
Stochastic Abstract Policies for Knowledge Transfer in Robotic Navigation Tasks 1

Author(s):
Tiago Matos

Yannick Plaino Bergamo

Valdinei Freire da Silva

Anna Helena Reali Costa

1This work was supported by Fapesp Project LogProb, grant 2008/03995-5, São Paulo, Brazil.

Stochastic Abstract Policies for Knowledge

Transfer in Robotic Navigation Tasks

Tiago Matos, Yannick Plaino Bergamo, Valdinei Freire da Silva,
and Anna Helena Reali Costa

Laboratório de Técnicas Inteligentes (LTI/EPUSP)
Escola Politécnica, Universidade de São Paulo

São Paulo, SP, Brazil
{tiago.matos,yannick}@usp.br, valdinei.freire@gmail.com,

anna.reali@poli.usp.br

Abstract. Most work in navigation approaches for mobile robots does
not take into account existing solutions to similar problems when learn-
ing a policy to solve a new problem, and consequently solves the current
navigation problem from scratch. In this article we investigate a knowl-
edge transfer technique that enables the use of a previously know policy
from one or more related source tasks in a new task. Here we repre-
sent the knowledge learned as a stochastic abstract policy, which can
be induced from a training set given by a set of navigation examples of
state-action sequences executed successfully by a robot to achieve a spe-
cific goal in a given environment. We propose both a probabilistic and a
nondeterministic abstract policy, in order to preserve the occurrence of
all actions identified in the inductive process. Experiments carried out
attest to the effectiveness and efficiency of our proposal.

1 Introduction

Automated Planning and Learning are essential components of intelligent be-
havior. Broadly speaking, they deal with the methods by which an intelligent
agent can determine the policy (action strategy) needed to successfully achieve
a goal. However, often the determination of a policy for solving a certain task
has to be done without any use of the acquired knowledge to solve similar tasks.
Intuitively, generalization from closely related, but solved, problems may often
produce policies that make good decisions in many states of a new unsolved
problem. Knowledge transfer explores this intuition and could then be used in
these situations. The core idea of knowledge transfer is that experience gained
in performing one task can help solve a related, but different, task.

In this paper, we are concerned with the problem of transfer the knowledge
that was learned in one problem to another problem so that this knowledge
gives effective guidance when solving the new problem. Here we represent the
knowledge learned as a stochastic abstract policy, which can be learned from a
training set given by a set of state-action pairs obtained by solving one or more
instances of a given problem. Such policies are not optimal but they are general
and they can be applied effectively, producing good results.

I. Batyrshin and G. Sidorov (Eds.): MICAI 2011, Part I, LNAI 7094, pp. 454–465, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Stochastic Abstract Policies for Knowledge Transfer 455

More precisely, our approach starts from a set of navigation examples of state-
action sequences executed successfully by a robot to achieve a specific goal in
a given environment. These examples can be achieved through the execution of
a plan developed to solve this task or provided by a teacher. Then, we induce
a stochastic navigation policy in the form of a relational decision tree from
these examples. This relational decision tree represents an abstract policy, which
expresses preferences over navigation actions and can be used by the robot to
decide the navigation actions both in the original task and in similar tasks or
domains.

Our contribution lies in an extension of the work of Kersting et al. [1], so
as not to consider in the leaf of the relational decision tree only the abstract
action more frequently found in the inductive process, but to use a stochastic
abstract action. We propose both a probabilistic and a nondeterministic abstract
policy in order to preserve the occurrence of all ground actions identified in the
inductive process.

Several papers have been looking at ways to abstract the knowledge acquired
in solving a problem and use it to solve other problems. Taylor and Stone [2]
provide a thorough survey on the transfer of learning using propositional descrip-
tions of the states. In several works the source task is learned in some ground
state space where an abstract policy is generated, and this policy is applied to
the target task in order to improve learning performance, especially in the early
episodes. Based on samples experienced by the agent when acting optimally in
the source task, in [3] propositional symbolic learners generalize the optimal pol-
icy. In [4] action relevance is used in order to reduce the action set to be explored
in the target task. In [5] a heuristic policy is used as a knowledge to be applied
in the policy learning process in a new task or domain.

