
Accelerating reinforcement learning by reusing abstract policies 1

Author(s):
Yannick Plaino Bergamo

Tiago Matos

Valdinei Freire da Silva

Anna Helena Reali Costa

1This work was supported by Fapesp Project LogProb, grant 2008/03995-5, São Paulo, Brazil.



Accelerating reinforcement learning by reusing abstract

policies

Yannick Plaino Bergamo 1, Tiago Matos 1, Valdinei Freire da Silva 1, Anna Helena Reali Costa 1

1Laboratório de Técnicas Inteligentes (LTI/EPUSP)

Escola Politécnica, Universidade de São Paulo

São Paulo, SP, Brazil

{yannick,tiago.matos}@usp.br, valdinei.freire@gmail.com, anna.reali@poli.usp.br

Abstract. Reinforcement learning (RL) provides a general approach for devel-

oping intelligent agents that are able to optimize their behaviors in stochastic

environments. Unfortunately, most work in RL is based on propositional rep-

resentations, making it difficult to apply it to more complex real-world tasks

in which states and actions are more naturally represented in relational form.

Moreover, most work in RL does not take into account existing solutions to sim-

ilar problems when learning a policy to solve a new problem, and consequently

solves the new problem from scratch, what can be very time consuming. In this

article we explore the powerful possibilities of using relational descriptions so

that we can learn abstract policies, and in reusing these policies to improve

initial performance of an RL learner in a similar new problem. Experiments

carried out attest the effectiveness of our proposal.

1. Introduction

Reinforcement learning (RL) techniques have demonstrated great success in the devel-

opment of intelligent agents with the ability to optimize their behavior in stochastic en-

vironments. However, RL methods still suffer from some important problems, among

which we highlight the slow convergence and the inability to reuse previously acquired

knowledge in similar tasks.

Several solutions have been proposed to reuse knowledge – previously learned in

the resolution of a similar problem or given by a specialist – to improve initial perfor-

mance of an RL learner in a new problem. Some works propose the use of a heuristic

function properly chosen, which is used to advise appropriate actions to be performed

to guide the state space exploration during the learning process [Bianchi et al. 2007,

Burkov and Chaib-draa 2007, Bianchi et al. 2008, Knox and Stone 2010]. Others pro-

pose to aggregate similar states in macro-states and use macro-actions to transit be-

tween macro-states. Then, macro-states and macro-actions are used to solve similar

tasks [Drummond 2002]. There are also authors who have proposed to divide the task

into subtasks, and find policies that solve those subtasks. These policies represented in

an abstract form are then used to solve similar problems, together with a hierarchical

representation of the aggregation states of the problem [Uther and Veloso 2002].

There is still work towards representing abstract states and actions in a relational

form. Relational representations facilitate formulating broad collections of related tasks

as a single domain, yielding natural generalization between these related tasks. Taylor

and Stone [Taylor and Stone 2009] provide a thorough survey on the transfer of learning



using propositional descriptions of the states. Cocora et al [Kersting et al. 2007] propose

to learn relational decision trees as abstract navigation strategies from example paths,

and then the navigation policy learned in one environment is directly applied to unknown

environments. Based on samples experienced by the agent when acting optimally in the

source task, in [Madden and Howley 2004] propositional symbolic learners generalize the

optimal policy. In [Sherstov and Stone 2005] action relevance is used in order to reduce

the action set to be explored in the target task.

In this paper we also explore the intuition that generalization from closely related,

but solved, problems may often produce policies that make good decisions in many states

of a new unsolved problem. Our proposal consists in abstracting policies from solved

problems and then using these abstractions to significantly enhance the performance of

the learning process in a new problem not yet solved.

The paper is organized as follows. Section 2 briefly reviews basic concepts of

Markov decision processes (MDP), a sound theoretical framework to deal with uncer-

tainty, and reinforcement learning, a method to learn policies by trial-and-error in prob-

lems modeled as MDPs. In Section 3 we provide a brief overview of relational reinforce-

ment learning, so that we can define more precisely the concept of an abstract policy,

which is the structure we use here to capture generalizations from problems. Then, in

Section 4 we present our proposals to enable knowledge transfer to improve initial per-

formance of an RL agent learning in a new problem. Section 5 reports an experiments

carried to validate ours proposals, and section 6 summarizes our conclusions.

