
A Geometric Approach to Find Nondominated Policies to Imprecise Reward MDPs 1

Author(s):
Valdinei Freire da Silva

Anna Helena Reali Costa

1This work was supported by Fapesp Project LogProb, grant 2008/03995-5, São Paulo, Brazil.



A Geometric Approach to Find Nondominated Policies

to Imprecise Reward MDPs⋆

Valdinei Freire da Silva and Anna Helena Reali Costa

Universidade de São Paulo, São Paulo, Brazil

valdinei.freire@gmail.com, anna.reali@poli.usp.br

Abstract. Markov Decision Processes (MDPs) provide a mathematical frame-

work for modelling decision-making of agents acting in stochastic environments,

in which transitions probabilities model the environment dynamics and a reward

function evaluates the agent’s behaviour. Lately, however, special attention has

been brought to the difficulty of modelling precisely the reward function, which

has motivated research on MDP with imprecisely specified reward. Some of these

works exploit the use of nondominated policies, which are optimal policies for

some instantiation of the imprecise reward function. An algorithm that calcu-

lates nondominated policies is πWitness, and nondominated policies are used to

take decision under the minimax regret evaluation. An interesting matter would

be defining a small subset of nondominated policies so that the minimax regret

can be calculated faster, but accurately. We modified πWitness to do so. We also

present the πHull algorithm to calculate nondominated policies adopting a geo-

metric approach. Under the assumption that reward functions are linearly defined

on a set of features, we show empirically that πHull can be faster than our modi-

fied version of πWitness.

Keywords: Imprecise Reward MDP, Minimax Regret, Preference Elicitation.

1 Introduction

Markov Decision Processes (MDPs) can be seen as a core to sequential decision prob-

lems with nondeterminism [2]. In an MDP transitions among states are seen as marko-

vian and evaluation is done through a reward function. Many decision problems can

be modelled by an MDP with imprecise knowledge. This imprecision can be stated as

partial observability regarding states [7], intervals of probability transitions [12] or a set

of potential reward functions [13].

Scenarios where reward functions are imprecise are quite common in a preference

elicitation process [4,6]. Preference elicitation algorithms guide a process of sequential

queries to a user so as to elicit his/her preference based on his/her answer. Even if the

process is guide to improve the knowledge about the user’s preference, after a finite

sequential of queries an imprecise representation must be used [3,9]. User’s preference

may be model for example in a reward function [10].

⋆ This work was conducted under project LogProb (FAPESP proc. 2008/03995-5). Valdinei

F. Silva thanks FAPESP (proc. 09/14650-1) and Anna H. R. Costa thanks CNPq (proc.

305512/2008-0).

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part I, LNAI 6911, pp. 439–454, 2011.

c© Springer-Verlag Berlin Heidelberg 2011



440 V.F. da Silva and A.H. Reali Costa

In this paper we tackle the problem of Imprecise Reward MDPs (IRMDP). If a deci-

sion must be taken in an IRMDP, optimal action must be properly defined. The minimax

regret approach considers relatively the worst case decision, providing a balanced de-

cision. First, when evaluating a decision, it is considered an adversary that chooses the

reward function that minimises the value of the decision. The regret step compares the

actual chosen decision within the best adversarial option for each feasible reward func-

tion and the decision with less regret in the worst case is considered.

Since optimisation must go through reward functions and adversarial policies, it can-

not be solved by one linear program. Efficient solutions consider an iterative process in

which decisions are chosen using a linear programming and adversarial choices are

made through a mixed integer programming [13,10] or linear programs based on non-

dominated policies [11]. In the latter, the πWitness algorithm was used to generate non-

dominated policies. Nondominated policies are optimal policies for some instantiation

of the imprecise reward function.

Even if the set of nondominated policies is much smaller when compared to the set of

deterministic policies, the cardinality of the set to be considered is still a burden to deal

with. Although πWitness is able to calculate the set of nondominated policies, nothing

is said about choosing efficiently a small subset of nondominated policies. Using a small

subset helps to choose properly and fast the best minimax regret decision.

We propose the πHull algorithm to calculate an efficient small subset of nondom-

inated policies. In order to compare it with πWitness, we also modify πWitness to

generate a small subset of nondominated policies.

The paper is organised as follows. Section 2 introduces theory and notation used and

section 3 describes our modified version of πWitness. Section 4 presents our main con-

tribution, the πHull algorithm. Finally, experiments are given in section 5 and section 6

presents our conclusions.

2 Theoretic Background

In this section we summarise some significant theoretic background regarding MDPs

and Imprecise Reward MDPs.

2.1 Markov Decision Process

Markov Decision Process (MDP) is a common formulation regarding optimal deci-

sions. An MDP presents two main features [2]: (i) an underlying dynamic system,

and (ii) an evaluation function that is additive in time. An MDP is defined by a tuple

〈S,A, Pa(·), γ, β, r(·)〉, where:

– A is a finite set of possible actions a;

– S is a finite set of process states s;

– Pa : S × S → [0, 1] models a stationary discrete-time stochastic process on state

st such that Pa(i, j) = P (st+1 = j|st = i, at = a);
– γ ∈ [0, 1) is a discount factor;

– β : S → [0, 1] is an initial probability distribution;

– r : S ×A → � is a reward function; and



A Geometric Approach to Nondominated Policies 441

– the system dynamics is such that s0 ∈ S is drawn from distribution β(s) and if the

process is in the state i at time t and action a is chosen, then: the next state j is cho-

sen according to the transition probabilities Pa(i, j) and a payoff with expectation

r(i, a) is incurred.