Regarding the first order state description, few examples are found in the
literature for the domain of spatial navigation. In order to fully describe the
relational situation in which an agent is, one must map the environment com-
pletely. So as not to do so, [1] and [6] rely on relational local perception and
structured environments, where (near-) optimal abstract policies can be defined.
Here we propose two different approaches for transfer knowledge from one prob-
lem to another, and this knowledge is represented by abstract policies that are
based on local relational perceptions made in structured environments.

The remainder of this paper is structured as follows. In Section 2 we give
an overview of Relational Markov Decision Processes and show how to learn
and use abstract navigation policies. Section 3 covers a detailed specification of
our approach, describing how to learn and to use stochastic abstract policies.
We present experimental results and analysis in Section 4 and discuss the im-
plications of these. Finally, in Section 5 we discuss how this technique can be
expanded in the future, and draw conclusions based on what we have outlined.

2 Learning Relational Navigation Policies

Several domains are naturally described in terms of objects and relations among
objects, therefore they can be compactly describedwith relational representations.

456 T. Matos et al.

On the other hand, stochastic domains, such as robotic navigation domains that
concern us here, are properly modeled by Markov Decision Processes. Relational
Markov Decision Processes (RMDPs) combine relational logic with MDPs to
powerfully exploit relational structures. An RMDP describes a mathematical
model of interactions between an agent and a stochastic, dynamic environment
when the world is described by objects and relations among them. The advantage
of the relational representation is abstraction.

We give here a very brief review of the key aspects of RMDPs and their
solutions. For a thorough treatment, we refer the reader to [7,8].

2.1 Relational Markov Decision Process

The key idea in Relational Markov Decision Processes (RMDPs) [8] is to
merge relational logic with MDP. Let P = {p1/α1, . . . , pn/αn} be a set of
predicates pi with their arities αi, C = {c1, . . . , ck} a set of constants, and
A

′

= {a1/α1, . . . , am/αm} a set of actions ai with their arities αi where

ai = Hai

pai
:Aai←−−−−− Bai

, and Aai
is an atom representing the name and the

arguments of the action ai, Bai
is the precondition, Hai

is a state representing
the successful outcome, and pai

is the probability that an outcome succeed. An
atom is called ground if it contains no variables. Let S

′

be the set of all con-
junctions of ground atoms over P and C, and A the set of all ground atoms over
A

′

and C. An RMDP is a tuple M = 〈S,A, T, R〉, where S is a subset of S
′

,
T : S×A×S → [0, 1] is a probabilistic transition function, and R : S×A×S → �

is a reward function. For a given state s ∈ S there is a corresponding set of
feasible actions A(s) ⊆ A which is calculate through the action precondition.

The task of the agent is to learn a policy π : S × A for selecting its next
action a ∈ A(s) to be performed on the current state s ∈ S, i. e., π(s) = a. The
learned policy should maximize V π(s) = E[

∑∞
t=0 γtrt|π, s0 = s], where γ ∈ [0, 1[

is a discount factor and rt is the reward received in time t, i. e., the policy π∗ is

optimal if V π∗

(s) ≥ V π
′

(s), ∀s ∈ S and ∀π
′

.
If the model of the problem is fully known, we can use planning techniques

such as SPUDD [9] to determine π∗, otherwise we can use reinforcement learning
techniques [10] for this purpose.