2. Markov decision processes

We will consider that our task can be modelled as a Markov Decision Process (MDP)

[Puterman 1994]. At each (discrete) time step an agent observes the state of the system,

chooses an action causing the system to evolve to a new state, returning a reward to the

agent. Specifically an MDP is a tuple 〈S,A, T, r〉, where:

• S , a discrete set of states;

• A =
⋃

σ∈S Aσ, a discrete set of actions, where Aσ is the set of allowable actions

in state σ ∈ S;

• T : S × A × S 7→ [0, 1], a transition function such that T (σ, α, σ′) = P(st+1 =
σ′|st = σ, at = α);

• r : S × A× S 7→ R, a reward function, such that rt+1 = r(σ, α, σ′) is the reward

received when reaching, at time t + 1, state σ′ having previously chosen action α
at state σ;

the task of the agent is to find a policy, i.e. a sequence of decision rules, π : S×A 7→ [0, 1],
such that π(σ, α) = P(at = α|st = σ). An optimal policy π∗ is one that maximizes some

function Rt of the future rewards rt+1, rt+2, . . . A common definition, which will be used

for our discussion, is to consider the sum of discounted rewards Rt =
∑

∞

k=0
γkrt+k+1,

where 0 < γ < 1 is the discount factor.

In our discussion we will be especially interested in a subclass of MDPs that

are episodic, i.e. the reinforcement function implicitly defines a set G of one or more

goal states, when the goal is reached the environment is restarted in some initial state

which could be chosen according to some probability distribution. In this case we



1 2

3

4

5 6

Figure 1. An example environment with 6 states.

also define [do Lago Pereira et al. 2008] a probabilistic planning domain to be the tuple

D = 〈S,A, T 〉, and a probabilistic planning problem as the tuple P = 〈D,G〉.

Example 1. Consider the environment represented on figure 1. Each geometric shape

is a location that the agent can occupy, and if two locations are connected by an edge it

means that the agent can reach one coming from the other. The state of the environment

is represented by the location occupied by the agent1. We can define S = {σ1, . . . , σ6},

where for example σ2 represents the configuration in which the agent is on the triangle

with the number 2. The set of actions A =
⋃

6

i=1
Aσi

=
⋃

6

i=1
{αij, j ∈ {1, . . . , 6}},

represents a choice of transition for the agent, i.e. α12 means that the agent chooses to go

to the triangle 2 when on state 1. Note that we also considered the possibility for the agent

to stay in the state, denoted by αii. Let’s assume for simplicity that the environment is

deterministic, then T (σi, a, σj) is equal to 1 if a = αij and zero otherwise. Our planning

domain D is fully specified. Now suppose that we would like to learn how to reach state

σ6. We could define r(s, a, s′) to be equal to 0 if s = s′ = σ6 and −1 otherwise; with the

reinforcement so defined, the agent maximizes Rt if he reaches σ6 in the smallest number

of steps and stays there afterwards. Thus the reinforcement function implicitly defines

G = {σ6}, and our planning problem P is also specified. Since σ2 contains two actions

that are optimal, there are several possibilities for the optimal policy. We could have for

example π∗(σ4, α45) = 1, π∗(σ2, α21) = 0 and π∗(σ2, α23) = π∗(σ2, α24) =
1

2
.

2.1. Reinforcement learning

Several methods are available for solving MDPs, in the present work we will consider

Reinforcement Learning [Sutton and Barto 1998], which is particularly useful when T is

not known to the agent. Within this framework it is common to define a state action value

function Qπ : S × A 7→ R that for a given policy π gives an estimate of the expected

value Eπ[Rt|st = σ, at = α]. This function is learned by direct interaction with the

environment: at each time step the agent performs an action, observes the outcome and

uses some strategy to update the estimate of the Q function; we refer to the book by

Sutton and Barto for the details. With a good estimate of the Q function, the agent can

maximize Rt by choosing at = argmaxα Q(σ, α). It should be pointed out that both Q
and π should be considered functions indexed by the time step t; this happens since Q
is updated at (possibly) each time step, and π might change by, for example, taking into

1Note that there is a difference between a geometric shape that represents a location and a state: the state is a configuration of the

environment, where the agent is at some location. This distinction will be particularly important on section 3.2



consideration the updated values of the Q function. In order to avoid heavy notation we

won’t make this dependence explicit.