A solution for an MDP consists in a policy π : S × A → [0, 1], i.e., at any time t,

π(s, a) indicates the probability of executing action at = a after observing state st = s.

A policy π is evaluated according to its expected accumulated discounted reward, i.e.,

V (π) = Es0∼β,at∼π[
∑∞

t=0
γtrt].

A policy π induces a discounted occupancy frequency fπ(s, a) for each pair (s, a), or

in vector notation fπ, i.e., the accumulated expected occurrences of each pair discounted

in time. Let F be the set of valid occupancy frequencies for a given MDP, then for any

f ∈ F it is valid:

[�− γP]⊤f = β,

where P is a |S||A|×|S| matrix indicating Pa(s, s′), � is a |S||A|×|S| matrix with one

in self-transitions, i.e., �((s, a), s) = 1 for all a ∈ A, and β is a |S| vector indicating

β(s).
Consider the reward function with a vector notation, i.e., r. In this case, the value of

a policy π is given by V (π) = fπ · r. An optimal occupancy frequency f∗ can be found

by solving:

min
f

f · r

subject to: [�− γP]⊤ · f − β = 0
f ≥ 0

. (1)

Given an optimal occupancy frequency f∗ the optimal policy can be promptly defined.

For any s ∈ S and a ∈ A an optimal policy π∗ is defined by:

π∗(s, a) =

⎧
⎪⎪⎨

⎪⎪⎩

f(s, a)∑
a′∈A f(s, a)

, if
∑

a′∈A f(s, a) > 0

1

|A|
, if

∑
a′∈A f(s, a) = 0

. (2)

2.2 Imprecise Reward MDP

An imprecise reward MDP (IRMDP) consists in an MDP in which the reward func-

tion is not precisely defined [13,10,11]. This can occur due to a preference elicita-

tion process, lack of knowledge regarding to evaluation of policies or reward functions

comprising the preferences of a group of people. An IRMDP is defined by a tuple

〈S,A, Pa(·), γ, β,R〉, where R is a set of feasible reward functions. We consider that

a reward function is imprecisely determined by nR strict linear constraints. Given a

|S||A| × nR matrix A and a 1 × nR matrix b, the set of feasible reward functions is

defined by R = {r|Ar ≤ b}.

In an IRMDP, it is also necessary to define how to evaluate decisions. The minimax

regret evaluation makes a trade-off between the best and the worst cases. Consider a

feasible occupancy frequency f ∈ F . One can calculate the regret Regret(f , r) of



442 V.F. da Silva and A.H. Reali Costa

taking such the occupancy frequency f relative to a reward function r as the difference

between f and the optimal occupancy frequency under r, i.e.,

Regret(f , r) = max
g∈F

g · r − f · r.

Since any reward function r can be chosen from R, the maximum regret MR(f ,R)
evaluates the occupancy frequency f , i.e.,

MR(f ,R) = max
r∈R

Regret(f , r).

Then, the best policy should minimise the maximum regret criterium:

MMR(R) = min
f∈F

MR(f ,R).

In order to calculate MMR(R) efficiently, some works use nondominated policies, i.e.,

policies that are optimal for some feasible reward functions [11]. Formally, a policy f

is nondominated with respect to R iff

∃r ∈ R such that f · r ≥ f ′ · r, ∀f ′ 
= f ∈ F . (3)

2.3 Reward Functions Based on Features

Reward functions are usually defined on a small set of k features, where k ≪ |S||A|.
Features represent semantic events of interest, such as obtaining or consuming a re-

source.

Consider a feature function that maps each pair (s, a) to a vector of k observed fea-

tures, i.e., φ : S × A → �
k. Then, the reward function r(s, a) is considered to be a

linear combination of such observed features:

r(s, a) = w · φ(s, a),

where w is a weight vector.

The occupancy frequency vector f can be reduced to an expected feature vector µ =
f⊤φ, where φ is considered to be the matrix |S||A| × k with rows denoting φ(s, a).
Note that we can talk interchangeably about a policy π, its occupancy frequency vector

f , or its expected feature vector µ. A stationary policy π is uniquely defined by an

occupancy frequency vector f , and the evaluation of a policy π depends only on its

expected feature vector µ, i.e., V (π) = w · µ.

Although it makes easy the definition of reward functions, the use of attributes still

requires the assignment of scalar values, which is not an easy task. Unless the user is

familiar with some concepts of decision theory, it is not a natural task understanding this

assignment of precise numerical values. However, defining a weight vector imprecisely

is much easier than defining a reward function in the full state-action space.