2.2 Modeling a Robotic Navigation Problem as an RMDP

A robotic navigation problem can elegantly be represented using an RMDP.
Consider1 the simple environment shown in Figure 3(a): we define a set of n = 19
constant locations C = {l1, l2, · · · , l19}. Unary predicates indicate the location
type such as isCorridor(Li), isRoom(Li), isCenter(Li), isNearDoor(Li),

1 Squares symbolize centers of rooms, e. g. (isRoom(l2) ∧ isCenter(l2)), triangles
symbolize doors of rooms, e. g. (isRoom(l3) ∧ isNearDoor(l3)), circles symbolize
doors of corridors, e. g. (isCorridor(l5) ∧ isNearDoor(l5)), and black pentagons
symbolize corridors, but not in front of a door – here, for simplicity, we call center,
e. g. (isCorridor(l1) ∧ isCenter(l1)).

Stochastic Abstract Policies for Knowledge Transfer 457

whereas a binary predicate isConnected(Li,Lj) indicates that Li is connected
to Lj. A special unary predicate in(Li) indicates the location of the robot.
Terms starting in lowercase represent constants, and in uppercase are variables.

We consider a set A
′

of specialized navigation actions that move the robot
from one location to another, e. g., gotoRCRD(Li,Lj)moves the robot from Li in
the center of a room to a location Lj near a door in a room, gotoRDCD(Li,Lj)
moves the robot from a location Li near a door in a room to a location Lj

near a door in a corridor, etc. The generic action gotoXXYY(Li,Lj) shortens
the conditions required for the current location XX and the next location YY,
e. g., XX = RC when (in(Li) ∧ isRoom(Li) ∧ isCenter(Li)), XX = CD when
(in(Li) ∧ isCorridor(Li) ∧ isNearDoor(Li)) and so on; likewise, YY = CC

when (isCorridor(Li)∧ isCenter(Li)), and so on.
The precondition of gotoXXYY(Li,Lj) is (in(Li) ∧ isConnected(Li,Lj))

and both locations Li and Lj attend the required conditions XX and YY.
If the result of an action is successful the robot reaches the desired location

(in(Lj)) with probability p, and if the action fails the robot remains in the same
location (in(Li)) with probability 1 − p.

The use of RMDPs offers many possibilities for abstraction. An abstract
state X is defined by the conjunction of predicates that have at least one
term as a variable. The ground state s ∈ S is an instance of X if there is
a substitution θ = {V1/t1, . . . , Vk/tk} such that Xθ = s, where Vi is a vari-
able and ti is a term. For instance, given the abstract state X = (in(L) ∧
isRoom(L) ∧ isNearDoor(L)) and the substitution θ = {L/l1}, then the state
s = Xθ = (in(l1) ∧ isRoom(l1) ∧ isNearDoor(l1)) is an instance of X .
Abstract actions can be described similarly by introducing variables in their
arguments, preconditions, and postconditions.

2.3 Generating an Abstract Policy

An abstract policy is a mapping from abstract states to abstract actions. An
abstract policy captures a generalization of optimal (or sub-optimal) policies
according to the structural characteristics of the problem. Abstract policies may
be induced from a set of examples E. Here, examples are formed by state-action
pairs taken from a set of navigation experiences generated by applying an optimal
policy. Given a goal state in the robot navigation problem, we find an optimal
policy in the ground MDP. Then we define a set of initial states from which
the robot acts optimally to generate state-action sequences that lead to the goal
state [1]. Each state-action pair of these sequences is inserted in E. The task
then is to induce an abstract policy based on E.

TILDE is an inductive algorithm that makes abstraction of the experiences,
and represents the abstract policy induced in a first order logical decision tree
(FOLDT) [11]. FOLDT is an adaptation of a decision tree for first order logic
where the tests in the nodes are conjunctions of first order literals. The TILDE
algorithm [11] is shown in Algorithm 1. TILDE creates a FOLDT based on the
set of training examples E. Test candidates are created (step 2 of the algorithm)
from a set of refinement operators [11], which are previously defined by an expert.

