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Abstract. The task of navigating to a target position in space is a fairly common task
for a mobile robot. It is desirable that this task is performed even in previously unknown
environments. One reactive architecture explored before addresses this challenge by de�ning
a hand-coded coordination of primitive behaviours, encoded by the Potential Fields method.
Our �rst approach to improve the performance of this architecture adds a learning step to
autonomously �nd the best way to coordinate primitive behaviours with respect to an arbitrary
performance criterion. Because of the limitations presented by the Potential Fields method,
especially in relation to non-convex obstacles, we are investigating the use of Relational
Reinforcement Learning as a method to not only learn to act in the current environment, but
also to generalise prior knowledge to the current environment in order to achieve the goal more
quickly in a non-convex structured environment. We show the results of our previous e�orts in
reaching goal positions along with our current research on generalised approaches.

1. Introduction
A key task in building mobile robots is navigation, i.e., moving from an initial position to the
target one. When knowledge about constraints (obstacles) and dynamics are considered to be
known, the navigation problem can be addressed analytically from the point of view of control
theory. However, a di�erent approach must be used if unknown environments are considered.

Robots are physical agents that must perform their tasks autonomously in the real world.
Depending on the type of the robot, di�erent sensors input are available that must be processed
so that meaningful information can be extracted. The performance of a robot is the result of
its perception, given by the sensory inputs, and its control system, all integrated in a robot
architecture. The interaction between the robot and the environment occurs through alternating
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cycles of perception (acquiring sensory information) and action (choosing appropriate controls)
[1].

If we consider mobile robots as autonomous agents, it is natural that the design of its
architecture depends on the type of agents chosen to model the robot. Russel and Norvig [2]
propose a classi�cation of agents considering the level of abstraction of the information employed
in the control of their actions. The information can represent knowledge about the environment,
about the agent's objective, and about the agent itself.

Regarding knowledge about the environment, consider an agent whose actions are controlled
by the current or previous short time inputs; we call it pure reactive agent [3, 4]. Such an agent
can be programmed with condition-action rules, but due to its limited knowledge, the control
can only be guaranteed to be suitable in a short period of time, although adequate long-term
behaviour can be achieved, depending on task and the environment.

A more robust agent considers previous long-term inputs, constructing a model of the
environment on most architectures; for this reason, we call it model-based agent [5, 6]. The
model of the environment may rely on two classes of knowledge: knowledge about how the world
evolves independently of the agent actions and knowledge about how its own actions a�ect the
world.

Regarding knowledge about the agents's objective, instead of providing an agent with rules
based only on sensor inputs (in the long or short previous time), it is possible to consider also
an intrinsic objective state, which also interferes in the condition of condition-action rules. If
such state models the agent's objective it can be used in order that the agent presents �exibility
in dealing with changes in the world. If it is possible to model agent's objectives as a set of
desired situations we call it a goal-based agent [7, 8]. In this case the agent can combine the
knowledge about the results of its own actions in order to choose those that attain the goal (a
desired situation). Planning techniques relies on models of the environment and on reasoning
about future possible situations in order to provide an adequate control to attain its objective
[9]. Goal-based agents divides control in two qualitative classes: controls that reach the goal
and controls that do not reach the goal, however, depending on the task, it is also important to
analyse each control quantitatively. This can be achieved by means of a more general performance
measure that allows a comparison of the possible satisfaction level among di�erent trajectories
to a goal state. The agent can implement such measure through a utility function, which maps a
sequence of states of the environment into a real number; that is why we call such agent utility-
based agent [10, 11]. Utility-based agents are especially important in stochastic environments,
where a goal cannot be guaranteed to be attained. In this case, the utility function provides a
mean of pondering the probability of success with regard to the importance of the goals.

As for the agent himself, the agent can modify internal states autonomously in order to adapt
to each environment; we call it learning agent. In addition to the model of the environment, the
agent can also learn rules about how to control itself autonomously so that its objective can be
attained. Reinforcement Learning [12, 13] is an interesting approach for learning how to control
an agent in an unknown environment without knowledge about its dynamics, but requiring an
appropriated state model of the environment, so that association can be made among states and
actions.

