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Abstract

In recent years there has been interest in study-
ing belief change, specifically contraction, in Horn
knowledge bases. Such work is arguably interest-
ing since Horn clauses have found widespread use
in AI; as well, since Horn reasoning is weaker than
classical reasoning, this work also sheds light on
the foundations of belief change. In this paper, we
continue our previous work along this line. Our
earlier work focussed on defining contraction in
terms of weak remainder sets, or maximal subsets
of an agent’s belief set that fail to imply a given
formula. In this paper, we first examine issues re-
garding the extended contraction postulates with
respect to Horn contraction. Second, we examine
package contraction, or contraction by a set of for-
mulas. Last, we consider the closely-related no-
tion of forgetting in Horn clauses. This paper then
serves to address remaining major issues concern-
ing Horn contraction based on remainder sets.

1 Introduction

Belief change addresses how a rational agent may alter its be-
liefs in the presence of new information. The best-known ap-
proach in this area is the AGM paradigm [Alchourrón et al.,
1985; Gärdenfors, 1988], named after the original developers.
This work focussed on belief contraction, in which an agent
may reduce its stock of beliefs, and belief revision, in which
new information is consistently incorporated into its belief
corpus. In this paper we continue work in belief contraction
in the expressively weaker language of Horn formulas, where
a Horn formula is a conjunction of Horn clauses and a Horn
clause can be written as a rule in the form a1∧a2∧· · ·∧an →
a for n ≥ 0, and where a, ai (1 ≤ i ≤ n) are atoms. (Thus,
expressed in conjunctive normal form, a Horn clause will
have at most one positive literal.) Horn contraction has been
addressed previously in [Delgrande, 2008; Booth et al., 2009;
Delgrande and Wassermann, 2010; Zhuang and Pagnucco,
2010b]. With the exception of the last reference, this work
centres on the notion of a remainder set, or maximal subset
of a knowledge base that fails to imply a given formula.

In this paper we continue work in Horn belief contraction,
on a number of aspects; our goal is to essentially complete the

overall framework of Horn contraction based on remainder
sets. Previous work in this area has addressed counterparts
to the basic AGM postulates; consequently we first examine
prospects for extending the approach to counterparts of the
supplemental AGM postulates. Second, we address package
contraction, in which one may contract by a set of formulas,
and the result is that no (contingent) formula in the set is be-
lieved. In the AGM approach, for a finite number of formulas
this can be accomplished by contracting by the disjunction of
the formulas. Since the disjunction of Horn formulas may not
be in Horn form, package contraction then becomes an impor-
tant accessory operation. Last we briefly examine a forgetting
operator, in which one effectively reduces the language of dis-
course.

The next section introduces belief change while the third
section discusses Horn clause reasoning, and previous work
in the area. Section 4 examines the supplementary postulates;
Section 5 addresses package contraction; and Section 6 cov-
ers forgetting. The last section contains a brief conclusion.

2 The AGM Framework for Contraction

As mentioned, the AGM approach [Alchourrón et al., 1985;
Gärdenfors, 1988] is the best-known approach to belief
change. Belief states are modelled by deductively-closed sets
of sentences, called belief sets, where the underlying logic
includes classical propositional logic. Thus a belief set K
satisfies the constraint:

If K logically entails φ then φ ∈ K.

The most basic operator is called expansion: For belief set
K and formula φ, the expansion of K by φ, K + φ, is the
deductive closure of K ∪ {φ}. Of more interest are contrac-
tion, in which an agent reduces its set of beliefs, and revi-
sion, in which an agent consistently incorporates a new belief.
These operators can be characterised by two means. First, a
set of rationality postulates for a belief change function may
be provided; these postulates stipulate constraints that should
govern any rational belief change function. Second, specific
constructions for a belief change function are given. Rep-
resentation results can then be given (or at least are highly
desirable) showing that a set of rationality postulates exactly
captures the operator given by a particular construction.