458 T. Matos et al.

Each refinement operator generate a set of first order literals as test candidate
for the division of the set of examples E. The best test to divide the set E is
the test that reduces a measure of entropy. The optimal test is chosen (step 3)
using the default gain ratio [12]. If the partition induced on E indicates that the
division should stop (procedure STOP CRIT in step 5), a leaf is created. The
tree leaves created (step 6) contain atomic sentences that represent abstract
actions. If more than one atomic sentence represents the remaining examples
in E, TILDE chooses the atomic sentence that represents the largest number
of examples. If the partition induced on E does not indicate that the division
should stop, for each one of the partitions induced (step 8) the function TILDE
is recursively called (step 9). An internal node is created using the optimal test
τ as test, and the two children are the sub-trees induced by each call of TILDE
(in step 9). Figure 1 shows the FOLDT induced from the examples generated
by applying the optimal policy for the task of the robot going from any location
L to location l2 in the environment shown in Figure 3(a).

Algorithm 1. Algorithm TILDE

1: function TILDE (E: set of examples): returns a decision tree
2: T = GENERATE TESTS FOL(E)
3: τ = OPTIMAL SPLIT FOL(T,E)
4: ǫ = partition induced on E by τ

5: if STOP CRIT(E,ǫ) then
6: return leaf(INFO FOL(E))
7: else
8: for all Ej in ǫ do
9: tj = TILDE(Ej)

10: end for
11: return inode(τ, (j, tj))
12: end if
13: end function

2.4 Using the Abstract Policy to Guide a Robot

The FOLDT induced by TILDE represents an abstract policy to the robot nav-
igation problem. Each node of the FOLDT captures a logical test, which either
succeeds or fails when applied to a particular (ground) state. If it succeeds, we
use the left subtree; otherwise the right one. Leaves in the FOLDT induced by
TILDE represent a single abstract action to be taken in the abstract state, which
is defined by the conjunction of all preceding tests from the root to the leaf. Note
that each abstract action can represent a set of ground actions.

We perform a forward search guided by the learned abstract navigation policy.
The robot starts in some location, observes the current (ground) state, and
decides the (ground) action to perform next by evaluating the abstract policy
on the observed state. The observed ground state imposes a substitution θ to the
abstract state and to the abstract action suggested by the FOLDT. In order to

Stochastic Abstract Policies for Knowledge Transfer 459

in(A),con(A,B), isCenter(B),

 isCorridor(B)

isCenter(A),

isCorridor(A)

isNearDoor(C),

isCorridor(C)

con(A,C),

isNearDoor(C),

isCorridor(C)

con(A,C),

isNearDoor(C),

isCorridor(C)

isCenter(A),

isCorridor(A)

isRoom(A),

isNearDoor(A)

gotoCCCD(A,C)

gotoCCCC(A,B)

gotoCDRD(A,D)

gotoCDCC(A,B)

gotoCCCD(A,C)

gotoRDRC(A,D)

gotoRDRC(A,D)

gotoRCRD(A,D)

Fig. 1. An abstract policy induced by the TILDE algorithm for the navigation problem
in the environment shown in Figure 3(a). The conjunction of predicates in a path from
the root to the leaf defines an abstract state. Tree leaves define abstract actions.

decide the ground action to be performed next by the robot, we choose uniformly
among all ground actions defined by the substitution θ to the abstract action
suggested in the FOLDT leaf.

However, it may happen that the substitution θ to the chosen abstract action
generates a set of ground actions Aθ whose elements do not belong to the set
of executable actions in the observed ground state, i. e., Aθ ∩ A(s) = ∅. In this
case we choose uniformly among all ground actions in the set A(s). Finally,
having decided what ground action to perform, the robot performs the action
and repeats the observation-decision-actuation cycle.

Note that TILDE creates a tree that contains only one abstract action in each
leaf. Unfortunately, important information is lost in this abstraction process.
Therefore, the application of an abstract policy may cause some problems. In
the next section we discuss these issues and propose a modification in the TILDE
algorithm to overcome these problems.