In this paper we investigate the use of Relational Reinforcement Learning as a method to
not only learn how to navigate in the current environment, but also to generalise the acquired
knowledge in order to achieve the goal more quickly in an unknown non-convex but structured
environment. In the next sections, we present our ongoing and planned e�orts to combine all the
previously presented architectures of agents in order to build a hybrid robot architecture that
can reach goal positions fast in unknown environments.

Section 2 describes our �rst experiments with a pure reactive agent, where we combine simple
motor schemas in order to pursue a goal position avoiding obstacles. Even if the robot cannot
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reach the goal position in structured environment, it is highly e�ective in environments with
convex obstacles. Section 3 describes our architecture to combine goal-based, utility-based and
learning agent in order to better coordinate motor schemas so that performance is improved.
Section 4 describes our algorithm to combine low level control (motor schemas) with high level
control (Reinforcement Learning), where we show that although �nding a goal-position randomly
can be time expensive, an adequate control can be learned fast. In the direction of learning generic
rules which can be optimal among similar structured environments, in section 5 we present our
current e�orts in applying Relational Reinforcement Learning to the navigation task of reaching
a goal position.

2. REACT: a pure reactive architecture
The behaviours integrating our reactive architecture REACT [14, 15] are based on Arkin's
motor schemas [1]. A motor schema is a behaviour encoded by the potential �elds method
that translates sensor readings into a movement vector directly and in a continuous fashion.

Each motor schema is composed of two modules: the perceptual schema and the encoding
module. The perceptual schema is responsible for the sensorial processing, determining relevant
information for controlling the robot from sensors input. The encoding module calculates a
movement vector based on the potential �elds method using the information returned by the
perceptual schema.

The movement vector is analogous to a force derived from some potential function, usually
generated by associating repulsive charges to the obstacles and attractive charges to the target
position. At each instant, each motor schema calculates the forces generated by the interaction
of the robot with the virtual potential �eld, and returns the resultant force as a movement vector.

Before calculating the �nal action, the in�uence of each motor schema must be coordinated.
The potential �elds method suggests a very simple way to do it: the multiplication of each motor
schema response by a pondering weight. Robot actions are determined by means of weighing
the movement vectors returned by each motor schemas and then performing their vectorial
summation.

Encoded as motor schemas, the behaviours that integrate the REACT architecture are: avoid
collision, move to goal, and move ahead. For each behaviour a pondering weight must be de�ned
in order to coordinate the �nal action (wAC , wMTG and wMA).

The avoid-collision behaviour aims at avoiding the collision to the obstacles presented in the
environment. The perceptual schema processes range readings in order to identify the location of
the detectable obstacles. Then the movement vector is calculated analogously to the electrostatic
force in Coulomb's law: repulsive charges are associated to each identi�ed obstacle, generating
move-away vectors with magnitudes that grow with the proximity to the obstacles. The behaviour
response corresponds to the vectorial sum of the calculated vectors for all detected obstacles. The
equations that determine the movement parameters for each obstacle are:

V (d) =

{

VAC e
S−d

T for d > S

VAC for d ≤ S
and φ = π − φrob-obst, (1)

where V is the response magnitude (speed), d is the distance from the mass centre of the robot
to the obstacle, VAC is the maximum speed allowed for the behaviour, S is the stand o� distance
from the obstacle, T is the scale constant for the exponential function, φ is the motion direction,
π is the mathematical number, and φrob-obst is the direction de�ned by the straight line that
passes by the obstacle and the robot's centre of mass.

The move-to-goal behaviour aims at attracting the robot to a pre-determined location in the
environment. The target position in the global coordinate system is informed by an external
agent. The current robot position is determined by some localisation method. The resultant
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motion direction is equal to the target direction, given by the straight line that passes by the
robot's centre and the target location (φ = φrob-targ). The magnitude is given by a constant
(V = VMTG).