Our focus in this paper is on belief contraction, and so we
review these notions with respect to this operator. Informally,



the contraction of a belief set by a formula is a belief set in
which that formula is not believed. Formally, a contraction
function −̇ is a function from 2L × L to 2L satisfying the
following postulates:

(K−̇1) K−̇φ is a belief set.

(K−̇2) K−̇φ ⊆ K.

(K−̇3) If φ 6∈ K, then K−̇φ = K.

(K−̇4) If not ⊢ φ, then φ 6∈ K−̇φ.
(K−̇5) If φ ∈ K, then K ⊆ (K−̇φ) + φ.

(K−̇6) If ⊢ φ ≡ ψ, then K−̇φ = K−̇ψ.
(K−̇7) K−̇φ ∩K−̇ψ ⊆ K−̇(φ ∧ ψ).
(K−̇8) If ψ 6∈ K−̇(ψ ∧ φ) then K−̇(φ ∧ ψ) ⊆ K−̇ψ.

The first six postulates are called the basic contraction pos-
tulates, while the last two are referred to as the supplementary
postulates. We have the following informal interpretations of
the postulates: contraction yields a belief set (K−̇1) in which
the sentence for contraction φ is not believed (unless φ is a
tautology) (K−̇4). No new sentences are believed (K−̇2),
and if the formula is not originally believed then contraction
has no effect (K−̇3). The fifth postulate, the so-called re-
covery postulate, states that nothing is lost if one contracts
and expands by the same sentence. This postulate is con-
troversial; see for example [Hansson, 1999]. The sixth pos-
tulate asserts that contraction is independent of how a sen-
tence is expressed. The last two postulates express relations
between contracting by conjunctions and contracting by the
constituent conjuncts. (K−̇7) says that if a formula is in the
result of contracting by each of two formulas then it is in the
result of contracting by their conjunction. (K−̇8) says that if
a conjunct is not in the result of contracting by a conjunction,
then contracting by that conjunct is (using (K−̇7)) the same
as contracting by the conjunction.

Several constructions have been proposed to characterise
belief change. The original construction was in terms of re-
mainder sets, where a remainder set of K with respect to φ is
a maximal subset of K that fails to imply φ. Formally:

Definition 1 Let K ⊆ L and let φ ∈ L.
K ↓φ is the set of sets of formulas s.t. K ′ ∈ K ↓φ iff

1. K ′ ⊆ K

2. K ′ 6⊢ φ
3. For any K ′′ s.t. K ′ ⊂ K ′′ ⊆ K, it holds that K ′′ ⊢ φ.

X ∈ K ↓φ is a remainder set of K wrt φ.

From a logical point of view, the remainder sets comprise
equally-good candidates for a contraction function. Selec-
tion functions are introduced to reflect the extra-logical fac-
tors that need to be taken into account, to obtain the “best” or
most plausible remainder sets. In maxichoice contraction, the
selection function determines a single selected remainder set
as the contraction. In partial meet contraction, the selection
function returns a subset of the remainder sets, the intersec-
tion of which constitutes the contraction. Thus if the selection
function is denoted by γ(·), then the contraction of K by for-
mula φ can be expressed by

K−̇φ =
⋂
γ(K ↓φ).

For arbitrary theory K and function −̇ from 2L × L to 2L, it
proves to be the case that −̇ is a partial meet contraction func-
tion iff it satisfies the basic contraction postulates (K−̇1)–
(K−̇6). Last, let � be a transitive relation on 2K , and let the
selection function be defined by:

γ(K ↓φ) = {K ′ ∈ K ↓φ | ∀K ′′ ∈ K ↓φ,K ′′ � K ′}.
γ is a transitively relational selection function, and −̇ defined
in terms of such a γ is a transitively relational partial meet
contraction function. Then we have:

Theorem 1 ([Alchourrón et al., 1985]) LetK be a belief set
and let −̇ be a function from 2L × L to 2L. Then

1. −̇ is a partial meet contraction function iff it satisfies the
contraction postulates (K−̇1)–(K−̇6).