3 Generating a Stochastic Abstract Policy

The process of generalization causes loss of some important information to solve
the problem, since it groups together different actions to be applied in the same
abstract state. For example, in the environment of the Figure 3(a) where the goal
is to reach the location l2, the abstract state that groups together ground states
defined by locations l5 and l8 will leads to the same tree leaf (represented by the
third leaf from left to right in Figure 1). However, the training examples given
when the robot was at location l5 indicated that the optimal ground action was
gotoCDRD(15,13), and when the robot was at location l8 the optimal ground
action was gotoCDCD(18,15). In this case, during the creation of the leaf, TILDE
will choose the abstract action that represents the largest number of examples,
and the distinction between these situations will be lost.

460 T. Matos et al.

Also related to this same problem, if the abstract policy generated in this way
is used to directly control the robot navigation, there may be cases in which the
goal is never reached. To illustrate these cases, consider again the environment
shown in Figure 3(a) and the abstract policy shown in Figure 1: this abstract
policy will never drive the robot to the goal location l2 whenever he comes to
the location l8, since the abstract policy will guide the robot to the location l7 –
the abstract policy gives action gotoCDRD(l8,l7) – rather than to the location
l5 (which leads to the goal).

Due to these facts we propose a modification to the abstraction algorithm
TILDE that can handle the problems showed previously. The modification
(named X-TILDE) enables the construction of a tree that represents a stochastic
abstract policy. Each leaf now contains a set of abstract actions. We propose two
versions of the X-TILDE algorithm: P-TILDE (Probabilistic TILDE) in which
we associate a probability of choosing each abstract action belonging to a leaf,
and ND-TILDE (Nondeterministic TILDE) in which there is no preference in
the choice of an abstract action in a leaf. Kersting et al. [1] also noted some of
these problems that we raised, and in order to circumvent them, they proposed
the use of an auxiliary structure and some heuristics in the process of using the
policy.

In the leaf level, the TILDE algorithm can face two situations: i) the actions
of all the training examples corresponding to the same abstract state indicate
the same abstract action; or ii) the actions of some of them suggest another
abstract actions. In the first case, the choice is trivial, while in the latter case,
the algorithm TILDE chooses to associate to the leaf the abstract action whose
corresponding ground action occurred more often in the examples.

We propose changing TILDE so that less information is lost. Instead of as-
signing only one abstract action to each tree leaf (step 6 of the Algorithm 1),
our proposal is to associate a set of abstract actions to each leaf (see Figure 2).
We propose two variations of versions, called synthetically X-TILDE: P-TILDE
for when X is P, and ND-TILDE in the other case. P-TILDE keeps the abstract
actions and their respective frequency of occurrence in the tree leaf, and we
make use of it whenever we reuse the abstract policy. On the other hand, the
ND-TILDE keeps in the leaf all the abstract actions derived from the training
examples, and they have an equal chance of being chosen when we reuse the ab-
stract policy. Using the X-TILDE algorithm the problems previously cited are
circumvented. The stochastic abstract policy learned for the states derived for
locations l5 and l8 suggests two abstract actions as policy: gotoCDRD(A,D) and
gotoCDCD(A,C), as shown in Figure 2(c).

Therefore, when using the abstract policy we can envisage three different ways
for the robot to decide which ground action to apply, depending on the algorithm
used to generate the FOLDT:

– TILDE: to choose uniformly among all ground actions defined by the
substitution θ to the abstract action suggested in the FOLDT leaf.

Stochastic Abstract Policies for Knowledge Transfer 461

gotoCDCD(A,C)

 40 examples

gotoCDRD(A,D)

 60 examples
gotoCDRD(A,D)

(a) (b) (c)

Leaf
gotoCDRD(A,D)

 p = 0.6

gotoCDCD(A,C)

 p = 0.4

{(),
)}(

Leaf

Fig. 2. (a) Number of examples and their respective action candidates for the third
leaf (from left to right) of the FOLDT of Figure 1. (b) Leaf created by TILDE using
only the abstract action gotoCDRD(A,D). (c) Leaf created by P-TILDE, with both
abstract actions, gotoCDRD(A,D) and gotoCDCD(A,C), and their respective frequency
of occurrence. In the case of ND-TILDE there is no value associated to each abstract
action in the set of abstract actions in the leaf.

