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Abstract: Recently, psychologists have turned their attention to the study of cast

shadows and demonstrated that the human perceptual system values information from

shadows very highly in the perception of spatial qualities, sometimes to the detriment

of other cues. However with some notable and recent exceptions, computer vision

systems treat cast shadows not as signal but as noise. This paper provides a concise

yet comprehensive review of the literature on cast shadow perception from across the

cognitive sciences, including the theoretical information available, the perception of

shadows in human and machine vision, and the ways in which shadows can be used.

Keywords: shadows, perception, spatial reasoning, spatial perception

1. INTRODUCTION

Cast shadows are caused when a caster comes between a light source and a

surface or screen. The information content in these types of shadows can

therefore be used to provide knowledge about any or all of these three

elements. As a very elementary example, if we assume that the light source

does not move very fast and that the screen is flat and horizontal, we can draw

conclusions about the size, motion and shape of casting objects by looking

at their shadows. Casati (2004c) describes in depth the way shadows were

used as powerful tools in early astronomical research for the determination

of solstices and equinoxes, to provide an approximation of the distances from

the Earth of the sun and moon, and to estimate the size and relative positions

of celestial bodies. Keeping caster and screen constant, the motion of a light

source has been used for thousands of years to measure time. Keeping the

light source and screen constant, the use of shadows to inform about moving

objects out of sight has been known for millennia—the allegory of the cave

Correspondence concerning this article should be addressed to Hannah M.

Dee, Department of Computer Science, Llandinam Building, Aberystwyth University,

Penglais, Aberystwyth, SY23 3DB, U.K. E-mail: hmd1@aber.ac.uk

226

D
ow

nl
oa

de
d 

by
 [

Pa
ul

o 
Sa

nt
os

] 
at

 1
5:

36
 0

6 
O

ct
ob

er
 2

01
1 



Perception and Content of Cast Shadows 227

from Plato (360 BC) concerns just this situation. In Galilean-era observations

of the sky, shadows (and, in particular, eclipses) were used to show that the

moon and the known planets were of the same nature as the Earth and that

light has a finite speed and spreads by diffraction (as well as refraction and

reflection). In the 20th century, shadows were used to verify the relativistic

predictions of the deviation of light in the presence of mass and to suggest

the hypothesis that the speed of the earth’s rotation is slowing down.

In this paper we shall concentrate on the information content of cast

shadows rather than self shading (where an object casts a shadow upon itself),

and for the sake of brevity we shall refer to cast shadows as simply “shadows.”

These shadows are largely used by the human perceptual system to draw

conclusions about everyday scenes, and as we shall see later in this paper

(and according to recent psychophysical studies), some of these conclusions

suggest that information from shadows can override conflicting depth cues

present in the visual world. This implies that our perception of space is biased

towards using information from shadows in certain situations.

In spite of this, computer vision systems have largely placed shadows

in the position of noise to be filtered out.1 In this paper we contrast the

information available from shadows with state of the art computer vision

methods for shadow filtering and shadow segmentation in order to make

explicit the gap between what human perception deems as important to

extract when constructing a spatial representation from a visual scene, and

what current autonomous computer vision systems are designed to extract.

Baxandall (1995) is an early interdisciplinary study, discussing the rela-

tionship between the representation of shadows during the Enlightenment

(particularly within painting) and modern shadow perception, including the

computational treatment of shadows. In contrast to the present work, however,

the main concern of Baxandall is the discussion of the mid-18th-century

thought on shadow perception and the technical literature on computer vision

was searched only for specific issues; in addition, the field of computer vision

has become much more involved in shadow perception in the intervening

years and it is worth revisiting the question.

In order for the information content in shadows to be used as knowledge

we note two difficult problems that a perceptual system has to solve first,

which in turn give rise to a number of interesting questions that intersect

cognitive science and computer vision research. The first problem is how

shadows can be detected in the first place—some shadows have clear out-

lines and seem very “solid,” yet we do not tend to misperceive shadows as

objects. Other shadows have vague borders and therefore should be harder

1There is a large sub-field of vision research that deals with shape-from-shading

whereby an object’s self-shadowing is used to determine its shape, such as Kriegman

and Belhumeur (1998). This line of research, however, does not take into account

cast shadows. For more detail on shape from shading, see the recent review paper by

Durou, Falcone, and Sagona (2008).
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228 H. M. Dee and P. E. Santos

to perceive, but humans do not have any difficulty in doing so (as pointed

out in Hering, 1878 and Bühler, 1922). Second, there has to be a consid-

eration of the Shadow Correspondence Problem (Mamassian, 2004): given

perceived objects and perceived shadows in one scene, how can shadows be

unambiguously anchored to their casters? Once the detection and the shadow

correspondence problems are solved we are left with the third major problem:

what should we do with them? How are cast shadows used by the human

visual system to determine the spatial characteristics of the scene? And how

can machine vision systems exploit shadow information for spatial reasoning

and analysis?

In this article we consider these three questions from an interdisciplinary

perspective. Section 2 describes the various things we can learn from the

investigation of shadows drawing upon optics and geometry. Section 3 moves

on from the theoretical possibilities of shadow perception to consider evidence

from the fields of art, computer graphics, psychology and neuroscience on the

ways in which humans perceive shadows and the ways in which we actually

use them. Section 4 considers the detection and use of shadows in computer

vision, artificial intelligence and robotics, and finally Section 5 brings together

the various interdisciplinary threads and provides pointers to open research

questions.

2. THE INFORMATION CONTENT IN SHADOWS

Assuming that an environment has one strong light source (the primary light)

and any other light sources are weak or diffuse (secondary light), the anatomy

of a shadow cast upon a uniform screen is fairly simple: it consists of a main

part (which is called the umbra), and a less dark fringe (the penumbra).

The perceived darkness and any perceived color of the shadow depends

upon the color of the screen, the intensity of the primary light source and

the intensity and color of any secondary (or “ambient”) illumination. The

width of the penumbra depends upon the size of the primary light source,

and the distance from the caster to the screen. A diagram of the shadow

formation process is given in Figure 1. The situation becomes more compli-

cated in the presence of multiple strong light sources, but similar principles

apply. It is worth pointing out also that Figure 1 shows a simplification

of the shadow formation process, since it ignores the effect of diffraction

(which makes the shadow of an object slightly bigger than that provided

by linear projection). This effect is minor, and can be considered to be

irrelevant for the (human or machine) perception of shadows and for reasoning

about shadows in the commonsense space, which are the main concerns of

this work.