The move-ahead behaviour provides a certain trend for the robot of not changing its heading
direction. No sensory information is used and the motion parameters are determined in a very
simple manner: the magnitude is a constant (V = VMA) and the direction is equal to the current
robot heading (φ = φrobot).

REACT can reach a goal very fast in small convex-obstacle worlds. If there are large obstacles
to be avoided the robot may choose the most expensive direction to go, what will result in a
signi�cantly worse path. However, it does not matter how large an obstacle is, as long as it is
convex, the goal will be reached. On the other hand, if there are non-convex obstacles in the
world, the agent may get stuck in one of them. This happens because of the activation and
deactivation of the avoid collision behaviour when inside a non-convex obstacle whose concavity
is opposite to the goal.

A less restrict but essential point of view is regarding the robot performance. Depending on
the parameters used in the motor schemas, the robot may perform poorly as evaluated by a given
performance measure. In the next section we show how to tune the pondering weights in order
to obtained a more balanced behaviour.

3. AAREACT: tuning reactive behaviours
AAREACT is a robot architecture that combines learning and reactive behaviours in order to not
only reach the goal position, but also to improve a performance measure [15, 16]. The architecture
consists of a learning apparatus which modi�es parameters of the embedded REACT architecture
based on the robot performance. The architecture schema is outlined in �gure 1.

The learning part of the architecture is called coordination layer. Its role is that of adapting
the values of the in�uence parameters that de�ne the weight of each behavioural response in the
resultant action depending on the environment situation. De�ned by a suitable interpretation of
the robot sensors, each situation must be mapped into a weight vector. Thus, the coordination
module has to learn the best way to coordinate the behaviours regarding the current sensory
data.

The situation of the environment is determined by the supervisor module present in this layer,
while the critic module observes the robot performance. One should notice that both modules
may use raw sensor data and the perception information determined by robots perception.
However, while the supervisor module considers only current information, the critic module
has an internal state being updated during the interval of one situation. When the situation
changes, the critic module de�nes a reinforcement value that summarises how well it behaved
while that situation was observed.

The learning model adopted in AAREACT is Reinforcement Learning (RL). RL is a generic
model towards autonomous agents. An agent must maximise a given performance measure
through trial-and-error interactions with the environment. The performance measure is described
by a reinforcement function [13]. The underlying model of several RL algorithms are Markovian
Decision Processes (MDP). An MDP is described by a tuple 〈S,A, P (s′|s, a), r(s, a)〉, where
S is a set of states (situations), A is a set of actions (vectors of weights), P (s′|s, a) models the
probability of transition to the state s′ when the action a is chosen in the state s and r(s, a) is the
reinforcement incurred. The sets of states and actions are considered to be known, whereas the
probabilities P (s′|s, a) and reinforcements r(s, a) must be inferred directly from the environment.

The RL module maintains a function Q(s, a) of the estimated utility of choosing a certain
vector of weights to be sent to the Merging module in each possible situation of the environment.
In every change of situation, the RL module gets the new situation and the reinforcement value
from the supervisor and critic modules, respectively, and updates its Q(s, a) by using an RL
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algorithm. Then, in most cases, the parameters chosen to be passed to the reactive layer are
those considered to have the greatest utility among all for the current situation. However, random
actions must also be tried in order to learn improved control rules, when it is possible.

When the agent observes a situation s and executes an action a, it obtains a response from
the environment in terms of the reinforcement r which can be a reward or a penalty. Then, a
new situation s′ is perceived. Once in this new situation, the agent has to choose a new action
a′. Being the most popular algorithm, Q-learning [17] update is done through:

Q(s, a) ← Q(s, a) + α(r + γ max
a′∈A

Q(s′, a′) − Q(s, a)). (2)

where r ∈ R is the reinforcement signal, α ∈ ]0, 1[ is the learning rate, and γ is the discount rate.
Both α and γ are project parameters previously de�ned.

