset A$ such that $x \in \bar{B}$. We say that a space X is productively countably tight at $x \in X$ if, for every space Y and every $y \in Y$ such that Y has countable tightness at $y, X \times Y$ has countable tightness at (x, y).
If X is productively countably tight at every point x, we simply say that X is productively countably tight.

Here comes the game

The game that we will use is the following: At the n-th inning, player I chooses $D_{n} \subset X \backslash\{x\}$, such that $x \in \bar{D}_{n}$.

Here comes the game

The game that we will use is the following:
At the n-th inning, player I chooses $D_{n} \subset X \backslash\{x\}$, such that $x \in \bar{D}_{n}$. Then player II chooses $d_{n} \in D_{n}$.

Here comes the game

The game that we will use is the following:
At the n-th inning, player I chooses $D_{n} \subset X \backslash\{x\}$, such that $x \in \bar{D}_{n}$. Then player II chooses $d_{n} \in D_{n}$. We say that player II wins if $x \in \overline{\left\{d_{n}: n \in \omega\right\}}$.

Here comes the game

The game that we will use is the following:
At the n-th inning, player I chooses $D_{n} \subset X \backslash\{x\}$, such that $x \in \bar{D}_{n}$. Then player II chooses $d_{n} \in D_{n}$. We say that player II wins if $x \in \overline{\left\{d_{n}: n \in \omega\right\}}$. We use the notation $\mathrm{G}_{1}\left(\Omega_{X}, \Omega_{x}\right)$ for this game.

Here comes the game

The game that we will use is the following:
At the n-th inning, player I chooses $D_{n} \subset X \backslash\{x\}$, such that $x \in \bar{D}_{n}$. Then player II chooses $d_{n} \in D_{n}$. We say that player II wins if $x \in \overline{\left\{d_{n}: n \in \omega\right\}}$. We use the notation $\mathrm{G}_{1}\left(\Omega_{x}, \Omega_{x}\right)$ for this game. $\left(\Omega_{x}=\{D \subset X \backslash\{x\}: x \in \bar{D}\}\right)$

A picture is worth a thousand words

A picture is worth a thousand words

A picture is worth a thousand words

A picture is worth a thousand words

A picture is worth a thousand words

A picture is worth a thousand words

A picture is worth a thousand words

The first theorem

Theorem

If player II has a winning strategy for the game $\mathrm{G}_{1}\left(\Omega_{\chi}, \Omega_{\chi}\right)$ played over X, then X is productively countably tight at x.

The idea for the proof

According to Arhangel'skii [1], we need to show the following:

The idea for the proof

According to Arhangel'skii [1], we need to show the following: For every collection \mathcal{P} of centered families of countable subsets of X such that, for any neighborhood O_{x} of x, there exists $\mathcal{B} \in \mathcal{P}$ and $B \in \mathcal{B}$ such that $B \subset O_{x}$, there is a subfamily $\left\{\mathcal{B}_{n}: n<\omega\right\} \subset \mathcal{P}$ such that for every choice $B_{n} \in \mathcal{B}_{n}$, $x \in \bigcup \backslash\left\{B_{n}: n<\omega\right\}$.

The idea for the proof

According to Arhangel'skii [1], we need to show the following: For every collection \mathcal{P} of centered families of countable subsets of X such that, for any neighborhood O_{x} of x, there exists $\mathcal{B} \in \mathcal{P}$ and $B \in \mathcal{B}$ such that $B \subset O_{x}$, there is a subfamily $\left\{\mathcal{B}_{n}: n<\omega\right\} \subset \mathcal{P}$ such that for every choice $B_{n} \in \mathcal{B}_{n}$, $x \in \bigcup\left\{B_{n}: n<\omega\right\}$.
Actually, we will do a little better. We will find a subfamily $\left(B_{s}\right)_{s \in \omega<\omega}$ of \mathcal{P} such that, for every $f: \omega \longrightarrow \omega,\left(B_{s}\right)_{s \subset f}$ is a collection of sets containing the answers from player II using the winning strategy for the game $\mathrm{G}_{1}\left(\Omega_{x}, \Omega_{x}\right)$. Thus, $x \in \overline{\bigcup_{s \subset f} B_{s}}$.

The idea for the proof

According to Arhangel'skii [1], we need to show the following: For every collection \mathcal{P} of centered families of countable subsets of X such that, for any neighborhood O_{x} of x, there exists $\mathcal{B} \in \mathcal{P}$ and $B \in \mathcal{B}$ such that $B \subset O_{x}$, there is a subfamily $\left\{\mathcal{B}_{n}: n<\omega\right\} \subset \mathcal{P}$ such that for every choice $B_{n} \in \mathcal{B}_{n}$, $x \in \bigcup\left\{B_{n}: n<\omega\right\}$.
Actually, we will do a little better. We will find a subfamily $\left(B_{s}\right)_{s \in \omega<\omega}$ of \mathcal{P} such that, for every $f: \omega \longrightarrow \omega,\left(B_{s}\right)_{s \subset f}$ is a collection of sets containing the answers from player II using the winning strategy for the game $\mathrm{G}_{1}\left(\Omega_{x}, \Omega_{x}\right)$. Thus, $x \in \overline{\bigcup_{s \subset f} B_{s}}$.
The key idea is: "how can we make this in such way that all the branches in this tree follow the winning strategy?".