In real-world scenes a detailed model of shadow formation needs to take

into account a number of different factors, related to the caster, light source

and screen:
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Perception and Content of Cast Shadows 229

Figure 1. The anatomy of a shadow. The shadowed area is totally occluded from the

primary light source by the caster, and the penumbra is partially occluded (that is,

from the penumbra it is possible to see some part of the light source). Black lines

indicate lines of sight. With a point light source, there is no penumbra.

� Caster information:

� The shape and size of the caster determine size and shape of shadow;

� The position (and pose) of the caster, particularly with respect to the

light source, affects the shape, size and location of the shadow;

� Opaque objects cast solid shadows, but translucent objects cast colored

or weak shadows.

� Light information:

� The shape and size of the light source determine characteristics of the

penumbra;

� The position of the source (along with the position of the caster) deter-

mines location of the shadow;

� Light source intensity determines the contrast between shaded and non-

shaded areas;

� The intensity of any ambient illumination also affects contrast;

� The color of ambient illumination determines the color of the shadow.

� Screen information:

� Screen orientation with regard to light source determines the degree of

distortion in shadow shape;

� The shape and location of background clutter can cause shadows to split,

distort, or merge.

By making assumptions about or keeping constant some of these fac-

tors, shadows can be used to determine various aspects of the visual scene.

Casati (2004b) overviews the information encoded in shadows, which is not

necessarily exploited by our perceptual system. For instance, the observation

of a shadow in a scene, but not its caster, indicates the presence of objects

outside the visual field (or occluded objects). Shadows indicate the direction
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230 H. M. Dee and P. E. Santos

Figure 2. In some situations shadows carry information about objects outside of

view, via the “viewpoint” of the light source. In a), we can conclude that there is

someone out of the scene behind the observer, and in b) we can conclude that there

is an object “hiding” behind the pot. Photo 2(a) shows the artwork Shadow Stone,

by Andy Goldsworthy, a work of art which encourages viewers to play with shadows

(color figure available online).

in which the light source can be found, and intensity of the source (or the

relative intensity of multiple sources). The width of the penumbra informs

about the angular size of the source, and the distortion of the shadow outline

(with respect to the shape of the caster) indicates the texture of the screen.

Shadow motion carries information about the 3D structure of a caster, about

the caster’s motion in depth or about the geometry of the screen. Another

important fact about the information content of shadows is that they can be

seen as providing the observer with a second viewpoint: that of the light

source, as the shadow depicts the projection of the caster’s terminator line.

This idea is illustrated in Figure 2.

3. THE HUMAN PERCEPTION OF SHADOWS

In this section we discuss the ways in which the human perceptual system

handles shadows, considering evidence from art history, computer graphics,

psychology and neuroscience. The question “what makes a dark patch in

a scene shadow-like?” is not a simple one, and the human ability to make

complicated judgements about 3D location in space based upon shadows has

to be contrasted with our ability to perceive fundamentally inaccurate dark

patches as shadows.
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Perception and Content of Cast Shadows 231

3.1. Depiction in Art

A glimpse of how the human perceptual system uses the information from

(static) cast shadows can be obtained from the analysis of artistic depictions

of the natural world. As Conway and Livingstone (2007) point out, in order

to translate a convincing impression of the external world, artists explore

rules of perspective, of color perception or visual illusions. Some of the

information found in cast shadows was intensely explored by painters during

the Renaissance, mainly in order to depict the position of important objects

in scenes or to represent relative depth (Costa Kauffman, 1979). Indeed,

Leonardo da Vinci himself carried out many observations into the way in

which shadows are cast (for example, explaining why shadows cast by the

sun on a white wall tend to look blue) and was also probably the first to

relate the appearance of shadows with occlusion, when he says “no luminous

body ever sees the shadows that it generates.” The influence of da Vinci’s

work on shadows is discussed in detail in Fiorani (2008).

In particular, it was through the investigation of how the 3D world could

be depicted in 2D paintings that projective geometry came to be developed

in the 15th century, although Costa Kauffman (1979) argues that it is unclear

whether the observation of shadows as projections played a central role in

the development of this discipline.

It is worth mentioning the lack of cast shadow depiction in middle-

age European art and in (pre-20th century) non-Western cultures.2 Shadows

were depicted in Hellenistic and Roman paintings, as seen in mosaics from

Pompeii, but then largely disappear from the art historical record after the fall

of the Roman empire. Once shadows reappear in the artistic world, a great

number of shadow depictions are physically impossible (e.g., Figure 3). This

shows us that once adopted by painters, the use of shadows was far from

straightforward.

This neglect of shadows in artistic representations of the world could

be explained by the inherent difficulty of depicting the right characteristics

of luminosity (and imprecise borders) to make dark patches on canvas be

perceived as shadows, as argued in Casati (2004c, 2006), or it may be due

to the fact that the human perceptual system is simply insensitive to some of

the information provided by static cast shadows.

Considering this point, Jacobson and Werner (2004) have investigated

how sensitive our visual system is to static cast shadows using a visual search

experiment in which human viewers had to determine which shadows were

“impossible” in scenes with a number of casters and shadows. The results

of this experiment indicate that the subjects were generally insensitive to

inconsistencies in cast shadows, from which the authors concluded that the

inclusion of cast shadows is not critical to the understanding of pictorial

2Although a very worthwhile mention here has to go to Chinese shadow puppetry.