3 The πWitness Algorithm

Regan and Boutilier [11] present the The πWitness algorithm for identifying nondom-

inated policies. We describe below a modified version of it in order to choose properly

a small subset of nondominated policies.



A Geometric Approach to Nondominated Policies 443

3.1 Witness Reward Functions

Given any occupancy frequency f ∈ F , define its corresponding policy πf (see equa-

tion 2). Let f [s] be the occupancy frequency obtained by executing policy πf with deter-

mministic initial state s0 = s, i.e., the frequency occupancy of policy πf with an initial

state distribution β′(s) = 1.

Let fs:a be the occupancy frequency in the case that if s is the initial state then action

a is executed and policy πf is followed thereafter, i.e.,

fs:a = β(s)

[
es:a + γ

∑

s′∈S

f [s′]Pa(s, s′)

]
+

∑

s′ �=s

f [s′]β(s′)

where es:a is an |S||A| vector with 1 in position (s, a) and zeros elsewhere1.

The occupancy frequency fs:a can be used to find nondominated policies in two

steps: (i) choose arbitrarily rinit and find an optimal occupancy frequency frinit
with

respect to rinit, keeping each optimal occupancy frequency in a set Γ ; (ii) for each

occupancy frequency f ∈ Γ , (iia) find s ∈ S, a ∈ A and r ∈ R such that:

fs:a · r > f ′ · r for all f ′ ∈ Γ, (4)

(iib) calculate the respective optimal occupancy frequency fr, and add it into Γ . The

algorithm stops when no reward function can be found such that equation 4 is true. The

reward function in equation 4 is a witness that there exists at least another nondominated

policy to be defined.

3.2 Efficient Small Subset of Policies

Despite of the set of nondominated policies being much smaller than the set of all deter-

ministic policies, it can still be very large, making costly the calculation of the minimax

regret. It is interesting to find a small set of policies that approximates efficiently the

set of nondominated policies. By efficient we mean that a occupancy frequency fΓ

chosen within a small subset Γ is as better as the exact minimax regret decision, i.e.,

1 We changed the original formula [11]:

f
s:a = β(s)

[
es:a + γ

∑

s′∈S

f [s′]Pa(s, s′)

]
+ (1 − β(s))f .

Note that such equation implicitly considers a new β′ distribution, defined by

β′(x) =

{
β(x) + β(x)(1− β(s)) , if x = s
β(x)(1 − β(s)) , otherwise

.

In this case the occupancy frequency f
a:s has the meaning of executing action a when starting

in state s with probability

β(s) + πf (s, a)(1− β(s)).



444 V.F. da Silva and A.H. Reali Costa

MR(fΓ ,R)−MMR(R) ≃ 0. Consider a witness rw and its respective optimal occupancy

frequency fw. The difference

∆(fw, Γ ) = max
r∈R

min
f ′∈Γ

[fw · r − f ′ · r]

can be used to define the gain when adding fw to the set Γ . If a small subset of nondom-

inated policies is desired, ∆(fw, Γ ) may indicate a priority on which policies are added

to Γ . Instead of adding to Γ every occupancy frequency fw related to nondominated

policies, it is necessary to choose carefully among witnesses fw, and to add only the

witness that maximizes ∆(fw , Γ ).

3.3 The πWitnessBound Algorithm

Table 1 summarises the πWitnessBound algorithm, our modified version of πWitness. It

chooses NΓ nondominated policies. The findBest(r) function solves an MDP with

reward function r (see equation 1). Instead of finding all feasible occupancy frequency

vectors in F , the findWitnessReward(fs:a, Γ )) tries to find a witness rw to fs:a

which guarantees equation 3 within the set Γ .

Algorithm 1. The πWitnessBound algorithm

Input: IRMDP, NΓ

r ← some arbitrary r ∈ R
f ← findBest(r)
Γ ← ∅
Γagenda ← {f}
while |Γ | < NΓ do

f ← best item in Γagenda regarding to ∆(f , Γ )
add f to Γ
foreach s, a do

r
w ← findWitnessReward(fs:a, Γagenda)

while witness found do

f
best ← findBest(rw)

add f
best to Γagenda

r
w ← findWitnessReward(fs:a, Γagenda)

Output: Γ

It is worth to notice that each iteration of πWitness takes at least |S||A| calls to

findWitnessReward(·), and if it succeeds findBest(·) is also called. The num-

ber of policies in agenda can also increase fast, increasing the burden of calls to

findWitnessReward(·). In the next section we consider the hypothesis of the re-

ward function being defined with a small set of features, and we take this into account

to define a new algorithm with better run-time performance.



A Geometric Approach to Nondominated Policies 445

4 A Geometric Approach to Find Nondominated Policies

The problem of finding nondominated policies is similar to the problem of finding the

convex hull of a set of points. Here the set of points are occupancy frequency vectors.

We consider reward functions defined in terms of features, thus we can work in a space

of reduced dimensions. Our algorithm is similar to the Quickhull algorithm [1], but the

set of points is not known a priori.