What would Galvin do?

The idea is to get families that we will know for sure that, no matter how we go over the tree, we can find an answer from player II that fits our needs. We can do this using the following:

What would Galvin do?

The idea is to get families that we will know for sure that, no matter how we go over the tree, we can find an answer from player II that fits our needs. We can do this using the following:

Lemma

Let X be a space and let F be a strategy for player II in the game $\mathrm{G}_{1}\left(\Omega_{x}, \Omega_{x}\right)$ for some $x \in X$. Then, for every sequence $D_{0}, \ldots, D_{n} \in \Omega_{x}$, there is an open set A such that $x \in A$ and, for every $a \in A \backslash\{x\}$, there is a $D_{a} \in \Omega_{x}$ such that $F\left(D_{0}, \ldots, D_{n}, D_{a}\right)=a$.

What would Galvin do?

The idea is to get families that we will know for sure that, no matter how we go over the tree, we can find an answer from player II that fits our needs. We can do this using the following:

Lemma

Let X be a space and let F be a strategy for player II in the game $\mathrm{G}_{1}\left(\Omega_{x}, \Omega_{x}\right)$ for some $x \in X$. Then, for every sequence $D_{0}, \ldots, D_{n} \in \Omega_{x}$, there is an open set A such that $x \in A$ and, for every $a \in A \backslash\{x\}$, there is a $D_{a} \in \Omega_{x}$ such that $F\left(D_{0}, \ldots, D_{n}, D_{\mathrm{a}}\right)=a$.

Proof.

Let $B=\left\{y \in X \backslash\{x\}\right.$: there is no $D \in \Omega_{x}$ such that $\left.F\left(D_{0}, \ldots, D_{n}, D\right)=y\right\}$. Note that $B \notin \Omega_{x}$ since, otherwise, $F\left(D_{0}, \ldots, D_{n}, B\right) \in B$ which is a contradiction. Thus, there is an open set A such that $x \in A$ and $A \cap D=\emptyset$.

Playing it

Then we only have to pick each $B_{s} \subset A_{s}$ where A_{s} is the appropriate open set given by the Lemma.

The second Theorem

Theorem
 Let X be a space. If X is productively countably tight at x, then $\mathrm{S}_{1}\left(\Omega_{x}, \Omega_{x}\right)$ holds.

The second Theorem

Theorem

Let X be a space. If X is productively countably tight at x, then $\mathrm{S}_{1}\left(\Omega_{x}, \Omega_{x}\right)$ holds.
This is done by proving that, if $X \times S_{c}$ has countable tightness at $(x, 0)$, then $\mathrm{S}_{1}\left(\Omega_{x}, \Omega_{x}\right)$ holds ($S_{\mathfrak{c}}$ is the sequential fan space of cardinality \mathfrak{c}).

An example of application

Recall the following theorems:

An example of application

Recall the following theorems:

Theorem (Uspenskii [5])

For any Tychonoff space $X, C_{p}(X)$ is productively countably tight if, and only if, X_{δ} is Lindelöf.

An example of application

Recall the following theorems:

Theorem (Uspenskii [5])

For any Tychonoff space $X, C_{p}(X)$ is productively countably tight if, and only if, X_{δ} is Lindelöf.

Theorem (Scheepers [4])

Let X be a Tychonoff space. Player II has a winning strategy in $\mathrm{G}_{1}(\Omega, \Omega)$ played on X if, and only if, player II has a winning strategy in $\mathrm{G}_{1}\left(\Omega_{\underline{0}}, \Omega_{\underline{0}}\right)$ played on $C_{p}(X)$.

An example of application

Recall the following theorems:

Theorem (Uspenskii [5])

For any Tychonoff space $X, C_{p}(X)$ is productively countably tight if, and only if, X_{δ} is Lindelöf.

Theorem (Scheepers [4])

Let X be a Tychonoff space. Player II has a winning strategy in $\mathrm{G}_{1}(\Omega, \Omega)$ played on X if, and only if, player II has a winning strategy in $\mathrm{G}_{1}\left(\Omega_{\underline{0}}, \Omega_{\underline{0}}\right)$ played on $C_{p}(X)$.