If one decides to always trust in the current result of the learning process, the adopted strategy
should be the greedy one which always chooses the action to which is associated the greatest
value of utility Q for the situation. However, a less con�dent strategy is more suitable to explore
the possibility of actions, what is useful mainly in the initial phases of learning, when the agent
is unlike to have enough experience to decide the best action for the current situation.

Analogously to Kalmár's work [18], the environment situation space is de�ned by a set of
on/o� features, abstracted from the sensors' data. The environment situation is then de�ned
by a vector indicating the activation or not of each feature, called features vector. The features
de�ned for AAREACT are based on the presence of obstacles between the agent and the target
position, relative direction of the target point, and relative direction and distance of obstacles,
as depicted in �gure 2. The environment situation is de�ned by the vector of features, signaling
which features are on and which are o�. A change of situation occurs when one or more inactive
features are activated, or also when one or more activated features are deactivated.

Se
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Coordination Layer

A
ctuators

Reactive Layer: REACT

. . .
Supervisor

Critics
. . .

. . .

Reinforcement Learning

Sense Act

Sense Act

Sense Act

M
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. . .

Figure 1. AAREACT outline.

Figure 2. Illustration of the de�ned features.
The robot is represented by the yellow circle,
the red cross represents the target position,
and the rectangles represent the detected
obstacles.

Since the space of weight vectors is continuous, we proposed associating a weight vector for
each feature, besides a generic weight vector which ponders all of the behaviour with non-null
weights. Only weight vectors associated to features which are on and the generic weight vector are
considered when choosing a coordinating action. Such consideration avoids the need of exploring
clearly bad actions and allows the agent deciding autonomously which feature is more important.

In RL, positive reinforcements are used to reward desirable situations, while negative
reinforcements also can be used to penalise undesirable situations. The robot's primary objective
is to get to the target location. When it occurs, the critics module generates a large reward,
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de�ned by rgoal. It is also desirable that the robot presents a good performance during its
actuation, whatever is desired from the robot. Whereas time to get to the target position
is clearly desirable, other performance measures, such as energy consumption, may be chosen
arbitrary by a programmer.

When a situation change is detected, a reward proportional to the chosen performance
measures is calculated, characterising an intermediate reinforcement, received before reaching
the target. Although such reinforcement can be positive, it must be small when compared to
rgoal, so that a trajectory that reach the target position can always be a winner trajectory.

4. Accelerating Goal-driven Reinforcement Learning
Whereas the avoid-collision and go-ahead behaviours can be substituted by di�erent suitable
behaviours, the same is not true regarding the move-to-goal behaviour. This behaviour is essential
in order to avoid random exploration and an accurate relative position between robot and target
position must be obtained, so that the agent can de�ne such a behaviour.

In this section we explore a global state space which may be provided by simultaneous
localisation and mapping techniques (SLAM) [19, 20], which can map the environment while
exploring it for the target position. Mapping the world is specially important in places where
the robot can get stuck. If the target position is always reached, the location of both the robot
and the target could be less accurate if the sensory information could guide the robot approach
to the target position. In this case, the target position could be represented as an object to be
approached and an object-based map could be used [21].

When dealing with continuous state space, it is necessary to discretise the state space into
discrete macro states before traditional RL algorithms can be used. The �nal rules of control that
are learned depend on the pattern and granularity of the discretisation. While high-de�nition
discretisation allows near optimal control, the time spent in learning grows exponentially with
the number of states. An alternative to deal with this problem is to discretise the space of states
non-uniformly. In navigation tasks such high-de�nition discretisation is mainly required near
obstacles, whereas it is unnecessary in free areas [22, 23].