2. −̇ is a transitively relational partial meet contraction
function iff it satisfies the contraction postulates (K−̇1)–
(K−̇8).

The second major construction for contraction functions is
called epistemic entrenchment. The general idea is that extra-
logic factors related to contraction are given by an ordering
on formulas in the agent’s belief set, reflecting how willing
the agent would be to give up a formula. Then a contraction
function can be defined in terms of removing less entrenched
formulas from the belief set. It is shown in [Gärdenfors and
Makinson, 1988] that for logics including classical proposi-
tional logic, the two types of constructions, selection func-
tions over remainder sets and epistemic entrenchment order-
ings, capture the same class of contraction functions; see also
[Gärdenfors, 1988] for details.

3 Horn Theories and Horn Contraction

3.1 Preliminary Considerations

Let P = {a, b, c, . . . } be a finite set of atoms, or propositional
letters, that includes the distinguished atom ⊥. LH is the
language of Horn formulas. That is, LH is given by:

1. Every p ∈ P is a Horn clause.

2. a1 ∧ a2 ∧ · · · ∧ an → a, where n ≥ 0, and a, ai (1 ≤
i ≤ n) are atoms, is a Horn clause.

3. Every Horn clause is a Horn formula.

4. If φ and ψ are Horn formulas then so is φ ∧ ψ.

For a rule r as in 2 above, head(r) is a, and body(r) is the set
{a1, a2, . . . , an}. Allowing conjunctions of rules, as given in
4, adds nothing of interest to the expressivity of the language
with respect to reasoning. However, it adds to the express-
ibility of contraction, as we are able to contract by more than
a single Horn clause. For convenience, we use ⊤ to stand for
some arbitrary tautology.

An interpretation of LH is a function from P to
{true, false} such that ⊥ is assigned false. Sentences of
LH are true or false in an interpretation according to the stan-
dard rules in propositional logic. An interpretation M is a
model of a sentence φ (or set of sentences), written M |= φ,
just if M makes φ true. Mod(φ) is the set of models of
formula (or set of formulas) φ; thus Mod(⊤) is the set of



interpretations of LH . An interpretation is usually identi-
fied with the atoms true in that interpretation. Thus, for
P = {p, q, r, s} the interpretation {p, q} is that in which p
and q are true and r and s are false. For convenience, we
also express interpretations by juxtaposition of atoms. Thus
the interpretations {{p, q}, {p}, {}} will usually be written as
{pq, p, ∅}.

A key point is that Horn theories are characterised se-
mantically by the fact that the models of a Horn theory are
closed under intersections of positive atoms in an interpreta-
tion. That is, Horn theories satisfy the constraint:

If M1, M2 ∈Mod(H) then M1∩M2 ∈Mod(H).

This leads to the notion of the characteristic models
[Khardon, 1995] of a Horn theory: M is a characteristic
model of theory H just if for every M1,M2 ∈ Mod(H),
M1 ∩M2 = M implies that M = M1 or M = M2. E.g. the
theory expressed by {p ∧ q → ⊥, r}) has models {pr, qr, r}
and characteristic models {pr, qr}. Since pr∩ qr = r, r isn’t
a characteristic model of H .

A Horn formula ψ is entailed by a set of Horn formulas
A, A ⊢H ψ, just if any model of A is also a model of ψ.
For simplicity, and because we work exclusively with Horn
formulas, we drop the subscript and writeA ⊢ ψ. IfA = {φ}
is a singleton set then we just write φ ⊢ ψ. A set of formulas
A is inconsistent just if A ⊢ ⊥. We use φ ↔ ψ to represent
logical equivalence, that is φ ⊢ ψ and ψ ⊢ φ.