While this art, strictly speaking, is concerned with using and not depicting shadows,

it has been around for millennia.
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232 H. M. Dee and P. E. Santos

Figure 3. A cropped and contrast-enhanced portion of “St. George killing the

dragon,” Enea Vico, 1542. Note the shadow cast by the horse upon the ground;

not only does it look more like the rear of a horse than the real shadow would, it is

also an impossible shadow as St George’s shadow is absent.

art. Cavanagh (2005) suggests that those transgressions of standard physics

in visual art that pass unnoticed by the viewers’ understanding (such as

inconsistent shadows) indicate that our perceptual system uses a simplified

physics to interpret the world. This simplified physics facilitates an efficient

assessment of the visual world. Taking a different view, Casati (2007) ar-

gues that impossible shadows, often drawn as replicas of objects (“copycat”

shadows, see for example Figure 3), are better cues for the localisation of

casters in scene depictions than a more realistic shadow. This observation

seems to contrast with Cavanagh’s hypothesis of simplified physics, as the

visual processing of replicas of objects corresponds to a more complex visual

situation than that found in everyday life.3

3.2. Computer Graphics

Closely related to the painters’ need to depict shadows, computer graphics is

also interested in the rendering of the spatiotemporal structure of scenes, and

3That is, the physics necessary to cast a copycat shadow is richer than standard

physics, and so cannot be a simplified physics as Cavanagh suggests.
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Perception and Content of Cast Shadows 233

therefore it has considered the determination and rendering of cast shadows

in great depth. The first survey on shadow algorithms for computer graphics

was presented in Crow (1977), which provides a classification of the early

methods. A more up-to-date survey is presented by Woo, Poulin, & Fournier

(1990), where shadow algorithms are classified by the type of shadows they

produce: hard shadows, soft shadows, shadows of transparent objects and

shadows for complex modelling primitives. In general, the large majority of

shadow algorithms are based on the following methods: area subdivision, ray

tracing, radiosity, shadow volumes and shadow maps (or z-buffers). Yet more

recently, Hasenfratz, Lapierre, Holzschuch, and Sillion (2003) survey real-

time “soft-shadow” algorithms. Rendering soft shadows realistically is a hard

problem, and none of the modern algorithms cope with all of the difficulties

involved in this task. Instead of trying to produce realistic shadows, Sattler,

Sarlette, Mücken, and Klein (2005) evaluate the level of complexity required

to produce shadows that are sufficiently detailed to be acceptable by the

human perceptual system, with the final aim of using simplified models of

scene objects to reduce the complexity of shadow rendering. Much computer

graphics work provides shadows which seem realistic at first glance, but

which become less so upon detailed inspection. For instance, much shadow

rendering in 3D computer games is done by simple shadow maps whereby

the effects of multiple reflectance in the environment is ignored. As a con-

sequence, the shadowed regions look the same when observed from distinct

angles (they should appear more diffuse the farther away they are from the

observer). Additionally, crevices and depressions in objects are often either

treated as dark patches, or as bright as the rest of the object.4 These examples

also suggest that the human perceptual system does not attend to every aspect

of shadows, but (as the experimental evidence we are about to consider con-

firms) uses cast shadows to determine the 3D spatial organisation of a scene.

3.3. Experimental Studies

Several recent results from experimental psychology suggest that the human

perceptual system prefers cues provided by shadows over other information

in order to infer 3D motion of objects. Surprisingly, shadows are trusted

more than changes in apparent object size. In one experiment presented by

Kersten, Mamassian, and Knill (1994), a number of human subjects were

presented with a computer simulation in which the shadow of a static square

(cast on a chequered screen) moves away from its caster. Most subjects

reported perceiving the square moving towards and away from the back-

ground according to the shadow motion, even though the size of the square

remained unchanged throughout the experiment (this was clear from the static

chequered background). It is worth pointing out that, geometrically, there are a

4http://gizmodo.com/5582218/what-directx-11-is-and-what-it-means-to-you
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234 H. M. Dee and P. E. Santos

number of possible competing hypotheses for the shadow motion that would

be more coherent than object motion as an explanation in this case (e.g.,

the motion of the light source). However, subjects even reported having the

illusion of the object changing in size according to the shadow’s motion. See

Figure 4 for a static example of this visual effect.

Further situations were explored in Kersten, Knill, Mamassian, and

Bülthoff (1996) to verify the effect of shadow perception on the perception

of motion in depth. Subjects were shown two distinct animations of a

ball moving inside of a box. In the first animation, the ball was made to

move along a diagonal inside the box, while the ball’s shadow described an

horizontal trajectory in the image. In the second situation, the ball’s trajectory

was the same, but the ball’s shadow moved in such a way that it was aways

connected to its caster. Even though the ball’s trajectory was identical in both

situations, and there was no change in the size of any objects in the scene

during motion, all observers interpreted the ball as rising above the floor in the

situation where the shadow motion was horizontal, but as receding in depth

in the other. These findings (summarized in Mamassian, Knill, & Kersten,

1998) suggest that, in some cases at least, the human perceptual system is

biased to use shadow information for the interpretation of 3D motion and that

shadow information can even override notions of conservation of object size.

As well as providing a strong cue about motion in depth, cast shadows

provide information that could be used in the interpretation of surface shape

of the screen, however the experimental findings of Kersten, Mamassian and

colleagues suggest that this information is not used by the human perceptual

system.

Psychological studies investigating the relationship between shadow per-

ception and object recognition tell a less clear story. Braje, Legge, and Kersten

(2000) report results from three experiments involving the recognition of

natural objects with shadows in several experimental conditions, and suggest

that human object recognition is not affected by the presence of shadows.

The authors conclude that the results are consistent with a feature-based

Figure 4. Still image version of the experiment presented in Kersten et al. (1994), in

which only the shadow changes but we perceive the square as moving.
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Perception and Content of Cast Shadows 235

representation of objects, where shadows may be filtered out as noise. How-

ever, it may also be the case that the results obtained are dependent on

the type of stimuli used in the experiments (simple familiar objects), which

contained much redundant information that could reduce the importance of

the information provided by object’s shadows. Castiello (2001) reports an

experiment with contrasting results, in which the perception of objects is

hindered when presented with incongruent cast shadows (wrong shadow) or

incongruent lighting with respect to the shadows (shadow on the wrong side

with respect to the light source). There are two competing explanations for

these findings: either the perception of shadows is used to improve object

recognition in certain situations (and, therefore, adding an extra-level of

processing to perception), or incongruent shadows work as distractors in

the scene.

Another area of research considered by psychologists is that of the spatial

relation between shadow and caster, particularly concerning the determination

of optical contact.5 In particular, Ni, Braunstein, and Andersen (2004) inves-

tigate the difference in depth perceptions of a floating object with relation

with an object on the ground following it “like a shadow.” The authors want

to address three fundamental questions: What are the features that make a

shadow be perceived as such? What is the effect of object separation in

the perception of depth from shadows? In situations with multiple shadows,

what are the features that make us associate one particular shadow with an

object? They investigate these questions by varying the light intensity of

the lower object, its thickness and its motion relative to the casting object.