Two problems arise from this approach. First, the agent must choose between ex-

ploring more the environment, in order to improve its estimate of Q, and exploiting his

current knowledge to maximize his reward; second, if the goal, defined by the reinforce-

ment function, is changed, the agent must learn everything from scratch. Our concern will

be to alleviate the latter problem by abstracting a previously learned policy for a similar

problem, using a relational language, to guide the initial exploration of the environment.

By this we would like to provide a better initial performance for the agent, that would oth-

erwise need to start exploring the environment randomly, while gradually replacing the

previously learned policy with the one induced by the Q function he is currently learning.

Example 2. Back to the example of figure 1 and with P defined as in example 1,

assuming the discounted reward model we can easily see that for example Qπ∗

(σ4, α45) =
−1 − γ and Qπ∗

(σ4, α43) = −1 − γ − γ2. Note that α43 is not an optimal action; this

is not a problem since Qπ∗

tells us the value of Rt that we expect to obtain by choosing

the action in the argument and then follow the optimal policy. As an illustration of the

problem we face when the goal is changed, suppose that now we want to reach state σ1.

The symmetry of the figure makes it very clear how the problem is very similar to the one

we solved before, but the reinforcement function has now changed to r(s, a, s′) = 0 if

s = s′ = σ2 and r(s, a, s′) − 1 otherwise. We need to learn the Qπ∗

from scratch since

now for example Qπ∗

(σ4, α45) = −1− γ − γ2 − γ3.

3. Relational representation

We begin this section with some definitions from first order logic. Then we provide a

brief overview of relational reinforcement learning. With these concepts we finally make

the concept of an abstract policy more precise.

3.1. Relational logic

In this subsection we present some definitions and notations from first order logic. The ex-

position is tailored to our needs; for a more formal treatment we refer to e.g. [Lloyd 1987].

A relational alphabet Σ = P ∪ C is composed of a set of predicates P and a set

of constants C. If t1, . . . ,tn are terms, i.e. each one is a variable or a constant, and if

p/n is a predicate symbol with arity n ≥ 0, then p(t1 . . .tn) is an atom. A conjunc-

tion is a set of atoms; in our discussion each variable in a conjunction will be implicitly

assumed to be existentially quantified. We denote by vars(A) the set of variables of a

conjunction A. Background Knowledge BK is a set of Horn Clauses. A substitution θ
is a set {X1/t1, . . . ,Xn/tn}, binding each variable Xi to a term ti; it can be applied to a

term, atom or conjunction. If A and B are conjunctions and there is a substitution θ such

that Bθ ⊆ A, we say that A is θ-subsumed by B, denoted by A �θ B. A term is called

ground if it contains no variables; in a similar way we define ground atoms and ground

conjunctions. The Herbrand base BΣ is the set of all possible ground atoms that can be

formed with the predicates and constants in Σ.

3.2. Relationally factored Markov Decision Processes

A relationally factored Markov Decision Process (RMDP) [van Otterlo 2004] is a tuple

〈Σ, BK, T, r〉, where Σ = D ∪ P ∪ A, is a relational alphabet such that:



• D is a set of constants representing the objects of the environment;

• P is a set of predicates used to describe relations and properties among objects;

• A is a set of action predicates.

The set of states S of the RMDP is the set of all σ ⊆ BP∪D satisfying the integrity

constraints imposed by BK. The set of actions is A = BA∪D. With S and A defined, T
and r have the same meaning as described in section 2.