4.1 Space of Feature Vector

Even with no information about the reward functions, but considering that they are de-

scribed by k features, we can analyse the corresponding IRMDP in the feature vector

space. The advantage of such analysis is that a conventional metric space can be con-

sidered. This is possible because the expected vector of features regarding to a policy

accumulates all the necessary knowledge about transitions in an MDP.

In this section we show through two theorems that if we take the set of all feasible

expected feature vectors M = {µπ|π ∈ Π} and define its convex hull M = co(M)2,

then the vertices V of the polytope M represents the expected feature vector of spe-

cial deterministic policies. Such special policies are the nondominated policies under

imprecise reward functions where the set R is free of constraints.

Theorem 1. Let Π be the set of stochastic policies and let M = {µπ|π ∈ Π} be the

set of all expected feature vectors defined by Π . The convex hull of M determines a

polytope M = co(M), where co(·) stands for the convex hull operator. Let V be the set

of vertices of the polytope M, then for any vertex µ ∈ V there exists a weight vector

wµ such that:

wµ · µ > wµ · µ′ for any µ′ 
= µ ∈ M .

Proof. If µ is a vertex of the polytope M, there exists a hyperplane H such that H ∩
M = {µ}. The hyperplane H divides the feature vector space in two half-spaces XH,1

and XH,2. Let us define the set M ′ = M − {µ}. Because the set resulting from the

intersection of H and M has cardinality one, all feature vectors in M ′ are in the same

half-space, i.e., either M ′ ⊂ XH,1 or M ′ ⊂ XH,2.

Take any vector w orthogonal to H . Since µ ∈ H , for any µ′, µ′′ ∈ M ′ we have

|w · µ′ − w · µ| > 0 and sign(w · µ′ − w · µ) = sign(w · µ′′ − w · µ). Take any

µ′ ∈ M ′ and define:

wµ =

{
w , if w · µ′ − w · µ < 0
−w , if w · µ′ − w · µ > 0

.

In this case wµ · µ > wµ · µ′ for any µ′ ∈ M ′. ⊓⊔

Theorem 2. Let Π , M ,M and V be defined as in the previous theorem. Let Γ be the set

of nondominated policies of an IRMDP where R={r(s, a)|w ∈ [−1, 1]k and r(s, a)=
w · φ(s, a)}. Let MΓ = {µπ|π ∈ Γ}, then V = MΓ .

2 The operator co(·) stands for the convex hull operator.



446 V.F. da Silva and A.H. Reali Costa

Proof. In theorem 1 we prove that µ ∈ V ⇒ µ ∈ MΓ . Now we prove the reverse.

Consider the set D = MΓ −V , we have D ⊂ M −V and we want to show that D must

be empty.

Suppose D is not empty and consider a feature vector µ′ ∈ D. Suppose that exists

wµ′ such that:

wµ′ · µ′ − wµ′ · µ > 0 for any µ 
= µ′ ∈ M. (5)

In this case wµ′ and µ′ define uniquely a hyperplane H ′ = {µ|wµ′ ·µ′−wµ′ ·µ = 0}.

Because µ′ is not a vertex of M, the half-spaces XH′,1 and XH′,2 defined by H ′ are

such that ∃µ ∈ M ∩ XH′,1 and ∃µ ∈ M ∩ XH,2. Therefore equation 5 is not true for

any wµ′ and D = ∅. ⊓⊔

4.2 Finding Nondominated Policies

Theorem 2 shows that finding the set of nondominated policies is the same as finding

the set of vertices of the convex hull of feasible expected feature vector.

Given a set of vectors, the Quickhull algorithm finds the convex hull of such set. At

any iteration the Quickhull algorithm maintains a current polytope. For a chosen facet

of the current polytope, the Quickhull algorithm analyses vectors above the facet by cal-

culating the distance between each vector and the facet. The farthest vector is included

in the current polytope by creating new facets based on the facets that such vector can

see. The algorithms iterates until there exist vectors outside the current polytope [1].

Just as in the Quickhull algorithm, we consider an initial polytope M̂, and for each

facet we search for the farthest vector not in M̂. However, if we consider the set of all

policies Π and their respective expected feature vectors M , the number of vectors to be

analysed is too big. Instead, we find the farthest vector of a facet by choosing wisely a

weight vector w and solving an MDP with the reward function modelled by the weight

vector w. We show how to choose such weight vector in the next theorem.

Consider an initial polytope M̂ whose vertices V̂ are nondominated policies with

hypervolume greater than 0. Note that the number of vertices must be at least k +1. We

start with V̂ and add new vertices until polytopes M̂ = co(V) and M = co({µπ|π ∈

Π}) are the same. The idea is to test whether each facet of the polytope M̂ is also a

facet of M. If it is not the case, look for a new vertex µ and add µ to V . We can do this

thanks to the following theorem.

Theorem 3. Let H be the smallest set of hyperplanes which constrain the polytope

M. Let Ĥ be the smallest set of hyperplanes that bound a polytope M̂ ⊂ M. Take a

hyperplane H ∈ Ĥ. H ∈ H iff there is no policy π such that:

w
H,M̂

· µπ > w
H,M̂

· µH ,

where µH is any feature vector in H and w
H,M̂

is such that: w
H,M̂

and H are or-

thogonal, and for any µ ∈ M̂ we have w
H,M̂

· µH ≥ w
H,M̂

· µ.