– P-TILDE: first to choose probabilistically among all abstract actions in the
FOLDT leaf and then uniformly among all ground actions defined by the
substitution θ to the chosen abstract action;

– ND-TILDE: first to choose uniformly among all abstract actions in the
FOLDT leaf and then also uniformly among all ground actions defined by
the substitution θ to the chosen abstract action.

4 Experiments

The states in the maps of Figures 3(a) and 3(b) were defined based on the
map’s morphological skeleton. Each state has a reference point which is the point
where three or more segments of the morphological skeleton intersect. Having
chosen the reference point, the states are delimited by the Voronoi diagram of
the reference point, i.e., any given point (x, y) of the map will belong to the state
S with the nearest reference point.

l4

l6

l10

l11

l9
l12 l13

l17

l14

l16

l19

(a)

l10

l25

(b)

Fig. 3. (a) An example of a relational representation of a simple navigation problem.
(b) New navigation problem used to show the policy reuse.

462 T. Matos et al.

In all experiments it was used the same FOLDT, generated by the examples
taken from the optimal policy application, whose goal was to reach the center
of the upper right room of the map in Figure 3(a) (location l2).

The experiments were divided in three parts: in the first one we applied the
abstract policy to the same environment and the same task used to build the
tree; in the second one we kept the same environment but considered different
goals; in the third one we considered a new environment (Figure 3(b)). In all
cases we compare the abstract policies with a random policy which, for every
given state s, the robot selects uniformly among the actions in the set A(s) and
executes it.

The use of the abstract policy in a new task can lead to situations that did not
exist in the source problem used to induce the abstract policy. Because of this,
the abstract policy can not suggest an adequate action for this situation. One
occurrence of this problem occurs in the second set of experiments, where for the
abstract state (in(A)∧isConnected(A,B)∧isCenter(B)∧isCorridor(B)) the
abstract policy gives gotoCDCC(A,B) as abstract action. This abstract action is
appropriated in four of the goal states (l2, l4, l9 and l17), but is not the
correct action in the last one (l18). In this situation, during the induction of the
abstract policy the abstraction algorithm has not received an example covering
this situation. Every time the location l15 is reached the abstract policy will
guide the robot to a center of a corridor, and the correct goal l18 will never be
reached.

The same kind of problem occurs in the third set of experiments. In this case
the abstract policy faces a new situation where for the abstract state (in(A) ∧
isConnected(A,B) ∧ isCenter(B) ∧ isCorridor(B) ∧ isConnected(A,C) ∧
isNearDoor(C) ∧ isCorridor(C)) the abstract action gotoCDCC(A,D) should
be considered to allow the robot to reach all centers of rooms in the environment.
The abstract policy lacks this information and because of this the environment
is divided in two distinct regions: the first encompassing most of the top states
and the second the lower states. Both regions are connected by the locations l10
and l25, but there is no path linking a location in one region to another location
of the other region, i. e., there is only a path connecting locations of the same
region. Because of this, in this set of experiments we selected the pairs of initial
and goal states belonging to the same region.

By letting N be the number of transitions used to achieve the goal, we show
for every experiment and for every policy a plot of the cumulative distribution
of N , i.e. P (N ≤ t), the mean µ(N), the standard deviation σ(N) and the
number Esucc of episodes where the robot successfully reached the goal, with
the corresponding total number of episodes Etot.

Since the mean of N will depend on the relative distance of each 〈initialstate,
goalstate〉 pair used for each episode, we consider as a measure of performance
the ratio µ(N)X−TILDE/µ(N)RANDOM . Hence a number less than one will rep-
resent an advantage for the abstract policy with respect to the random policy.
The lower this number, the better the performance.