Notation: We collect here notation that is used in the paper.
Lower-case Greek characters φ, ψ, . . ., possibly subscripted,
denote arbitrary formulas of LH . Upper case Roman charac-
ters A, B, . . . , possibly subscripted, denote arbitrary sets of
formulas. H (H1, H ′, etc.) denotes Horn belief sets, so that
φ ∈ H iff H ⊢H φ.
Cnh(A) is the deductive closure of a Horn formula or

set of formulas A under Horn derivability. |φ| is the set of
maximal, consistent Horn theories that contain φ. m (and
subscripted variants) represents a maximum consistent set of
Horn formulas.
M (M1, M ′, etc.) denote interpretations over some fixed

language. Mod(A) is the set of models of A. Arbitrary sets
of interpretations will be denoted M (M′ etc.). Cl∩(M) is
the intersection closure of a set of interpretations M;1 that is,
Cl∩(M) is the least set such that M ⊆ Cl∩(M) and M1,
M2 ∈ Cl∩(M) implies that M1 ∩ M2 ∈ Cl∩(M). Note
that M denotes an interpretation expressed as a set of atoms,
while m denotes a maximum consistent set of Horn formu-
las. Thus the logical content is the same, in that an interpre-
tation defines a maximum consistent set of Horn formulas,
and vice versa. We retain these two interdefinable notations,
since each is useful in the subsequent development. Similar
comments apply to Mod(φ) vs. |φ|.

Since P is finite, a (Horn or propositional logic) belief set
may be finitely represented, that is, for X a belief set, there is
a formula φ such that Cnh(φ) = X . As well, we make use of
the fact that there is a 1-1 correspondence between elements
of |φ| and of Mod(φ).

1Recall that an interpretation is represented by the set of atoms
true in the interpretation.

counter- induced resulting KB r.s.
model models

a a ∧ (c→ b)
√

ac a a
b b ∧ (c→ a)

√
bc b b
∅ (a→ b) ∧ (b→ a) ∧ (c→ a ∧ b) √
c ∅ (a→ b) ∧ (b→ a)

Figure 1: Example: Candidates for Horn contraction

3.2 Horn Contraction

The last few years have seen work on Horn contraction. Del-
grande [2008] addressed maxichoice Horn belief set contrac-
tion based on (Horn) remainder sets, called e-remainder sets.
The definition of e-remainder sets for Horn clause belief sets
is the same as that for a remainder set (Definition 1) but with
respect to Horn clauses and Horn derivability. For H a Horn
belief set and φ ∈ LH , the set of e-remainder sets with re-
spect to H and φ is denoted by H ↓eφ.

Booth, Meyer, and Varzinczak [2009] subsequently inves-
tigated this area by considering partial meet contraction, as
well as a generalisation of partial-meet, based on the idea of
infra-remainder sets and package contraction. In [Booth et
al., 2009], an infra remainder sets is defined as follows:

Definition 2 For belief sets H and X , X ∈ H ⇓e φ iff there
is some X ′ ∈ H ↓e φ such that (

⋂
H ↓e φ) ⊆ X ⊆ X ′. The

elements of H ⇓e φ are the infra e-remainder sets of H with
respect to φ.

All e-remainder sets are infra e-remainder sets, as is the in-
tersection of any set of e-remainder sets. It proved to be the
case that e-remainder sets (and including the infra-remainder
sets of [Booth et al., 2009]) are not sufficiently expressive for
contraction.

The problem arises from the relation between remainder
sets on the one hand, and their counterpart in terms of in-
terpretations on the other. In the classical AGM approach, a
remainder set is characterised semantically by a minimal su-
perset of the models of the agent’s belief set such that this
superset does not entail the formula for contraction. As a re-
sult, the models of a remainder set consist of the models of
a belief set H together with a countermodel of the formula
φ for contraction. With Horn clauses, things are not quite so
simple, in that for a countermodel M of φ, there may be no
Horn remainder set that has M as a model.