Perhaps unsurprisingly, darker objects are more readily perceived as shadows.

Common motion of object and shadow is an important feature for shadow

association and, in situations with multiple shadows, the authors suggest that

common speeds decide which shadow is associated with an object (relative

size being a secondary concern).

Psychological research also suggests that our perceptual system uses cast

shadows as a coarse cue: it does not matter if the shadow is the wrong shape

for the casting object, it just has to be associated with the caster, telling a

coherent story about the object motion or location. Enns and Rensink (1990)

were the first to investigate the effect of unusual or “wrong” shadows on

our perception, by creating images in which one object had a shadow which

was inconsistent with the types of shadows we see day-to-day. Bonfiglioli,

Pavani, and Castiello (2004) carried out a naturalistic study using real objects

with fake shadows, and discovered that shadows do not affect our verbal

reports of what is going on, but can affect the way we reach for an object;

shadows which are the “wrong” shape affect our physical behavior but not our

verbal reaction times. Ostrovsky, Cavanagh, and Sinha (2005) also investigate

shadows which arise from inconsistent illumination. These studies involve

5Optical contact is the place where an object is connected to the background in

a 2D projection of a 3D scene.
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236 H. M. Dee and P. E. Santos

the presentation of an array of identical objects with consistent shadows and

shading, but with one drawn as though it is lit from a different direction.

While the earlier studies suggested that the illumination change was easy

to detect (indeed, it popped out) the later study shows this may have been

an artifact of the regularity of the array. When objects are arranged in a

more random fashion, the shadow difference is harder to perceive (as long

as the shadow is plausible). More recently, Farid and Bravo (2010) consider

the human ability to detect images that have been digitally manipulated,

and present evidence that the human perceptual system is not capable of

detecting simple inconsistencies on the position of light source, caster and

shadow. Interestingly, Casati (2006) comes to a similar conclusion through the

observation that dark patches in paintings, sometimes bearing no resemblance

to real shadows, suffice to enhance the perception of depth. The visual system

seems to extract a position estimation from shadows early on in processing,

then filters them out in order to avoid interpreting shadows as objects in

further spatial inferences.6

Rensink and Cavanagh (2004) present compelling evidence for the hy-

potheses that shadows are processed early in the visual pathway and then

discarded, and that we use an assumption of a single overhead light source in

doing this. Using a visual search methodology, they show that the detection of

shadow-like shapes consistent with an overhead light source takes longer than

the detection of the exact same shape in other situations. If the shape is altered

so it is not shadow-like (it is lighter, or has the wrong texture, or the wrong

edge features to be a shadow) or the shape is shadow-like but is consistent

with illumination from below, visual search is much quicker. This is consistent

with the hypothesis that regions not recognized as shadows were still available

for rapid search, whereas shadow-like regions were discounted early in visual

processing and thus had to be processed consciously to accomplish the visual

search task. Therefore, it seems that shadow processing is both implicit

(i.e., without conscious awareness) and automatic (i.e., without attention):

observers cannot stop interpreting appropriate regions as shadows, even when

this gets in the way of using information in the image.

The question of whether shadow processing is implicit or not is con-

sidered in Castiello, Lusher, Burton, and Disler (2003) in which, through

analysing cast shadow perception in groups of people with brain injuries, the

authors try to localise cast shadow processing in the brain and to determine

whether conscious awareness is necessary. They show that the performance

in a simple object recognition task is hindered if the shadow is missing or

incongruent (does not match the object). This effect exists even in brain-

injured patients suffering from visual neglect, who are not aware of the

existence of the shadow. These findings suggest that our ability to process

6It is worth mentioning that even if shadows are discounted, there is no

evidence that this discounting may affect functions other than object identification. The

information in shadows could (at least in principle) still be used for depth estimation.
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Perception and Content of Cast Shadows 237

and deal with cast shadows is not dependent upon our conscious awareness

of them and, therefore, is an implicit process. Furthermore, the authors test

the hypothesis that shadow processing in the human brain is located in the

temporal lobe (following some previous evidence that an analogous process

occurs in monkeys’ temporal areas). For that, a number of patients suffering

from left visual field neglect caused by lesions in the temporal lobe are

subject to the same object recognition task (with incongruent shadows) as

patients with frontal lobe lesions. In this case, the temporal lobe patients had

lower reaction times when presented with shadows to the left of an object,

providing some support for the hypothesis.

Whether shadow processing is implicit or explicit, there is evidence

that shadows cast by a person’s own body parts are used more effectively

in judgements about extra-personal space than shadows from other objects

carrying analogous information. Evidence for ths comes from Pavani and

Castiello (2004), in which the judgement of distances from shadows of the

subject’s own hand diverged from similar judgements when the subjects were

wearing a polygonal glove. Following a similar experimental setup, Galfano

and Pavani (2005) find support for the hypothesis that body-shadows act as

cues for attention.

4. THE MACHINE PERCEPTION OF SHADOWS

In this section we provide an overview of the main algorithms and research

topics within computer vision for shadow detection. In this, we place more

emphasis upon those systems which use shadows as information than those

aimed at filtering shadows as noise. We also discuss some literature in

artificial intelligence and robotics in which cast shadows are considered.

The first paper to attempt a formalisation of shadows from a machine

vision standpoint is that of Waltz (1975). This paper presents a number

of computer programs capable of reconstructing 3D descriptions from line

drawings of objects and their shadows. After an initial identification and

grouping of shadow lines and regions from line drawings, the proposed system

is capable of extracting high-level relations representing contact, support and

orientation between objects.

Much shadow detection work in computer vision, however, is centred

around the idea of shadow as noise. Two broad approaches are affected by

shadows: the first deals mainly with single images and is associated with

the segmentation of images into the objects that they depict; and the second

deals with video and is concerned with the identification of moving objects.

Shadows are problematic in both cases—they cause spurious segmentations

in the first instance, and spurious foreground objects in the second. Perhaps

the simplest shadow detection method proposed is that of Troccoli and Allen

(2004), in which a grey-scale image is simply thresholded and the darker

pixels are labelled “shadow.” In the archaeological images the authors deal
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238 H. M. Dee and P. E. Santos

with, this works reasonably well; however, for more complex images more

sophisticated algorithms are called for.