Stochastic Abstract Policies for Knowledge Transfer 463

4.1 Experiment 1: Same Environment – Same Goal State

In the first experiment we compare the abstract policies against the random
policy in the same conditions that were used to generate the training examples
in the FOLDT induction, i. e., the robot should navigate from any location to
location l2 in the environment of Figure 3(a). We randomly selected five initial
states for the task, and ran 2000 episodes for each one. Figure 4 shows the cu-
mulative distribution, µ(N) and σ(N) for each policy. The performance ration

was: µ(N)P−T ILDE

µ(N)RANDOM
= 0.69 and µ(N)ND−TILDE

µ(N)RANDOM
= 0.60.

Policy µ σ Esucc

RANDOM 113.19 106.94 9986
P-TILDE 77.64 77.10 9998

ND-TILDE 68.76 64.91 9999

Etot = 10000

Fig. 4. Cumulative distribution, µ(N) and σ(N) for the first set of experiments

4.2 Experiment 2: Same Environment – Different Goal States

In the second experiment we kept the same environment but changed the goal
state. We chose as goal states the remaining reachable center of rooms in the
environment shown in Figure 3(a) (l4,l9,l17,l18). For each goal we ran 2000
episodes with randomly selected initial states. Figure 5 shows the cumulative
distribution, µ(N) and σ(N) for each policy. The performance ration was:
µ(N)P−T ILDE

µ(N)RANDOM
= 0.75 and µ(N)ND−TILDE

µ(N)RANDOM
= 0.70.

Policy µ σ Esucc

RANDOM 68.27 74.45 17992
P-TILDE 51.45 58.30 17999

ND-TILDE 48.11 51.59 18000
Etot = 18000

Fig. 5. Cumulative distribution, µ(N) and σ(N) for the second set of experiments

4.3 Experiment 3: New Environment

For each 〈initialstate, goalstate〉 pair we ran 2000 episodes. Figure 6 shows the
cumulative distribution, µ(N) and σ(N) for each policy. The performance ratio

was: µ(N)P−T ILDE

µ(N)RANDOM
= 0.78 and µ(N)ND−TILDE

µ(N)RANDOM
= 0.68.

464 T. Matos et al.

Policy µ σ Esucc

RANDOM 177.97 172.73 7971
P-TILDE 138.84 176.39 7901

ND-TILDE 120.49 155.25 7974
Etot = 8000

Fig. 6. Cumulative distribution, µ(N) and σ(N) for the third set of experiments

5 Conclusion and Future Works

We presented a new approach for the policy reuse in robot navigation problems.
The policy reuse is obtained by using a FOLDT that represents an abstract pol-
icy. The FOLDT is induced using the TILDE algorithm. Our approach, named
X-TILDE, extends the TILDE algorithm and creates an FOLDT that represents
a stochastic abstract policy. This stochastic abstract policy retains more infor-
mation about the structure of the navigation problems and solves situations that
the abstract policy generated by the original TILDE algorithm can not solve.

The quality of the abstract policy generated by the TILDE algorithm depends
on the structure of the problem and the relational description chosen. Whereas
the TILDE algorithm does not provide solution to many problems, our experi-
ments showed that our approach can solve a much larger set of problems. The
experiments also showed that the abstract policy generated by X-TILDE has
a better performance than a random policy in a new task, which leads us to
conclude that there was indeed a transfer of knowledge between tasks.

As the experiments showed, the performance of P-TILDE is worse than the
performance of ND-TILDE. We believe it is because the P-TILDE algorithm
classifies states based on the ground policy, but aggregates them based only on
their relational descriptions. Since ND-TILDE does not take into account the
distribution of occurrence of actions, the results showed that it is better to use
a more conservative approach. On the other hand, the random policy, which
is the most conservative of all policies, showed worse results. This leads us to
investigate in the future a better compromise between these policies and to find
ways to determine the best balance between the approaches.