Besides providing a better control near obstacles, it is important to provide an appropriate
continuous control. Appropriate robot architectures use two levels of control: one low-resolution
discretisation of the state space to control the robot globally (�gure 3), and one high-resolution
discretisation of the state space to control the robot locally. Since the position of the goal is
used mainly to estimate a direction to the goal (move-to-goal behaviour), discretised directions
are one interesting choice to model a set of actions to apply in the low-resolution discretisation.
The AAREACT or REACT architectures can be used to control continuously the robot in the
low-level of the hierarchy. An alternative approach is to de�ne a behaviour that deviates the
robot from obstacles.

We propose the CFQ-Learning algorithm (Compulsory Flow Q-Learning) [24] that can do
this low level control, instead of using AAREACT at the lowest level of the hierarchy. In the
CFQ-Learning algorithm the robots previously learn a local behaviour to follow around obstacles,
and this behaviour is named compulsory �ow (�gure 4). At the highest level of the hierarchy the
robot chooses a main direction to go and such action is executed in the lowest level until: 1) an
obstacle is found, and the compulsory �ow takes control; or 2) a transition among macro-states
occurs and a new action is chosen in the highest level.

Another method proposed by us is the Heuristically Accelerated Q-learning (HAQL) [25].
Whereas in its traditional de�nition the RL algorithm learns optimal control from scratch,
HAQL uses heuristics to accelerate the learning process. Such heuristics can be introduced
in two di�erent ways: 1) by choosing an appropriate initial Q-function; and/or 2) by choosing
appropriate actions in the trial-and-error process. Control actions provided by the AAREACT
architecture is a good choice to be used as heuristics when no knowledge about the environment
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Figure 3. An
example of dis-
cretisation with
low de�nition
and non-convex
obstacles.

Figure 4. An
agent's movement,
which starts at point
1 and follows the
compulsory �ow until
reaching the point 2,
when it is released,
reaching point 3.

is known. The distance in a straight line between two states can also be used as an optimistic
heuristic function. The performance of the learning process using HAQL can be improved even
using very simple heuristic functions. Also, the heuristic function can be modi�ed or adapted
online, as learning progresses and new information for enhancement of the heuristic becomes
available. Another interesting feature of HAQL is that even if the heuristic is not completely
adequate, performance enhancement can take place due to the partial correctness of the heuristic.

We are currently investigating such alternatives. First, by applying the CFQ-Learning
algorithm in the Pioneer robot, using both the compulsory �ow control coded by hand and the
compulsory �ow control learned directly from interactions with the environment. We are also
implementing a higher level of control in the AAREACT, in the same way as CFQ-Learning, so
that the compulsory �ow control can be replaced by the AAREACT control. In both architectures
we will also experiment RL algorithms based on heuristics so that the target position is reached
more quickly.

Whereas robot navigation presents randomness in control dynamics and robot perception, if
the constructed partial map is accurate and we use the assumption that connected neighbour
position can be reached by the AAREACT architecture, planning algorithms can be used in order
to avoid the robot getting stuck. However, RL algorithms can couple better with randomness in
the control dynamics.

Since we are mainly interested in the robots reaching fast the target position in its �rst trial
with the environment, we plan working with algorithms which keep track of previous experiences
and constantly update the Q-function where and when it is necessary [26, 27]. In this case, the
de�nition of the learning rate α should be non-stationary providing an appropriate use of initial
experiences.

Prioritised Sweeping is an algorithm which keeps information about visited states-action-states
triads (s, a, s′) and its dependence on the Q-values of next states s′. If after an experience at time
t the di�erence between the updated max value maxa′∈A Qt(s

′, a′) and the previous max value
maxa′∈A Qt−1(s

′, a′) is beyond a threshold, the value Q(s, a) is updated simulating the previous
experiences related to the triad (s, a, s′). The order in which simulation occurs is prioritised on
the di�erence regarding current update and the dependence of a triad on such di�erence.

5. Relational RL as a generic solution
Given the time needed to learn an optimal control, some works in the area of RL were devoted
to the possibility of reusing learned information [28, 29]. This reuse can be done among di�erent
environments or among di�erent states in the same task [30]. The �rst case is usually obtained
through the use of locally controlled sub-tasks, whereas the second case is based on some state
similarity measure. A global reuse of information can only occur when the representation of
states is the same among environments.