From the definition we can see that an RMDP is an MDP where the states and

the actions are represented (factored) through a relational language. All definitions from

section 2 are still valid here, and so are the methods of solution. The advantage of working

with such a representation is the possibility of aggregating sets of states and actions by

using abstract states. Specifically, an abstract state σ̂ ∈ Ŝ is a conjunction over P , D
and BK; an abstract action α̂ ∈ Â is an atom over A and D. We can also define Sσ̂,

the set of ground states covered by σ̂, as Sσ̂ = {σ ∈ S|σ �θ σ̂}. Similarly we define

Aα̂ = {α ∈ A|α �θ α̂}

Example 3. Let’s review example 1 by using an RMDP model. There are many

ways we can choose Σ; as an example let’s consider D = {c1,t2,s3,s4,t5,c6};

P = {in/1,circle/1,square/1,triangle/1,connected/2}; A =
{goto/2,stay/1}. The meaning of each predicate should be intuitive, we give

one example to make it clearer: if the agent is occupying location 1 in the map,

which we are representing as the object c1, we can describe the state of the environ-

ment as σ1 = {in(c1),circle(c1),connected(c1,t2),triangle(t2)}.

If the agent makes a choice to go from location c1 to location t2, we write this

by goto(c1,t2). We can also consider some abstract states, for example: σ̂1 =
{in(X),connected(X,Y),circle(Y)} represents all states in which the agent is

in a location connected to a circle, i.e. Sσ̂1
= {σ2, σ5}; σ̂2 = {in(X),circle(X)},

represents all states in which the agent is in a location that is a circle, i.e. Sσ̂2
= {σ1, σ6}.

In σ̂1 the agent could consider the action goto(X,Y), and in σ̂2 he could consider to

stay on that set, i.e. the action stay(X).

3.3. Abstract policies

We can now define an abstract policy as a list of abstract action rules [van Otterlo 2004]

σ̂
pσ̂,i

−−→ α̂i, for σ̂ ∈ Ŝ , α̂i ∈ Â satisfying vars(α̂i) ⊆ vars(σ̂); pσ̂,i is the probability of

choosing α̂i when on a state covered by σ̂.

There are several way of obtaining such a list. One way would be to solve

the RMDP in the abstract setting [van Otterlo 2004, Kersting et al. 2004]. Another

possibility, that would avoid giving the dynamics of the environment in a relational

language, could be to learn an abstract policy by inducting a logical decision tree

[Blockeel and De Raedt 1997] from the examples generated by applying the learned opti-

mal policy for a specific problem: the set of abstract states is the set made by the union of

all conjunctions in a path from the root to a leaf, and the set of abstract actions is the set

of all abstract actions contained in the leafs. An abstract policy given by a teacher could

also be an option.

An abstract policy induces a policy in the ground MDP, which we will name πa.



Given a state σ, we find the first2 σ̂ such that σ �θ σ̂. We then have a set of abstract

actions α̂i, and associated probabilites. We could use those ones to assign the probability

πa(σ, a), where a ∈ {α ∈ Aσ|α �θ α̂i}. It should be pointed out that depending on how

the abstract policy was obtained there could be no σ̂ in the list for a given σ. In this case

we could select randomly from Aσ.

Example 4. Considering the RMDP model of example 3, one abstract policy could be:

in(X),circle(X)
1.0
−−→ stay(X) (1)

in(X),connected(X,Y),circle(Y)
1.0
−−→ goto(X,Y) (2)

in(X),connected(X,Y),triangle(Y)
1.0
−−→ goto(X,Y) (3)

Note how the order is important, since rule (1) applied to state σ1 would suggest action

α11, while rule (3) would suggest α12.

4. Using the abstract policy to guide initial exploration

4.1. Initial considerations

Let’s start by recalling that we are dealing with a probabilistic planning domain, and

that we want to provide a better initial performance by using some policy that uses pre-

viously acquired knowledge, while gradually learning the optimal one. We briefly add

some notation to make our argument more compact. Since we are dealing with planning

problems, we can consider that each task is represented by a tuple 〈σ0, σg〉, where σ0 ∈ S
and σg ∈ G. Let’s also define T (π, 〈σ0, σg〉) = {s1s2 . . . sn for some n|s1 = σ0, sn =
σg, T (si, ai, si+1) 6= 0 for some ai such that π(si, ai) 6= 0}, i.e. the set of all possible

transition histories that start on state σ0, and, by following policy π, reach at some time

step the goal state σg.