Theorem (Sakai [3])

Let X be a Tychonoff space. The following are equivalent:
(1) $C_{p}(X)$ satisfies $S_{1}\left(\Omega_{\underline{0}}, \Omega_{\underline{0}}\right)$;
(2) X satisfies $S_{1}(\Omega, \Omega)$;

A diagram

$$
C_{p}(X)
$$

$$
\mathrm{II} \uparrow \mathrm{G}_{1}\left(\Omega_{\underline{0}}, \Omega_{\underline{0}}\right) \quad \longleftrightarrow \quad \mathrm{II} \uparrow \mathrm{G}_{1}(\Omega, \Omega)
$$

productively countably tight $\longleftrightarrow X_{\delta}$ is Lindelöf

$$
\mathrm{S}_{1}\left(\Omega_{\underline{0}}, \Omega_{\underline{0}}\right) \quad \longleftrightarrow \quad \mathrm{S}_{1}(\Omega, \Omega)
$$

Bibliography

國 A．V．Arhangel＇skii．
The frequency spectrum of a topological space and the product operation． Trans．Moscow Math．Soc．，40（2）：163－200， 1981.
E．F．Aurichi and A．Bella．
Topological games and productively countably tight spaces．
arXiv：1307．7928， 2013.
囯 M．Sakai．
Property \＄ $\mathrm{C}^{\prime \prime}$ \＄and function spaces．
Proceedings of the American Mathematical Society，104（3）：917－919， 1988.
围 M．Scheepers．
Remarks on countable tightness．
arXiv：1201．4909，pages 1－23， 2013.
图 V．V．Uspenskii．
Frequency spectrum of functional spaces．
Vestnik．Mosk．Universita，Ser．Matematica，37（1）：31－35， 1982.

Trivia

Some years ago, some undergrad students of the University of São Paulo created a table for the level of difficulty of an example of the form "a space that has the properties A_{1}, \ldots, A_{n} but does not have the properties $B_{1}, \ldots, B_{m}{ }^{\prime \prime}$.

Trivia

Some years ago, some undergrad students of the University of São Paulo created a table for the level of difficulty of an example of the form "a space that has the properties A_{1}, \ldots, A_{n} but does not have the properties $B_{1}, \ldots, B_{m}{ }^{\prime \prime}$. The students defined that the example is

Trivia

Some years ago, some undergrad students of the University of São Paulo created a table for the level of difficulty of an example of the form "a space that has the properties A_{1}, \ldots, A_{n} but does not have the properties $B_{1}, \ldots, B_{m}{ }^{\prime \prime}$.
The students defined that the example is
Ofelia-easy
if you ask Ofelia about it and she answers immediately

Some years ago, some undergrad students of the University of São Paulo created a table for the level of difficulty of an example of the form "a space that has the properties A_{1}, \ldots, A_{n} but does not have the properties $B_{1}, \ldots, B_{m}{ }^{\prime \prime}$.
The students defined that the example is

Ofelia-easy	if you ask Ofelia about it and she answers immediately
Ofelia-medium	if you ask Ofelia about it and she thinks for a second and then answer it

Trivia

Some years ago, some undergrad students of the University of São Paulo created a table for the level of difficulty of an example of the form "a space that has the properties A_{1}, \ldots, A_{n} but does not have the properties $B_{1}, \ldots, B_{m}{ }^{\prime \prime}$.
The students defined that the example is

Ofelia-easy	if you ask Ofelia about it and she answers immediately
Ofelia-medium	if you ask Ofelia about it and she thinks for a second and then answer it
Ofelia-hard	if you ask Ofelia, she thinks for a few seconds and then she says "I will answer it tomorrow".

Trivia

Some years ago, some undergrad students of the University of São Paulo created a table for the level of difficulty of an example of the form "a space that has the properties A_{1}, \ldots, A_{n} but does not have the properties $B_{1}, \ldots, B_{m}{ }^{\prime \prime}$.
The students defined that the example is

Ofelia-easy	if you ask Ofelia about it and she answers immediately
Ofelia-medium	if you ask Ofelia about it and she thinks for a second and then answer it
Ofelia-hard	if you ask Ofelia, she thinks for a few seconds and then she says "I will answer it tomorrow".

The legend says that once a student made an Ofelia-hard question.

Trivia

Some years ago, some undergrad students of the University of São Paulo created a table for the level of difficulty of an example of the form "a space that has the properties A_{1}, \ldots, A_{n} but does not have the properties $B_{1}, \ldots, B_{m}{ }^{\prime \prime}$.
The students defined that the example is

Ofelia-easy	if you ask Ofelia about it and she answers immediately
Ofelia-medium	if you ask Ofelia about it and she thinks for a second and then answer it
Ofelia-hard	if you ask Ofelia, she thinks for a few seconds and then she says "I will answer it tomorrow".

The legend says that once a student made an Ofelia-hard question. This fact was very celebrated afterwards.