Proof. Consider that there exists a policy π such that w
H,M̂

· µπ > w
H,M̂

· µH . Be-

cause of the definition of w
H,M̂

, µπ is beyond3 hyperplane H in the direction w
H,M̂

.

3 A vector µ is beyond a hyperplane H with respect to the direction w, if for any vector x ∈ H
it is true that 〈w, µ〉 > 〈w,x〉.



A Geometric Approach to Nondominated Policies 447

µmax

2 µmax
2 µH´

wH´

wH´´

a) b) c)

.

.

µ2
µmax

2

µmin

1 µmin

1 µmin

1

µmin

2 µmin

2 µmin

2

µmax

1 µmax

1 µmax

1 =µH´´

µ1

µ2 µ2

µ1 µ1
H´´

H´

µH´

Fig. 1. Constructing the set of feasible expected feature vectors in two dimensions. a) The initial

polytope (polygon) M̂ has vertices that minimise and maximise each feature separately. b) Ex-

ample of a hyperplane (edge) of the polytope M̂ which is not in the polytope M. c) Example of

a hyperplane (edge) of the polytope M̂ which is in the polytope M.

Therefore H constrains the feature vector µπ and µπ 
∈ Ĥ. However, µπ ∈ M because

µπ is a feasible expected feature vector. Therefore H 
∈ H.

Now suppose H 
∈ H. Because M̂ ⊂ M and constraints in Ĥ are tighter than

constraints in H, there exists a feasible expected feature vector beyond H . Therefore

there exists a policy π such that w
H,M̂

· µπ > w
H,M̂

· µH . ⊓⊔

Theorem 3 suggests a rule to improve the set V̂ so that it becomes the set V desired:

– Initially a set of vertices V̂ is considered and the polytope M̂ = co(V̂) is computed

(figure 1a).

– For each hyperplane H ′ which constrains the polytope M̂ and the vector wH′

orthogonal to H ′ with direction outwards regarding to the polytope M̂ (figures 1b

and 1c), calculate an optimal policy π∗
wH′

for wH′ and its corresponding expected

feature vector µ
π∗

w
H′ .

– If µ
π∗

w
H′ is beyond H ′, then µ

π∗

w
H′ can be added to V̂ (figure 1b).

– Otherwise the hyperplane H ′ constrains the set M (figure 1c).

– If all the hyperplanes that constrain M̂ also constrain the set M, then M̂ = M.

– The end of the process is guaranteed since the cardinality of the set of nondomi-

nated policies is finite.

4.3 Normal Vectors and Reward Constraints

In previous section we give some directions on how to find nondominated policies when

the set of reward functions are unconstrained. In fact, we consider reward functions to

be constrained only to a description based on features. In order to find the farthest

feature vector, we considered an orthogonal vector to each facet. However, although

an orthogonal vector can be easily calculated, it may not be a feasible weight vector.

In this section, we find a potential farthest feature vector in three steps: (i) by using

the orthogonal vector wort, find the farthest potential feature vector µfar, (ii) verify if

there exists a witness wwit to µfar, and (iii) find a feasible expected feature vector by

maximising the witness wwit.



448 V.F. da Silva and A.H. Reali Costa

In the first step, instead of solving an MDP and finding a feasible expected feature

vector, which requires optimisation within |S| constraints, we work with potential fea-

ture vectors, i.e., vectors in the space under relaxed constraints. By doing so, we can

approximate such a solution to a linear optimisation within k constraints in the feature

space. First, in the feature space, the lower and upper bounds in each axis can be found

previously. We solve MDPs for weight vectors in every possible direction, obtaining

respectively upper and lower scalars bounds µ
top
i and µbottom

i for every feature i. Sec-

ond, when looking for vectors beyond a facet, only constraints applied to such a facet

should be considered. Then, given a facet constructed from expected feature vectors

µ1, . . . ,µk with corresponding weight vectors w1, . . . ,wk and the orthogonal vector

wort, the farthest feature vector µfar is obtained from:

max
µfar

wort · µfar

subject to: wi · µfar < wi · µi, for i = 1, . . . , k

µbottom
i ≤ µ

far
i ≤ µ

top
i , for i = 1, . . . , k

. (6)

The second step verifies if there exists a witness that maximises µfar compared to

µ1, . . . ,µk. Note that µfar may not be a feasible expected weight vector (fs,a is ac-

tually feasible in πWitnessBound). But µfar indicates an upper limit regarding to the

distance of the farthest feasible feature vector.

The third step solves an MDP and finds a new expected feature vector to be added to

V̂ . This step is the most expensive and we will explore the second step to avoid running

into it unnecessarily. If a limited number of nondominated policies is required, not all

the policies will be added to V̂ . We can save run-time if we conduct the third step only

when necessary, adopting the second step as an advice.