Example 5. With P and π∗ defined as in example 1, we have T (π∗, 〈σ3, σ6〉) = {σ3σ5σ6}
and T (π∗, 〈σ2, σ6〉) = {σ2σ3σ5σ6, σ2σ4σ5σ6}.

In the following discussion π∗ is the optimal policy for the task 〈σ0, σg〉; πr is

a random policy that at each state σ chooses an action with uniform distribution from

the set Aσ; πa is the policy induced by the abstract policy, as defined on section 3.3.

Also let’s define πQ to be the policy that acts greedily with respect to the Q function, i.e.

πQ(σ, α
∗) = 1 if α∗ = argmaxα Q(σ, α).

4.2. Using the abstract policy

The usual approach in reinforcement learning is to start learning the Q function estimate

by random exploration of the environment, while gradually making use of the Q function

to choose actions according to πQ; algorithms such as ǫ-greedy and softmax action selec-

tion work in this way [Sutton and Barto 1998]. In our method we are going to make use

of the previously learned knowledge contained in πa for the initial exploration. However,

for reasons that we will later explain, we are not going to fully replace πr by πa.

2Note that the abstract policy was defined as a list of action rules, i.e. order matters. In the case of a tree this mapping is also

unambiguous.



We start by giving a better explanation as to why πa should be better than πr in

the initial learning phase. If, facing a new task 〈σ0, σg〉, the agent starts using πr, he will

consider all transitions in T (πr, 〈σ0, σg〉). On the other hand, we have T (πa, 〈σ0, σg〉) ⊂
T (πr, 〈σ0, σg〉), and if we assume that πa was learned considering a similar task, the

actions that will be taken into consideration by the agent have the property they were

good to solve a similar problem before. Therefore he should be able to obtain a better

initial performance, i.e. a higher value of Rt in the first episodes when compared to the

value he would obtain by only considering πr.

Example 6. Let’s go back to example 1, and let’s consider πa induced by the abstract

policy of example 4. As previously hinted on example 2, if we change the goal from σ6

to σ2 the agent needs to learn everything from scratch. However note that for example

T (πa, 〈σ3, σ1〉) = {σ3σ2σ1, σ3σ5σ6}, while {σ3σ2σ1, σ3σ5σ6, σ3σ4σ2σ1, σ3σ5σ4σ2σ1} ⊂
T (πr, 〈σ3, σ1〉), which is a countably infinite set.

As to why the agent should still consider πr and gradually change to πQ, we should

note that not necessarily we have T (π∗, 〈σ0, σg〉) ⊂ T (πa, 〈σ0, σg〉), i.e. πa could lead to

non-optimal actions, or could not be able to solve the task. Therefore the agent still needs

to explore actions not suggested by πa, thereby justifying the use of πr. Since proper

convergence of the Q functions guarantees that πQ = π∗ [Sutton and Barto 1998], in the

long run the agent should act only according to πQ to maximize his reward.

To make things more formal, we will consider that at each time step t the agent

uses one of the policies in the set {πQ, πr, πa} probabilistically, i.e., we assume that we

have two functions ρt : S 7→ [0, 1] and γt : S 7→ [0, 1] such that:

π(σ, α) =





πQ(σ, α), with probability ρt(σ)

πr(σ, α), with probability [1− ρt(σ)]γt(σ)

πa(σ, α), with probability [1− ρt(σ)][1− γt(σ)]

(4)

From what we explained, both γt and ρt should converge to 1, in the limit, with a faster

convergence rate for γt in order to guarantee that the environment was properly explored

before using exclusively πQ. As it can be seen, if we take γt to be identically equal to

1, we go back to the usual methods in reinforcement learning that we mentioned in the

beginning of this subsection

5. A navigation problem

As an example of what we expect to obtain, consider the map on figure 2. We assigned

some reference points represented by geometrical shapes, each having a meaning with

respect to the semantic of the map, e.g. a square is the center of a room. We then modeled

the map relationally, in a way similar to that of example 3.