Those algorithms dealing with single images use color and texture infor-

mation to group image pixels into regions that correspond to single elements

in the real world (such as grass, or trees). This can be seen as an exercise in

color constancy; the aim is to determine the color of the underlying object in

various light conditions, and in this context shadows are merely one of these

light conditions rather than an object of study in themselves. The existence of

strong shadows can cause spurious segmentations, and so shadow detection

is performed in order to classify shaded pixels as part of the screen, rather

than as shadow. An example of this sort of work is that of Vazquez, Weijer,

and Baldrich (2008) who engage not so much in shadow detection as in

shadow blindness. The aim is a segmentation in which image components

are classified regardless of self-shading and inter-shading; this is achieved

by identifying “ridges” in color space that are characteristic of a particular

dominant color under differing lighting conditions. While these ridges could

conceivably be used as part of a shadow detection algorithm, this is not part of

their current work. We propose that shadow removal algorithms such as those

introduced by Finlayson and colleagues (e.g., Finlayson, Hordley, Drew, &

Lu, 2006; Finlayson, Fredembach, & Drew, 2007) fall in a similar category—

they are concerned with shadow blindness, and only work on individual

images (and are often too slow to be considered useful for video processing,

or use “tricks” such as photographing the same scene twice with different

colored filters).

The second major consideration of shadows within computer vision

comes when detecting moving objects. This is commonly done by subtracting

“background” from video to find objects of interest, where background is

detected by finding those pixels or image regions, which do not change much

in color. In doing this, shadows become a major source of false positives as

a cast shadow will make an otherwise uninteresting pixel change color.

Thus in this sub-field of computer vision, shadow detection almost always

involves some model of the color of the screen, or background, and then

detection is performed using a model of shadows characterizing them as

“roughly the same color as background, but darker.” Prati, Mikic, Trivedi, and

Cucchiara (2003) provide an overview and a taxonomy of shadow detection

techniques, dividing them into model-based and non-model-based and then

further into parametric and non-parametric techniques. This categorization

does not apply so well to more recent works, many of which can be thought

of as “ensemble methods.” Thus we make a different distinction, between

methods which detect shadows based upon color information alone, and

those which incorporate some form of spatial or spatiotemporal information

(such as the relationship between pixels classified as shadow, or the spatial

relationship between known objects and shadow regions). As we have seen

in Section 3, the human visual system uses not only color but also texture,

motion, and spatial organization when dealing with shadows.
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Perception and Content of Cast Shadows 239

Cucchiara, Grana, Neri, Piccardi, and Prati (2001) take as their starting

point detected moving objects and a background model. The pixel values of

moving objects are converted to the HSV (Hue, Saturation, and Value) color

space, and then observed values of all three HSV components are compared

to those of the background model. The particular calculations they make are

the difference between foreground and background values for H and S, and

the ratio of the two V values. This captures the intuitive observations that

shadows are about the same hue as the same part of the scene unshadowed,

slightly more saturated, and darker. Stauder, Mech, and Ostermann (1999) use

assumptions about the background (it will dominate the scene), the nature

of shadows and luminance (shadows are darker and tend to have uniform

shading) and the presence of moving and static edges. In addition to these

they use the width of edges to detect a shadow’s penumbra: in a world without

point light sources, shadows have fuzzy edges—so those regions bound by

broad edges are candidates for shadows as the edges could be penumbra.

Martel-Brisson and Zaccarin (2007) present a Gaussian mixture model

based approach for shadow detection. They use three types of model in

coordination to find the shadows: one of these represents the physical char-

acteristics of shadows, and the other two capture statistical properties of the

way colors are expected to vary when shaded and unshaded. The simplest

is a physical model of shadow appearance, which essentially expresses the

familiar notion that shadows are similarly colored to background but darker,

and for this they make use of earlier techniques (e.g., Cucchiara et al.,

2001; Hoprasert, Harwood, & Davis, 1999). This alone is insufficient, and

they augment the physical representation with statistical learning to try to

minimize false shadows. Using a Gaussian mixture model (GMM) with four

Gaussians to model the distribution of pixel colors in the background, they

assume the most stable component is the actual background and all others

foreground. As observations accrue, various other colors will be captured by

the GMM as occurring at this one particular pixel. However, the shadowed

value can be assumed to be the most stable foreground Gaussian as it will

occur more frequently than any foreground color caused by moving objects

or noise. This most stable foreground component is then compared to the

physical shadow model, and if it is a plausible shadow color, the learning

parameter of that particular Gaussian is increased so that distributions which

are plausible shadow colors at a particular pixel converge more quickly. Their

third component (the Gaussian Mixture Shadow Model, or GMSM) stores

the parameters of up to three previously learnt stable shadow Gaussians,

which avoids the “forgetting” of shadow characteristics in periods of great

foreground motion or changing illumination.

Joshi and Papanikolopoulos (2008a) present work which uses a support

vector machine (SVM) to perform classification of image regions into shadow

and non-shadow categories. As with many of the papers we discuss here, their

starting point is a GMM of background appearance and a “weak classifier.”

Their classifier is based upon color and edge features, and is used to train the
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240 H. M. Dee and P. E. Santos

SVM. This allows for more variation in shadow appearance than many other

approaches, as an SVM can learn a more complicated discriminatory function.

In Joshi and Papanikolopoulos (2008b) this approach is extended using a co-

training framework. In co-training, a small set of labelled examples are used

to train a pair of classifiers, and then for previously unseen and unlabelled

examples the output of each classifier is used as new labelled data to train

the other. The two classifiers presented in this work use edge features and

color features, and thus those patches which are confidently classified as

shadow based upon color are used as new examples for training the classifier

based upon edge features, and vice versa. The presented results are very

impressive.

Physics-based techniques and features for shadow modelling have be-

come more popular in the last two years. Martel-Brisson and Zaccarin (2008)

take a simplified reflectance model and use it to learn the way in which colors

change when shaded, and Huang and Chen (2009) have also incorporated

a richer, physics-based color model for shadow detection based upon the

work of Maxwell, Friedhoff, and Smith (2008). Maxwell et al. present a bi-

illuminant dichromatic reflection model, which enables the separation of the

effects of lighting (direct and ambient) from the effects of surface reflectance.