4.4 Initial Polytope

Previously we considered a given initial polytope with hypervolume greater than 0. In

this section we will discuss how to obtain that. Two necessary assumptions regarding

to the existence of a polytope are: (i) all features are relevant, i.e. none can be directly

described by the others and, (ii) for each feature, different expected occurrences can be

obtained with the MDP.

First, if we consider an initial set of weight vector W = {w1} and its corresponding

set of optimal expected feature vector V = {µ1}, the idea is to find the farthest feasible

feature vector, regarding to the MDP dynamics and the constrained weight vector as

previously done. However, there exist more than one orthogonal vector. In order to

overcome such problem, we use the following linear program:

min
wort,−

wort,− ·
∑

w∈W

w

|W|

subject to: wort,− · (µi − µj) = 0, ∀µi 
= µj ∈ V
. (7)

Note that wort,− must be orthogonal to any ridge formed by feature vectors in V , but at

the same time it tries to be opposite to the weight vectors already maximised. A version

wort,+ in the average direction of W is also obtained.



A Geometric Approach to Nondominated Policies 449

We use two directions when looking for the farthest feature vectors because it is

not possible to know which direction a ridge faces. By using equation 6 we look for

the farthest feature vectors µfar,+ and µfar,−. Witnesses w+ and w− and optimal

expected feature vectors µ+ and µ− are found for both of them. Then, the farthest

feature vector of both are added to V̂ . Here, the distance is measured in the directions

w+ and w− relatively to the set V̂ .

This process goes on until |M| = k + 1, when it is possible to construct a polytope.

Table 2 presents the the initHull algorithm.

Algorithm 2. The initHull algorithm

Input: IRMDP, k, φ(·)
choose w such that r(s, a) = w · φ(s, a) ∈ R

make Ŵ = {w}
find the best expected feature vector µ to w

make V̂ = {µ}
while |W| < k + 1 do

calculate w
ort,+ and w

ort,− (equation 7)

calculate µfar,+ and µfar,−

calculate witnesses w
+ and w

− (equation 3)

calculate the best policies µ+ and µ− (equation 1)

choose between µ+ and µ− the farthest feature vector µ

get the respective weight vector w

update Ŵ ← Ŵ ∪ {w}

update V̂ ← V̂ ∪ {µ}

Output: W, V̂

4.5 The πHull Algorithm

Finally, before presenting the πHull algorithm, we will discuss some performance is-

sues. The analysis of each facet of a polytope consists of three steps: (i) find the out-

ward orthogonal direction and the farthest potential feature vector, (ii) find a witness

and (iii) find an optimal policy. The first step is done with a linear program with k con-

straints and upper and lower bounds, whereas the third step consists in a linear program

with |S| constraints. Differently from the πWitness algorithm where witnesses must be

compared against all policies in Γagenda, the second step should only look at policies

in the facet.

Although there is a gain here when using findWitnessReward(·), the number

of facets in the polytope M̂ increases exponentially. If a few nondominated policies are

required, this gain may overcome the exponential increase. Therefore, it is interesting

to provide a solution which does not increase exponentially, even if it leads to some loss

in the quality of the subset of nondominated policies.

The algorithm πHull keeps three sets of facets: Hnull, Hwit and Hbest. Hnull keeps

facets which have not gone through any step of analyses. Hwit keeps facets which have

gone through the first step and they are ordered by the distance between the facet and

the potential feature vector. Finally, Hbest keeps facets which have passed the three

steps and they are ordered by the distance to the farthest expected feature vector.



450 V.F. da Silva and A.H. Reali Costa

In each iteration the πHull algorithm processes randomly Nnull facets from set

Hnull, then it processes in the given order Nwit facets from set Hwit. Finally, it chooses

from Hbest the best facet, i.e., the one with the farthest corresponding expected feature

vector and adds it to V̂. Table 3 summarises the πHull algorithm.

Algorithm 3. The πHull algorithm

Input: IRMDP, NΓ , Nnull, Nwit, k, φ(·)

Ŵ , V̂ ← initHull(IRMDP, k, φ(·))

Hnull = co(V̂)
Hwit = ∅
Hbest = ∅
while |V̂ | < NΓ do

for Nnull facets H in Hnull do
Hnull ← Hnull/{H}
w

ort ←vector orthogonal to H
µfar ←farthest potential feature vector

α ←distance between µfar and H
associate α, µfar and w

ort with H
Hwit ← Hwit ∪ {H}

for first Nwit facets H in Hwit do

Hwit ← Hwit/{H}
w

wit ← findWitnessReward(µfar, H)
µbest ← findBest(wwit)
α ←distance between µbest and H
associate α, µbest and w

wit with H
Hbest ← Hbest ∪ {H}

µnew ,wwit ←first facet in Hbest

V̂ ← V̂ ∪ {µnew}

Ŵ ← Ŵ ∪ {wwit}

Hnull = co(V̂)

Output: V̂

4.6 Complexity Analysis

We argued that a description of reward functions with features is much more compact

than a description of reward functions in the full state-action space. In the πHull algo-

rithm we take advantage of such description to introduce a new algorithm to calculate

nondominated policies. On the other hand, our algorithm depends on the number of

facets of a convex hull.