Factored states are commonly used as a technique to allow reuse of information [31]. A
factored state is represented by a vector of n factors. Similarity among states can be measured
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using a sub-set of factors. Reuse can be done in two ways: Q-function and actions. Sometimes
the similarity is taken as equality of Q-function values, meaning that the states are at the same
distances to the goal. In this case the value attributed to one state can be attributed to similar
states. A more common approach is to consider that we can simulate a transition between two
states as occurring in other similar states or that the optimal actions to be performed are the
same for some set of similar states.

Whereas in the AAREACT architecture a locally factored state is considered in order to
provide generalisation, the set of factors is chosen a priori and it is incomplete. If generalisation
is possible because of such incompleteness, it is also the source of problems when such a priori
factors are not enough. A relative new set of methods, Relational Reinforcement Learning (RRL)
proposes starting with a complete set of factors and �nding an adequate subset of them [32].

The RRL framework considers an MDP where the states and actions are structured into �rst-
order propositions. First-order propositions are based on an object domain set D and a set of
predicates P. A ground state is a conjunction of predicates p ∈ P applied to objects o ∈ D. An
abstract state considers variables instead of objects when applying predicates, then representing
a set of ground states. Generalisation is obtained choosing actions to abstract states.

RRL algorithms have been applied to block world problems, showing generalisation among
tasks involving di�erent numbers of blocks in the world. However, it strongly depends on the
formulation of the factored states. The application of these methods to navigation problems have
been less fruitful [33, 34]. Some works have taken advantage of structured buildings (rooms, halls
and lifts) to infer general control rules like: entering room �rst needs to access a hall, accessing
a hall �rst needs to access the lift, accessing the lift �rst needs to access any hall, etc. But, if
buildings present connections among rooms, this kind of generalisation fails (the robot may found
a target room navigating only among rooms). In this case a recover strategy is used based on
a list of actions previously experienced. However, such solution does not couple with stochastic
transitions in the world.

If generalisation cannot always be accurate, we believe that it can be a good source of heuristic
so that we can have better guesses when exploring an unknown environment. For instance, when
looking for a target point, if the robot is not far away from the target point, the AAREACT
control should be a good generalisation, whereas when the robot is far away from the target
point, the control rule �get access to a hall� should be a good generalisation. However, when
the robot is in the hall, it can learn rules stating the disposal of visiting rooms in the opposite
direction to the target and exploring rooms that are in the same direction and that had not yet
been visited.

Our current research aims at formalising partial generalisation. If generalisation cannot be
accomplish fully, partial generalisation may be a strong advice of how pondering appropriately
the rate of exploration of each action. RRL algorithms results in the indication of an action for
abstract states, i.e., for a set of ground states. However, some states may not agree about the
optimal action, even if the full set of predicates is considered; in this case it should be considered
the proportion of each winner action as an indication of exploration rates.

In order to apply RRL algorithms to the navigation towards a goal position, the world must
be modelled regarding objects and predicates. We consider a mapping relating walls, doors and
convex obstacles. Convex obstacles near the robot can immediately be observed and treated
appropriately by the architecture AAREACT. Walls and doors must be identi�ed in order to
generate abstract states and abstract actions.

We use the following predicates in order to describe an abstract state: hasDoor(X),
hasFreeSpace(X), isDirection(X,Y), targetDirection(Y) and isTargetVisible(). The
predicate hasDoor(X) indicates that a door X can be seen, whereas the predicate
hasFreeSpace(X) indicates there is a free space X, i.e., without walls. The predicate
isDirection(X,Y) indicates the relative direction Y (east, north, etc.) of a door or an open
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space X regarding the current robot position, the predicate targetDirection(Y) indicates the
direction Y of the target and isTargetVisible() indicates if the robot can reach the target
position.