Huang and Chen simplify this model in several ways, such as assuming

that the ambient illumination is constant, which enables them to implement

shadow detection based upon the simplified model in a video analysis task.

Their system involves a global shadow model, which is a GMM representing

the change in color of a pixel when shaded (based upon the ambient illu-

mination), and a per-pixel color model. The use of a global model means

that their approach is very fast to train and robust to low frame rate videos.

Results are presented which show that this approach performs comparably

to other methods (including Martel-Brisson & Zaccarin, 2008; Liu, Huang,

Tan, & Wang, 2007; Martel-Brisson & Zaccarin, 2007).

4.1. Using Spatial Information for Shadow Detection

We now move on to techniques which incorporate spatial information. The

simplest way to do this is to use some measure of “spatial coherence” (shad-

owed pixels tend to be next to other shadowed pixels), but some authors use

more sophisticated spatial models of shadow location including assumptions

about the light location or the relationship between shadow and caster.

Porikli and Thornton (2005) present a method which is similar in spirit

to that of Martel-Brisson and Zaccarin’s earlier work (2005, 2007). They also

use a physical model of shadows as a weak classifier (shadows are darker than

the expected background), and use those pixels which satisfy this condition

for updating their Gaussian shadow models. However they introduce a spatial

coherence condition in addition to color information, capturing the basic idea

that shaded pixels are more likely to be found next to other shaded pixels.
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Perception and Content of Cast Shadows 241

Nadimi and Bhanu (2004) describe a technique for shadow detection

which is partly statistical and partly based upon physical attributes is de-

scribed. This is a seven-stage algorithm which is novel within computer

vision as it models the physical characteristics of shadows from two light

sources: “diffuse” and “point” (the sky and the sun, respectively). They

start with a GMM-based moving object detector, then reduce the detected

pixels by getting rid of those which are brighter than the corresponding

background pixel. Next, the detected area is thresholded on saturation, and if

not too saturated they keep pixels which are bluer (shadows are assumed to

be illuminated only by sky, not sun). They then use a new “spatio-temporal

albedo” measure that looks at neighboring pixels in time and space, searching

for those which are uniform. Remaining pixels are candidate shadow pixels,

and the difference between these and background pixels is used to discard

those which are actually background. The penultimate step estimates body

color from a segmented region, and the final step matches body color against

learnt body colors from the scene. This technique seems to work well on the

author’s test data, but is limited to outdoor situations.

Mikic, Cosman, Kogut, and Trivedi (2000) also use spatial coherence.

This is enforced by smoothing and morphological operations, to eliminate

small shadow regions that occur inside foreground or background. Their

color based classifier is founded upon the observation that the color change

due to shading can be approximated by a diagonal matrix transformation in

color space. Rittscher, Kato, Joga, and Blake (2000) enforce spatial coherence

through the use of a Markov Random Field (MRF); they also use temporal

continuity constraints in their shadow and foreground detection. Salvador,

Cavallaro, and Ebrahimi (2004) also exploit spatial coherence. Shadow pixels

are initially detected based upon color difference to a reference pixel.7 They

use an observation window rather than working at the level of the individual

pixel to reduce noise, and a Gaussian distribution to model the difference be-

tween shadow and non-shadow pixel colors. They then use spatial constraints

to remove spurious object pixels classified as shadow (e.g., shadow regions

cannot be entirely surrounded by object regions8), and a final information inte-

gration stage makes the decision as to whether a pixel depicts a shadow or not.

A similar effect is obtained in Wang, Loe, Tan, and Wu (2005) and

extended to incorporate edge information in Wang, Loe, and Wu (2006).

This work uses a statistical approach based upon both Hidden Markov Models

and Markov Random Fields. They combine these two models in a Dynamic

Hidden Markov Random Field (DHMRF). The dynamic segmentation is

modelled within the Hidden Markov Model framework, and spatial constraints

are handled by the Markov Random Field. This has the effect of making a

7In video, the reference pixel is at the same spatial location but from the

background model, in a still image, the reference pixel is a neighbor.
8This rule is not true in all cases; we must assume that the authors were not

considering objects with holes.
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242 H. M. Dee and P. E. Santos

pixel more likely to be shadow if its neighbors are shaded. They model

background variation using a GMM; when a foreground pixel is discovered

they use the DHMRF framework (based upon color, spatial coherence and

also edges) to decide whether that pixel is background (and hence update

the GMM) or whether it is shadow or foreground. A further enhancement is

introduced in Wang and Ye (2008) in which additional latent variables are in-

troduced further stabilising the segmentations. As the authors are considering

road traffic scenes alone they impose a further constraint by assuming that

foreground objects are rectangular. Similarly, Liu et al. (2007) use GMMs

and weak spatial information, with the spatial information encoded using

an MRF to smooth detected shadow pixels. Benedek and Szirányi (2008)

incorporate texture within their framework using kernel methods (rather than

edge methods), and also use an MRF formulation to perform smoothing.

Hsieh, Hu, Chang, and Chen (2003) propose a technique that uses a

stronger form of spatial information (as well as color information). They

assume that the object casting the shadow is a pedestrian and that the shadow

is being cast onto a flat planar surface (that is to say, the ground). They first

perform a background subtraction then morphological operations to obtain

the moving people and their shadows. On this segmented area they then

calculate the center of gravity and orientation using moments. This allows

them to find a rough segmentation of person from shadow by finding the

bottom of the person and drawing a diagonal line (oriented to match the

orientation of the entire segmented area): see Figure 5(a) for an illustration

of this. Given this rough shadow segmentation they then build a Gaussian

model of the color distribution of the shadow pixels, allowing color based

refinement of the shadow model.

Renno, Orwell, Thirde, and Jones (2004) describe a shadow detection

technique which uses strong spatial information to augment a color based

shadow segmentation. In this article they deal with the characteristic quadru-

ple shadows cast by football players under floodlights, and a novel skele-

tonization approach is used to distinguish those foreground detections due

to the cast shadows (which appear on the floor) and those which are due to

actual foreground motion. Those pixels which are most likely to be shadow

are used to train the shadow GMM, and the others to train the foreground

models. Figure 5(b) illustrates this approach.