The number of facets of a convex hull is known to grow exponentially with the space

dimension k, but only linear with the number of vertices |V| [5]. In the πHull algorithm,

the number of vertices grows every iteration, which means that a small time is spent in

first iterations. However, for k = 5 the linear factor is around 32, while for k = 10 the

linear factor is around 106.

It is clear that our adoption ofHnull andHwit is necessary to calculate nondominated

policies even with k = 10. On the other hand, the distance of the farthest vector of



A Geometric Approach to Nondominated Policies 451

a facet will be smaller and smaller as new facets are added to V̂ . Then, in the first

iterations, when the number of facets is small, the farthest vector of all facets will be

calculated and kept in Hbest. As the number of iterations grows and the farthest vector

cannot be promptly calculated for all facets, the facets saved in Hbest can be good

candidates to be added in V̂ , if not the best ones.

Another interesting point in favour of the πHull algorithm is the relationship with

MDP solvers. While πWitnessBound relies on small changes in known nondominated

policies, the πHull algorithm relies on the expected feature vector of known nondomi-

nated policies. For instance, if a continuous state and continuous action IRMDP is used,

how to iterate over states and actions? What would be the occupancy frequency in this

case?

The πHull algorithm allows any MDP solver to be used. For instance, if the MDP

solver finds approximated optimal policies or expected feature vector, the πHull algo-

rithm would not be affected in the first iterations, where the distance of farthest feature

vectors is big.

5 Experiments

We performed experiments on synthetic IRMDPs. Apart from the number of features

and the number of constraints, all IRMDPs are randomly drawn from the same distri-

bution. We have |S| = 50, |A| = 5, γ = 0.9 and β is a uniform distribution. Every

state can transit only to 3 other states drawn randomly and such transition function is

also drawn randomly. φ(·) is defined in such a way that for any feature i, we have∑
s,a φi(s, a) = 10.

We constructed two groups of 50 IRMDPs. A group with R defined on 5 features

and 3 linear constraints, and another group with R defined on 10 features and 5 linear

constraints.

The first experiment compares πWitnessBound, πHull without time limits (Nnull =
∞ and Nwit = ∞), and πHull with time limits (Nnull = 50 and Nwit = 10). This

experiment was run on the first group of IRMDPs, where k = 5. Figure 2 shows the

results comparing the run-time spent in each iteration and the error regarding to the

recommended decision and its maximum regret, i.e., in each interaction f∗ is chosen

to be the occupancy frequency that minimises the maximum regret regarding to the

current set of nondominated policies and effectiveness is measured by the error ǫ =
MR(f∗,R) − MMR(R)4.

The second experiment compares πWitnessBound and πHull with time limits

(Nnull = 100 and Nwit = 20). This experiment was run on the second group of

IRMDPs where k = 10. Figure 3 shows the results.

In both groups the effectiveness of the subset of nondominated policies was sim-

ilar for the πWitnessBound algorithm and the πHull algorithm. In both cases, a few

policies are enough to make decision under minimax regret criterium. The time spent

per iteration in πHull with time limited is at least four times lesser when compared to

4 We estimate MMR(R) considering the union of policies found at the end of the experiment

within all of the algorithms: πWitness and πHull.



452 V.F. da Silva and A.H. Reali Costa

0 5 10 15 20 25 30 35 40 45 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Number of Nondominated Policies

e
rr

o
r 

in
 M

M
R

 

 

piHull (no limit)

piHull (with limits)

piWitnessBound

error time

ti
m

e
 (

s
)

Fig. 2. Results of experiment within 5 features

0 5 10 15 20 25 30
0

1

2

3

4

5

6

0

7

14

21

28

35

42

Number of Nondominated Policies

e
rr

o
r 

in
 M

M
R

 

 

piHull (with limits)

piWitnessBound

error

time

time

ti
m

e
 (

s
)

Fig. 3. Results of experiment within 10 features

πWitnessBound. In the case that πHull is used without time limit, the time spent per

iteration increases with iterations, but in the early iterations it is still smaller than that

found by πWitnessBound.

Our experiments were made with small MDPs (50 states and 5 actions). The run-

time of each algorithm depends on the technique used to solve an MDP. However, as

πWitnessBound does not take advantage of the reward description based on features,

it depends also on how big the sets of state and actions are. On the other hand, πHull

depends only the number of features used. In conclusion, the higher the cardinality of

the sets of states and actions, the greater the advantage of πHull over πWitnessBound.

Although πWitnessBound is not clearly dependent on the number of features, we

can see in the second experiment a run-time four times that of first experiment. When

the number of features grows, the number of witnesses also increases, which requires a

larger number of MDPs to be solved.



A Geometric Approach to Nondominated Policies 453

6 Conclusion

We presented two algorithms: πWitnessBound and πHull. The first is a slight modifi-

cation to πWitness, while the second is a completely new algorithm. Both are effective

when they define a small subset of nondominated policies to be used for calculating

the minimax regret criterium. πHull shows a better run-time performance in our experi-

ments, mainly due to the large difference in the number of features (k = 5 and k = 10)

and number of states (S = 50), since πWitnessBound depends on the second.