Specifically, we define P = {isCorridor/1, isRoom/1,

isCenter/1, isNearDoor/1, in/1, isConnected/2}; and

A = {gotoRDRD/2, gotoCDCD/2, gotoRCRD/2, gotoRDRC/2,

gotoRDCD/2, gotoCDRD/2, gotoCCCD/2, gotoCDCC/2}. To

make notation more compact, we are considering the following abbrevi-

ations: cd(X) = {isCorridor(X),isNearDoor(X)}; cc(X) =



Figure 2. Map used in our navigation problem.

{isCorridor(X),isCenter(X)}; rc(X) = {isRoom(X),isCenter(X)};

rd(X) = {isRoom(X),isNearDoor(X)}.

The meaning of each predicate should be intuitive, we give one exam-

ple to make it clearer: if the agent is occupying location 1 in the map, which

we are representing as the object l1 ∈ D, we can describe the state as

σl1 = {in(l1), isCorridor(l1), isCenter(l1), isConnected(l1,l6),

isCorridor(l6), isNearDoor(l6)}. If the agent chooses to go from location

σl1 in the map of Figure 2 to location σl6 we write this action by gotoCCCD(l1,l6).

We started by learning the optimal policy to reach center room σl2 in the map, and

then generated some examples by applying the optimal policy in a few tasks, where the

goal state was kept fixed and the starting state was selected randomly. We then obtained an

abstract policy by inducting a first order logical decision tree (FOLDT), using the TILDE

algorithm [Blockeel and De Raedt 1997]. In the FOLDT each path from the root to a leaf

represents an abstract state, and each leaf is a set of abstract actions. Recall from section

3.3 that each abstract action rule is of the form σ̂
pσ̂,i

−−→ α̂i; in our case we considered

pσ̂,i to be the uniform distribution. To show the resulting abstract policy we converted the

FOLDT into a list by doing a depth-first search; the result is shown below:

in(X),cd(X),cc(Y)
0.33
−−−→ gotoCDCD(X,Z)

in(X),cd(X),cc(Y)
0.33
−−−→ gotoCDCC(X,Y)

in(X),cd(X),cc(Y)
0.33
−−−→ gotoCDRD(X,Z)

in(X),cd(X)
1.0
−−→ gotoCDCD(X,Z)

in(X),connected(X,Y),rc(Y)
0.33
−−−→ gotoRDCD(X,Z)

in(X),connected(X,Y),rc(Y)
0.33
−−−→ gotoRDRC(X,Y)

in(X),connected(X,Y),rc(Y)
0.33
−−−→ gotoRDRD(X,Z)

in(X),rc(Z)
1.0
−−→ gotoRCRD(X,W)

in(X)
1.0
−−→ gotoCCCD(X,W)

In order to take full advantage of all available information in the abstract policy, we further



0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Episodes

N
T

 

 
Without π

a

With π
a

Figure 3. Average number of transitions NT required to reach the goal, with and without the use of

the abstract policy πa.

considered that a ground action suggested by the abstract policy could not be suggested

again by πa in the same episode, i.e. if during some episode the agent is at state σ and if

the abstract policy suggests action α ∈ Aσ, then the next time, during the same episode,

being the agent at state σ and using πa for choosing the action to be taken, the set of

possible ground actions suggested by πa is reduced to Aσ − {α}. By episode we mean a

sequence of steps that takes the robot from an initial location to the goal state, as discussed

in section 2.

We assumed that the abstract policy could guide the robot in a sub-optimal way

to the goal state, so that we initialized ρ0 = 0 and γ0 = 0, and at each episode we

incremented ρ by 0.05 and γ by 0.06, according to what we discussed in section 4.2.

After this initial setup, we used the abstract policy to solve a new task. Specifi-

cally, we considered task 〈σl1, σl26〉, and we looked at the average number NT of transi-

tions (steps) required to reach the goal at each episode. We repeated this task 1000 times

and took the average value for each episode. The result for the first 10 episodes can be

seen on Figure 3.

The strategy that uses πa starts with a smaller average number of transitions and

gradually decreases this value due to the learning process. The strategy that uses only πr

starts with a higher average number of steps. This difference in the beginning of the curves

shows that the abstract policy can transfer knowledge between problems, thus obtaining

a better initial performance as claimed.