Both Hsieh et al. (2003) and Renno et al. (2004) use strong spatial

information, but also make some strong assumptions about the light, the

screen, and the caster. Hsieh et al. have difficulty in detecting shadows where

there are overlapping pedestrians, or pedestrians assuming unusual poses

(sticking their arms out, for example), and explicitly only model shadows

cast on a planar surface by people. Renno et al. make similar assumptions—

given their domain (soccer tracking) this is a reasonable thing to do as soccer

players are usually human and soccer pitches are planar with a characteristic

lighting pattern. In scenes in which these assumptions do not hold, these

approaches will naturally have difficulty.
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Perception and Content of Cast Shadows 243

Figure 5. Two computer vision techniques that exploit strong spatial as well as color

information to perform shadow removal: 5(a) shows the method of Hsieh et al. (2003),

and 5(b) shows the skeletonisation (top) intermediate segmentation (middle) and final

results of shadow removal (bottom) from Renno et al. (2004b).

Cucchiara, Piccardi, and Prati (2003) describe an extension to their earlier

work (Cucchiara et al., 2001) in which a higher level reasoning component

classifies regions as one of Moving object, Background, Shadow, Ghost or

Ghost shadow by incorporating spatial constraints upon the arrangement of

regions within a higher-level reasoning component. Regions classified as

shadow have to be adjacent to moving object regions. This prevents spurious

shadows unattached to casters being “invented” by the software. In their

terminology, a ghost is an artifact of the tracking system and can correspond

to an erroneous foreground detection or a an erroneous shadow detection.

By using the reasoning component to work out where shadows and ghosts

should appear, they handle these problems well.

When we consider systems which use shadows, instead of filtering them

out, there are only a handful: Cao and Foroosh (2007) use known 3D locations

and their cast shadows to perform camera calibration and light location (using

known casters and screen to tell about light source); Caspi and Werman (2006)

use the moving shadows cast by known vertical objects (flagpoles, the sides

of buildings) to determine the 3D shape of objects on the ground (using the

shadow to tell about the shape of the screen).
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244 H. M. Dee and P. E. Santos

Balan, Black, Haussecker, and Sigal (2007) use shadows as a source

of information for detailed human pose recognition: they show that using

a single shadow from a fixed light source can provide disambiguation in a

similar way to using additional cameras. They estimate human pose from a

single calibrated camera, using a strong light source to cast shadows on the

ground. The shape of the shadow and the shape of the observed silhouette

taken together enable detailed recovery of the pose of the human. In this

work they also discuss the estimation of light source position (given pose

and shape), and the surface reflectance of the person under consideration.

4.2. Shadows in Robotics

Within robotics, the emphasis of the computer vision task shifts from the

passive interpretation of a scene to active exploration of the visual world and

the robot’s place within it. Perhaps unsurprisingly the use of shadows within

robotics is therefore more common than within mainstream computer vision.

There are several systems which make use of cast shadows for informing

about the location of the robot or the robot’s manipulators, and the relationship

between the robot and its environment.

Two systems have used the shadow cast by a robot’s arm to refine the

robot’s estimation of limb location. When a robot wishes to move its arm

from A to B in the real world, it has various sources of information about

the motion. Visual feedback is a central part of this and these recent papers

have incorporated shadows into the visual element of robot motion control,

inspired in part by Castiello et al. (2003), who showed that humans use the

shadows of their own limbs in a similar fashion. Fitzpatrick and Torres-Jara

(2004) track the position of a robotic arm and its shadow cast on a table

to derive an estimate of the time of contact between the arm and the table.

Shadows are detected in this work using a combination of two methods: in

the first, a background model of the workspace is built without the arm and

then used to determine light changes when the arm is within the camera view.

The second method compares subsequent frames in order to detect moving

regions of light change. The authors motivate their work pointing out that

depth from shadows and stereopsis may work as complementary cues for

robot perception, while the latter is limited to surfaces rich in textures, the

former works well in smooth (or even reflective) surfaces. Cheah, Liu, and

Slotine (2006) present a novel controller for a robot manipulator, providing

a solution to the problem of trajectory control in the presence of kinematic

and dynamic uncertainty. To evaluate their results, an industrial robot arm

was controlled using the visual observation of the trajectory of its own

shadow.

In a similar vein, Kunii and Goton (2003) propose a Shadow Range

Finder system that uses the shadow cast by a robot arm on the surface of a

terrain in order to obtain depth information around target objects. In planetary
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explorations this type of system may provide low-cost, energy-saving sensors

for the analysis of the terrain surrounding rock samples of interest.

Within the field of robotics planning and navigation, Tompkins, Stentz,

& Whittaker (2001) describe an autonomous path planning system that takes

into account various conditions of the robot’s state, including peculiarities of

the terrain and lighting. In this context, the information about shadows cast by

terrain irregularities allows the rover to plan a trajectory that maximises the

trade-off between the exposure of the solar cells to sun light and the limited

resources (including time) in planetary missions. More recently, Santos, Dee,

and Fenelon (2009) describe an initial representation of cast shadows in terms

of a spatial logic formalising occlusion relations. This initial representation is

used in a mobile robot self-localisation procedure in office-like environments

to determine the relative locations of light source, caster, and robot. In the

context of industrial robotics, Lee, Roh, Kim, Moon, and Choi (2009) use

cast shadows inside pipes to detect landmarks: by fitting bright lights to the

front of their pipe inspection robot, they can determine when a pipe bends

by detecting cast shadows.

5. CONCLUDING REMARKS

In this section we try to draw together the various approaches to shadow per-

ception covered in this article, and suggest ways in which an interdisciplinary

approach could guide future research. In particular, we consider the possible

utility of holding evidence from human perception in mind when designing

computer vision systems: might the short-cuts taken by our perceptual system

provide clues for those researching artificial intelligence?

To summarize the psychological and neurological evidence discussed in

Section 3, it appears that our visual system handles cast shadows by rapid

processes in early vision9 that extract coarse indicators of depth and 3D

position in space, and then discards shadows just after so that they do not

interfere in further processing (Rensink & Cavanagh, 2004). This is consistent

with findings suggesting that shadow processing is implicit (Castiello et al.,

2003), and with those results indicating that the human perceptual system

does not rely on cast shadows for object recognition (Braje et al., 2000),

even though this kind of information could (in principle) be used.

This rapid, pre-conscious processing of shadows is also in line with

the apparent deficiencies in the early artistic depiction of shadows (Casati,

2004a), which could then be interpreted as the unavailability of shadow

information during the conscious depiction of the 3D world on a 2D screen.