We consider three abstract actions: moveToDoor(X), moveDirection(Y) and moveToTarget().
All of this actions is executed by the AAREACT architecture, where in the case of the action
moveDirection(X) the move-to-goal behaviour keeps constant the direction to the goal.

A second and more complex direction to take consists in generalising not only among
optimal actions, but also generalising among alternative actions as long as they present similar
performance. Although the Q-value can be used to analyse the quality of an action in one
step, being an indicator of possibility of improvement, when analysing worse actions it may not
perform well as an indicator of performance. Policy gradient analysis may help when evaluating
the true value of changing one of the known optimal actions [35].

6. Conclusion
In this paper we present our advances in the task of navigating towards a goal position. We
divide them in two parts: reactive solutions and learned solutions.

Despite being quite simple, reactive solutions are essential in many aspects. First, they serve
as an interface between the continuous analog world and the discrete digital world. Whereas
intelligent solutions backed by one of these two worlds are not satisfactory, the union between
them can bring the best of both worlds. Second, hand-coded motor schemas are easy ways of
providing safe control to the robot. Using motor schemas and appropriate sensors, it is very
easy to do implement collision avoidance, falling edge avoidance, among other risky behaviours.
Third, even with these hand-coded behaviours, arbitrary performances can be learned to adapt
the motor schemas to a particular environment

Our approaches to accelerate Reinforcement Learning have also been promising. Although
the approaches have been developed separately from our reactive approaches, we believe that
they will unite naturally. The use of Relational RL seems to be very promising, and despite some
discouraging examples in navigation tasks we believe our designed approach will be fruitful.

Although not explored in this paper, SLAM has been another focus of our research, mainly
regarding semantic knowledge augmenting the map with label to objects and situations. Besides
�tting well with our current necessities, our mapping solution is very useful to more complex tasks
involving objects. Although the task of navigating to a target appears to be largely independent
from objects, navigation is a basic task in a top layer of hierarchical architectures and most often
is motivated by some objects in the environment. Navigating toward a target position often
comes along with interactions with objects, so that the basic navigation task would be more like:
�go to the red table�. Then our map solution will be very helpful in such cases.

Acknowledgments
This work was conducted under project LogProb (FAPESP proc. 2008/03995-5). Valdinei
F. Silva thanks FAPESP (proc. 09/14650-1) and Anna H. R. Costa thanks CNPq (proc.
305512/2008-0).

References
[1] Arkin R C 1998 Behavior-Based Robotics (Cambridge, MA: The MIT Press)
[2] Russel S and Norvig P 2003 Arti�cial Intelligence: A Modern Approach 2

nd ed (Upper Saddle River, New
Jersey: Prentice Hall) ISBN 0-13-790395-2

[3] Nol� S 2002 Neurocomputing 42 119 � 145 ISSN 0925-2312
[4] Woolley B and Peterson G 2009 Journal of Intelligent & Robotic Systems 55(2) 155�176 ISSN 0921-0296
[5] Hester T and Stone P 2009 AAMAS '09: Proceedings of The 8th International Conference on Autonomous

Agents and Multiagent Systems (Richland, SC: International Foundation for Autonomous Agents and
Multiagent Systems) pp 717�724 ISBN 978-0-9817381-7-8

Dynamic Days South America 2010 IOP Publishing

Journal of Physics: Conference Series 285 (2011) 012025 doi:10.1088/1742-6596/285/1/012025

9



[6] Szita I and Szepesvári C 2010 ICML ed Fürnkranz J and Joachims T (Omnipress) pp 1031�1038
[7] Macal C M and North M J 2010 Journal of Simulation vol 4 (Operational Research Society) pp 151 � 162
[8] Kwiatkowska M, Norman G and Parker D 2007 Formal Methods for Performance Evaluation (Lecture Notes

in Computer Science vol 4486) ed Bernardo M and Hillston J (Springer Berlin / Heidelberg) pp 220�270
[9] Bonet B and Ge�ner H 2001 Applied Intelligence 14 237�252
[10] Haddawy P and Hanks S 1998 Computational Intelligence 14 392�429
[11] Keeney R L and Rai�a H 1976 Decisions with Multiple Objectives: Preferences and Value Tradeo�s (New