Despite being more robust, our approach does not guarantee that every task
can be performed. This depends on the experience in the source task, and may fail
in situations that did not occur in the source task. In [4] random perturbations
are applied to the source task so that even in unrepresentative tasks we can have
the transfer of knowledge robustly. Another important topic to be investigated
is to define how the source problems should be selected, which should be simple
but should able to generate useful policies for more complex tasks.

The main motivation for reusing a policy in a robot navigation domain is to
guide the robot in solving similar problems. If the abstract policy learned is not
perfect, the agent must learn from the knowledge that was transferred. In this
case, the abstract policy can be used as a advice to guide the exploration in

Stochastic Abstract Policies for Knowledge Transfer 465

RL algorithms. This combination aims to accelerate the learning process of an
optimal political in the target task [13].

Acknowledgments. This research was partially supported by FAPESP
(08/03995-5, 09/04489-9, 09/14650-1, 10/02379-9) and by CNPq (475690/2008-
7, 305512/2008-0).

References

1. Kersting, K., Plagemann, C., Cocora, A., Burgard, W., Raedt, L.D.: Learning to
transfer optimal navigation policies. Advanced Robotics: Special Issue on Imitative
Robots 21, 1565–1582 (2007)

2. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: A
survey. Journal of Machine Learning Research 10, 1633–1685 (2009)

3. Madden, M.G., Howley, T.: Transfer of experience between reinforcement learning
environments with progressive difficulty. Artif. Intell. Rev. 21, 375–398 (2004)

4. Sherstov, A.A., Stone, P.: Improving action selection in MDP’s via knowledge
transfer. In: Proc. of the 20th National Conference on Artificial Intelligence (2005)

5. Bianchi, R., Ribeiro, C., Costa, A.: Accelerating autonomous learning by us-
ing heuristic selection of actions. Journal of Heuristics 14, 135–168 (2008),
doi:10.1007/s10732-007-9031-5

6. Lane, T., Wilson, A.: Toward a topological theory of relational reinforcement learn-
ing for navigation tasks. In: Proc. of the 18th Int. Florida Artificial Intelligence
Research Society Conference (2005)

7. Kersting, K., Otterlo, M.V., Raedt, L.D.: Bellman goes relational. In: Brodley,
C.E. (ed.) Proc. of the 21st Int. Conference on Machine Learning, Banff, Alberta,
Canada, pp. 465–472 (2004)

8. Otterlo, M.V.: The logic of adaptive behavior: knowledge representation and al-
gorithms for the Markov decision process framework in first-order domains. PhD
thesis, University of Twente, Enschede (2008)

9. Hoey, J., St-Aubin, R., Hu, A.J., Boutilier, C.: Spudd: Stochastic planning using
decision diagrams. In: Proc. of Uncertainty in Artificial Intelligence, Stockholm,
Sweden (1999)

10. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

11. Blockeel, H., Raedt, L.D.: Top-down induction of first-order logical decision trees.
Artificial Intelligence 101, 285–297 (1998)

12. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers
Inc., San Francisco (1993)

13. Matos, T., Bergamo, Y.P., da Silva, V.F., Cozman, F.G., Costa, A.H.R.: Simultane-
ous abstract and concrete reinforcement learning. In: Proc. of the 9th Symposium
on Abstraction, Reformulation and Approximation (2011)

	Stochastic Abstract Policies for Knowledge Transfer in Robotic Navigation Tasks
	Introduction
	Learning Relational Navigation Policies
	Relational Markov Decision Process
	Modeling a Robotic Navigation Problem as an RMDP
	Generating an Abstract Policy
	Using the Abstract Policy to Guide a Robot

	Generating a Stochastic Abstract Policy
	Experiments
	Experiment 1: Same Environment – Same Goal State
	Experiment 2: Same Environment – Different Goal States
	Experiment 3: New Environment

	Conclusion and Future Works
	References