This hypothesis is also in agreement with the existence of inconsistent or

copycat shadows in paintings where these inconsistencies are imperceptible

9That is, in the first few hundred milliseconds of processing that does not involve

stimulus-specific knowledge.
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246 H. M. Dee and P. E. Santos

by the observers (Jacobson & Werner, 2004; Cavanagh, 2005; Casati, 2007).

In other words, if the human perceptual system only extracts from shadows

a coarse indication of 3D position in space very early in the processing

pathway, and if the inconsistencies in the shadows are such that they can

still be perceived as shadows, the coarse cues would be processed, and the

inconsistencies would be discarded. The early vision processes only perceive

a stimulus as shadow if it is a fairly homogeneous region, darker than the

background, without internal edge features. Despite these constraints, we are

still able to handle major variations in the appearance of shadows, perceiving

as shadows those stimuli arising from inconsistent illumination or shape, or

even thick dark patches in scenes (Ni et al., 2004; Elder, Trithart, Pintilie, &

MacLean, 2004). Nevertheless, depth cues provided by shadows seem to have

priority over other cues, such as the change in apparent object size during

motion in depth (Kersten et al., 1994; Mamassian et al., 1998; Kersten et al.,

1996).

The robustness to variation and rapid processing of shadows lead us to

suggest that the interpretation of shadows as depth cues was incorporated

into the human perceptual system at a very early stage of evolution. This

hypothesis is also supported by recent research on animal cognition, whose

results suggest that chimpanzees perceive depth using shadow information

(Imura & Tomonaga, 2003, 2009). We conjecture that this is due to the need

for rapid processing: perceiving every single aspect of a scene is a much

harder procedure than just processing a coarse position estimate given by

shadows. It is worth recalling here the evidence for an increase in reaction

time of subjects when fake shadows interfere in object recognition (Castiello,

2001).

Saving processing by prioritizing shadows as depth cues is one idea from

the human perception of shadows that could be used to enhance computer

vision systems that have to deal with everyday scenes.

We know of no work to date within artificial intelligence or computer

vision that uses shadows in the same way that human systems do. Within

computer vision we can now find shadow detection algorithms using similar

visual features to the human perceptual system (color and edge based fea-

tures) and some spatial features (e.g., spatial coherence). However it remains

the case that the aim of the vast majority of these systems is the ability

to ignore shadows, not to use them. While the “grand aim” of computer

vision can be stated as the semantic interpretation of images, the majority

of current computer vision systems deal with sub-problems such as object

recognition or motion detection. By filtering shadows out before extracting

useful information from them, these systems could be losing important cues

about the location of objects to be recognized, and the location of object

motion within the scene.

This could be seen as a side effect of a wider trend within computer vision

and artificial intelligence: while early systems drew on psychophysical results,

in recent decades these fields have moved away from cognitively inspired
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design towards methodologies more aligned with statistics or engineering.

Without wishing to take sides in the broader debate upon the foundations of

AI, our thesis is a pragmatic one. Some of the shortcuts taken by the human

visual system are useful things to consider implementing within a computer

vision context particularly when it comes to the perception of space and

spatial relations. In the case of shadows, as discussed in this paper, some

noteworthy examples of this appropriation of human perception strategies are

present in robotic vision (Section 4.2). However, the full information content

of cast shadows (cf. Section 2) is yet to be used.

Ideally, we would envisage a system that rapidly identifies shadows in

the scene, extracting implicit information so that this can be included in

the representation of shadow casters for use in determining spatial relations

and relative motion (the things for which humans seem to use shadows).

The shadows could then be discarded, so that they would not interfere in

further object recognition, as is usually done in computer vision (cf. Section

4). This idea requires the following components: a rough and rapid shadow

identification method; a solution for the shadow correspondence problem;

and a means of reasoning about spatial relations given the location shadows

and shadow-caster correspondences.

The first of these components (the computational identification of shad-

ows) is not trivial. However as Section 4 shows, much progress has been

made. Techniques based on machine learning for obtaining a model of shadow

characteristics can identify cast shadows in many situations. There are several

ways in which these systems might be enhanced in light of the short-cuts

that humans take—for example, by assuming an overhead light source, or by

exploiting common motion of shadow and caster.

The shadow correspondence problem, however, looms over any attempt

to incorporate notions of the relation between caster and shadow. This prob-

lem is non-trivial for several reasons: there may be various competing pos-

sible matches between shadows and objects in a complex scene (i.e., the

shadow correspondence problem is underconstrained); the screen may not

be planar, which may turn a point-to-point matching into a complex non-

linear registration procedure; and shadows of nearby objects may merge. A

robust computational solution for the shadow correspondence is still an open

problem.

One further piece of evidence in favor of computer vision scientists

incorporating a model of shadow which includes the shadow’s dependency

upon its caster is that those systems that do incorporate a known caster

(e.g., Renno et al., 2004) or which assume certain properties of the caster

(e.g., Wang & Ye, 2008) perform very well indeed. Indeed one of the main

conclusions we can draw from the psychological evidence is that human

shadow perception is far from a linear process—shadow location and motion

affects our perception of caster location and motion, but the converse is also

true. It is therefore unsurprising that the machine perception of shadows is

aided when some consideration of the caster is incorporated.
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Finally, the third component of our ideal shadow system would be able

to use the output of the first two components in order to reason and draw

conclusions about the world from the information thus extracted. Having con-

sidered the psychophysical aspects of shadow perception, it is worth noting

that computer vision systems are not necessarily limited by the way in which

humans use shadows. Indeed they may also have much to gain by taking

into account the entire information content in cast shadows (including that

which is apparently unused by the human perceptual system). For instance,

shadows can inform about the shape, size and pose of the caster; the position,

intensity and shape of the light source; and the physical characteristics of the

screen, given the distortion of the shadows cast on them. Some vision work

does use shadows in this way (e.g., Balan et al., 2007) but this, as noted,

is rare.

Given the value of computational theories of vision, and the way in which

such theories can unify and connect interdisciplinary work, a challenge for

future research is the combination of the various aspects of shadow perception

into a general computational theory, along the lines of Marr’s “Vision” (Marr,

1982). We hope this paper goes some way to starting this process.
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