York: Wiley)
[12] Sutton R and Barto A 1998 Reinforcement Learning: An Introduction (The MIT press, Cambridge, MA)
[13] Kaelbling L P, Littman M L and Moore A 1996 Journal of Arti�cial Intelligence Research 4 237�285
[14] Pacheco R N and Costa A H R 2002 Workshop de Computação � WORKCOMP'2002 ed Sakude M T S and

de A Castro Cesar C (ITA) pp 125�130
[15] Selvatici A H P and Costa A H R 2007 Mobile Robots: The Evolutionary Approach (The Netherlands:

Springer-Verlag) chap 11, pp 161�184
[16] Selvatici A H P and Costa A H R 2007 Revista Controle e Automação 18 173�186
[17] Sutton R S and Barto A G 1998 Reinforcement Learning: An Introduction (Massachussets, MA: MIT Press)
[18] Kalmár Z, Szepesvári C and Lörincz A 1998 Machine Learning 31 55�85
[19] Bailey T and Durrant-Whyte H 2006 Robotics and Automation Magazine 13 1�10
[20] Durrant-Whyte H and Bailey T 2006 Robotics and Automation Magazine 13 1�9
[21] Selvatici A H P, Costa A H R and Dellaert F 2008 IV Workshop de Visão Computacional (Bauru, Brazil)
[22] Munos R and Moore A 2002 Machine Learning 49 291�323
[23] Reynolds S I 2000 Proceedings of the 17th International Conference on Machine Learning pp 783�790
[24] Silva V F d and Costa A H R 2009 Journal of the Brazilian Computer Society 15 65 � 75 ISSN 0104-6500
[25] Bianchi R, Ribeiro C and Costa A 2008 Journal of Heuristics 14(2) 135�168 ISSN 1381-1231 10.1007/s10732-

007-9031-5 URL http://dx.doi.org/10.1007/s10732-007-9031-5
[26] Moore A W and Atkeson C G 1993 Machine Learning 13 237�285
[27] Sutton R S 1988 Machine Learning 3 9�44
[28] Taylor M E, Kuhlmann G and Stone P 2008 AAMAS '08: Proceedings of the 7th international joint conference

on Autonomous agents and multiagent systems (Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems) pp 283�290 ISBN 978-0-9817381-0-9

[29] Taylor M E and Stone P 2009 J. Mach. Learn. Res. 10 1633�1685 ISSN 1532-4435
[30] Ribeiro C H C, Pegoraro R and Costa A H R 2002 International Joint Conference on Autonomous Agents

and Multi-Agent Systems AAMAS�2002 ed Castelfranchi C and Johnson W L pp 1239�1245
[31] Boutilier C, Dearden R and Goldszmidt M 2000 Arti�cial Intelligence 121 49�107
[32] van Otterlo M 2009 The Logic of Adaptive Behavior - Knowledge Representation and Algorithms for Adaptive

Sequential Decision Making under Uncertainty in First-Order and Relational Domains (Frontiers in
Arti�cial Intelligence and Applications vol 192) (IOS Press) ISBN 978-1-58603-969-1

[33] Cocora A, Kersting K, Plagemann C, Burgard W and De Raedt L 2006 Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (Beijing, China)

[34] Kersting K, Plagemann C, Cocora A, Burgard W and De Raedt L 2007 Advanced Robotics. Special Issue on
Imitative Robots 21

[35] Peters J and Schaal S 2008 Neural Netw. 21 682�697 ISSN 0893-6080

Dynamic Days South America 2010 IOP Publishing

Journal of Physics: Conference Series 285 (2011) 012025 doi:10.1088/1742-6596/285/1/012025

10