During the learning process the distance between the curves is reduced (approx-

imately in the fifth episode). This is due to the fact that πa is gradually replaced by πr

during the learning process (by increasing γt) to guarantee the convergence of the Q func-

tion estimate.



6. Conclusions

In this work we have proposed a method to take into account existing solutions to similar

problems when learning a policy to solve a new problem, so that we could improve initial

performance of an RL learner. We explore the powerful possibilities of using relational

representations, which facilitate policy abstraction and generalization between collections

of related tasks. Our proposal consisted in abstracting policies from solved problems and

then using these abstractions in a combined way in an RL learner, in order to significantly

enhance the initial performance of the learning process in a new problem not yet solved.

Empirical evaluation of our approach in the robotic navigation problems were

carried out. Experimental results showed that the performance of the learning algorithm

can be improved even using a very simple abstract policy.

An important topic to be investigated in future works is concurrently to improve

the abstract policy using experiences conducted in the current learning process so that

this policy could generalize a wider class of similar problems and improve the current

and future learning processes with better policy directions.

Acknowledgments

We are grateful to FAPESP (grants 10/02379-9, 09/04489-9, 09/14650-1, 8/03995-5) and

to CNPQ (grant 475690/2008-7) for the support.

References

Bianchi, R. A. C., Ribeiro, C. H. C., and Costa, A. H. R. (2007). Heuristic selection of

actions in multiagent reinforcement learning. In IJCAI, pages 690–695.

Bianchi, R. A. C., Ribeiro, C. H. C., and Costa, A. H. R. (2008). Accelerating autonomous

learning by using heuristic selection of actions. Journal of Heuristics, 14(2):135–168.

Blockeel, H. and De Raedt, L. (1997). Top-down induction of logical decision trees. In

Artificial Intelligence.

Burkov, A. and Chaib-draa, B. (2007). Adaptive play q-learning with initial heuristic

approximation. In ICRA, pages 1749–1754.

do Lago Pereira, S., de Barros, L., and Cozman, F. (2008). Strong probabilistic planning.

In Gelbukh, A. and Morales, E., editors, MICAI 2008: Advances in Artificial Intelli-

gence, volume 5317 of Lecture Notes in Computer Science, pages 636–652. Springer

Berlin / Heidelberg.

Drummond, C. (2002). Accelerating reinforcement learning by composing solutions of

automatically identified subtasks. Journal of Artificial Intelligence Research, 16:59–

104.

Kersting, K., Otterlo, M. V., and Raedt, L. D. (2004). Bellman goes relational. In In

ICML, pages 465–472. ACM.

Kersting, K., Plagemann, C., Cocora, A., Burgard, W., and Raedt, L. D. (2007). Learning

to transfer optimal navigation policies. Advanced Robotics: Special Issue on Imitative

Robots, 21(13):1565––1582.



Knox, W. B. and Stone, P. (2010). Combining manual feedback with subsequent MDP

reward signals for reinforcement learning. In Proc. of 9th Int. Conf. on Autonomous

Agents and Multiagent Systems (AAMAS 2010).

Lloyd, J. W. (1987). Foundations of Logic Programming, 2nd Edition. Springer Verlag.

Madden, M. G. and Howley, T. (2004). Transfer of experience between reinforcement

learning environments with progressive difficulty. Artif. Intell. Rev., 21:375–398.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition.

Sherstov, A. A. and Stone, P. (2005). Improving action selection in MDP’s via knowledge

transfer. In Proceedings of the Twentieth National Conference on Artificial Intelligence.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction (Adaptive

Computation and Machine Learning). The MIT Press.

Taylor, M. E. and Stone, P. (2009). Transfer learning for reinforcement learning domains:

A survey. Journal of Machine Learning Research, 10(1):1633–1685.

Uther, W. T. B. and Veloso, M. M. (2002). Ttree: Tree-based state generalization with

temporally abstract actions. In In Proceedings of SARA-2002, pages 260–290.

van Otterlo, M. (2004). Reinforcement learning for relational MDPs. In Nowe, A.,

Lenaerts, T., and Steenhaut, K., editors, Proceedings of the Machine Learning Con-

ference of Belgium and the Netherlands, BeNeLearn ’04, pages 138–145, Brussels.

Brussels.