Although πHull shows a better run-time performance and similar effectiveness, we

have not presented a formal proof that πHull always has a better performance. Fu-

ture works should seek for three formal results related to the πHull algorithm. First, to

prove that our analysis of facet reaches the farthest feature vector when the constraints

are considered. Second, to establish a formal relation between the number of nondomi-

nated policies and the error of calculating MMR(R). Third, to set the speed with which

πHull reaches a good approximation of the set V̂ , which is very important given the

exponential growth in the number of facets. We must also examine how the parameters

Nnull and Nwit affect this calculation.

Besides the effectiveness and better run-time performance of πHull confronted with

πWitnessBound, there is also qualitative characteristics. Clearly the πHull algorithm

cannot be used if a feature description is not at hand. However, a reward function is

hardly defined on the state-action space. πHull would present problem if the number of

features to be used is too big.

The best advantage of πHull is regarding to the MDP solver to be used. In real

problems an MDP solver would take advantage of the problems structure, like fac-

tored MDPs [14], or would approximate solutions in order to make it feasible [8].

πWitnessBound must be adapted somehow to work with such solvers.

It is worth to notice that nondominated policies can be a good indicator for a pref-

erence elicitation process. They give us a hint about policies to be confronted. For in-

stance, the small set of nondominated policies can be used when enumerative analysis

must be done.

References

1. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM

Trans. Math. Softw. 22, 469–483 (1996), http://doi.acm.org/10.1145/235815.

235821

2. Bertsekas, D.P.: Dynamic Programming - Deterministic and Stochastic Models. Prentice-

Hall, Englewood Cliffs (1987)

3. Boutilier, C., Patrascu, R., Poupart, P., Schuurmans, D.: Constraint-based optimization and

utility elicitation using the minimax decision criterion. Artificial Intelligence 170(8), 686–

713 (2006)

4. Braziunas, D., Boutilier, C.: Elicitation of factored utilities. AI Magazine 29(4), 79–92 (2008)

5. Buchta, C., Muller, J., Tichy, R.F.: Stochastical approximation of convex bodies. Mathema-

tische Annalen 271, 225–235 (1985), http://dx.doi.org/10.1007/BF01455988,

doi:10.1007/BF01455988

http://doi.acm.org/10.1145/235815.235821
http://doi.acm.org/10.1145/235815.235821
http://dx.doi.org/10.1007/BF01455988


454 V.F. da Silva and A.H. Reali Costa

6. Chajewska, U., Koller, D., Parr, R.: Making rational decisions using adaptive utility elic-

itation. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence

and Twelfth Conference on Innovative Applications of Artificial Intelligence, pp. 363–369.

AAAI Press / The MIT Press, Austin, Texas (2000)

7. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable

stochastic domains. Artificial Intelligence 101(1-2), 99–134 (1998)

8. Munos, R., Moore, A.: Variable resolution discretization in optimal control. Machine Learn-

ing 49(2/3), 291–323 (2002)

9. Patrascu, R., Boutilier, C., Das, R., Kephart, J.O., Tesauro, G., Walsh, W.E.: New approaches

to optimization and utility elicitation in autonomic computing. In: Proceedings, The Twen-

tieth National Conference on Artificial Intelligence and the Seventeenth Innovative Appli-

cations of Artificial Intelligence Conference, pp. 140–145. AAAI Press / The MIT Press,

Pittsburgh, Pennsylvania, USA (2005)

10. Regan, K., Boutilier, C.: Regret-based reward elicitation for markov decision processes. In:

UAI 2009: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelli-

gence, pp. 444–451. AUAI Press, Arlington (2009)

11. Regan, K., Boutilier, C.: Robust policy computation in reward-uncertain mdps using non-

dominated policies. In: Fox, M., Poole, D. (eds.) AAAI, AAAI Press, Menlo Park (2010)

12. White III, C.C., Eldeib, H.K.: Markov decision processes with imprecise transition probabil-

ities. Operations Research 42(4), 739–749 (1994)

13. Xu, H., Mannor, S.: Parametric regret in uncertain markov decision processes. In: 48th IEEE

Conference on Decision and Control, CDC 2009 (2009)

14. Guestrin, C., Koller, D., Parr, R., Venkataraman, S.: Efficient solution algorithms for factored

MDPs. Journal of Artificial Intelligence Research 19, 399–468 (2003)


	A Geometric Approach to Find Nondominated Policies to Imprecise Reward MDPs
	Introduction
	Theoretic Background
	Markov Decision Process
	Imprecise Reward MDP
	Reward Functions Based on Features

	The $pi$Witness Algorithm
	Witness Reward Functions
	Efficient Small Subset of Policies
	The $pi$WitnessBound Algorithm

	A Geometric Approach to Find Nondominated Policies
	Space of Feature Vector
	Finding Nondominated Policies
	Normal Vectors and Reward Constraints
	Initial Polytope
	The $pi$Hull Algorithm
	Complexity Analysis

	Experiments
	Conclusion
	References