To see this, consider the following example, adapted from
[Delgrande and Wassermann, 2010].

Example 1 Let P = {a, b, c} and H = Cnh(a ∧ b). Con-
sider candidates for H−̇(a ∧ b). There are three remainder
sets, given by the Horn closures of a ∧ (c→ b), b ∧ (c→ a),
and (a→ b) ∧ (b→ a) ∧ (c→ a ∧ b)). Any infra-remainder
set contains the closure of (c→ a) ∧ (c→ b).

See Figure 1. In the first line of the table, we have that
a (viz. {a,¬b,¬c}) is a countermodel of a ∧ b. Adding this
model to the models of H yields the models of the formula
a ∧ (c → b). This characterises a remainder set, as indicated
in the last column. In the second line, we have that ac (viz.



{a,¬b, c}) is another countermodel of H . However, since H
has a model ab, the intersection of these models, ab∩ ac = a
must also be included; this is the item in the second column.
The resulting belief set is characterised by the interpretations
Mod(H) ∪ {ac, a} = {abc, ab, ac, a}, which is the set of
models of formula a, as given in the third column. However,
the result isn’t a remainder set, since Cnh(a ∧ (c → b)) is a
logically stronger belief set than Cnh(a), which also fails to
imply a ∧ b.

This result is problematic for both [Delgrande, 2008] and
[Booth et al., 2009]. For example, in none of the approaches
in these papers is it possible to obtain H−̇e (a∧ b) ↔ a, nor
H−̇e (a ∧ b) ↔ (a ≡ b). But presumably these possibilities
are desirable as potential contractions. Thus, in all of the
approaches developed in the cited papers, it is not possible to
have a contraction wherein a∧¬b∧ c corresponds to a model
of the contraction.

This issue was addressed in [Delgrande and Wassermann,
2010]. There the characteristic models of maxichoice can-
didates for H−̇e φ consist of the characteristic models of H
together with a single interpretation fromMod(⊤)\Mod(φ).
The resulting theories, called weak remainder sets, corre-
sponded to the theories given in the third column in Figure 1.

Definition 3 ([Delgrande and Wassermann, 2010]) Let H
be a Horn belief set, and let φ be a Horn formula.
H ↓↓e φ is the set of sets of formulas s.t. H ′ ∈ H ↓↓e φ iff

H ′ = H ∩m for some m ∈ |⊤| \ |φ|.
H ′ ∈ H ↓↓eφ is a weak remainder set of H and φ.

The following characterizations were given for maxichoice
and partial meet Horn contraction:

Theorem 2 ([Delgrande and Wassermann, 2010]) Let H
be a Horn belief set. Then −̇w is an operator of maxichoice
Horn contraction based on weak remainders iff −̇w satisfies
the following postulates.

(H−̇w 1) H−̇w φ is a belief set. (closure)

(H−̇w 2) If not ⊢ φ, then φ 6∈ H−̇w φ. (success)

(H−̇w 3) H−̇w φ ⊆ H. (inclusion)

(H−̇w 4) If φ 6∈ H, then H−̇w φ = H. (vacuity)

(H−̇w 5) If ⊢ φ then H−̇w φ = H (failure)

(H−̇w 6) If φ↔ ψ, then H−̇w φ = H−̇w ψ. (extensionality)

(H−̇w 7) If H 6= H−̇w φ then ∃β ∈ LH s.t. {φ, β} is in-
consistent, H−̇w φ ⊆ Cnh({β}) and ∀H ′ s.t H−̇w φ ⊂
H ′ ⊆ H we have H ′ 6⊆ Cnh({β}). (maximality)

Theorem 3 ([Delgrande and Wassermann, 2010]) Let H
be a Horn belief set. Then −̇w is an operator of partial meet
Horn contraction based on weak remainders iff −̇w satisfies
the postulates (H−̇w 1) – (H−̇w 6) and:

(H−̇pm 7) If β ∈ H\(H−α), then there is someH ′ such that

H − α ⊆ H ′, α 6∈ Cnh(H ′) and α ∈ Cnh(H ′ ∪ {β})
(weak relevance)

More recently, [Zhuang and Pagnucco, 2010b] have ad-
dressed Horn contraction from the point of view of epistemic
entrenchment. They compare AGM contraction via epistemic
entrenchment in classical propositional logic with contraction

in Horn logics. A postulate set is provided and shown to char-
acterise entrenchment-based Horn contraction. The fact that
AGM contraction refers to disjunctions of formulas, which
in general will not be Horn, is handled by considering Horn
strengthenings in their postulate set, which is to say, logically
weakest Horn formulas that subsume the disjunction. In con-
trast to earlier work, their postulate set includes equivalents
to the supplemental postulates, and so goes beyond the set of
basic postulates.

For a given clause ϕ, the set of its Horn strengthenings
(ϕ)H is the set such that ψ ∈ (ϕ)H if and only if ψ is a Horn
clause and there is no Horn clause ψ′ such that ψ ⊂ ψ′ ⊆ ϕ.

Of the set of ten postulates given in [Zhuang and Pag-
nucco, 2010b], five correspond to postulates characterizing
partial meet contraction based on weak remainders as defined
in [Delgrande and Wassermann, 2010] and two correspond to
the supplementary postulates (K−̇7) and (K−̇8). The three
new postulates are:

(H−̇5) If ψ ∈ H−̇ϕ ∧ ψ then ψ ∈ H−̇ϕ ∧ ψ ∧ δ
(H−̇9) If ψ ∈ H \H−̇ϕ then ∀χ ∈ (ϕ ∨ ψ)H , χ 6∈ H−̇ϕ
(H−̇10) If ∀χ ∈ (ϕ ∨ ψ)H , χ 6∈ H−̇ϕ ∧ ψ then ψ 6∈ H \

H−̇ϕ
While there has been other work on belief change and Horn

logic, such work focussed on specific aspects of the prob-
lem, rather than a general characterisation of Horn clause be-
lief change. For example, Eiter and Gottlob [1992] address
the complexity of specific approaches to revising knowledge
bases, including the case where the knowledge base and for-
mula for revision are conjunctions of Horn clauses. Not un-
expectedly, results are generally better in the Horn case. Lib-
eratore [2000] considers the problem of compact representa-
tion for revision in the Horn case. Basically, given a knowl-
edge base K and formula φ, both Horn, the main problem
addressed is whether the knowledge base, revised according
to a given operator, can be expressed by a propositional for-
mula whose size is polynomial with respect to the sizes of
K and φ. [Langlois et al., 2008] approaches the study of
revising Horn formulas by characterising the existence of a
complement of a Horn consequence; such a complement cor-
responds to the result of a contraction operator. This work
may be seen as a specific instance of a general framework
developed in [Flouris et al., 2004]. In [Flouris et al., 2004],
belief change is studied under a broad notion of logic, where
a logic is a set closed under a Tarskian consequence opera-
tor. In particular, they give a criterion for the existence of a
contraction operator satisfying the basic AGM postulates in
terms of decomposability.

4 Supplementary postulates

In this section we investigate how the different proposals for
Horn contraction operations behave with respect to the sup-
plementary postulates (K-7) and (K-8). Throughout the sec-
tion, we consider all selection functions to be transitively re-
lational.

First we consider the operation of Horn Partial Meet e-
Contraction as defined in [Delgrande, 2008]. The follow-
ing example shows that, considering ↓e as defined in [Del-



grande, 2008], Horn Partial Meet e-Contraction does not sat-
isfy (K−̇7):

Example 2 Let H = Cnh({a→ b, b→ c, a→ d, d→ c}).
We then have

H ↓e a→ c = {H1, H2, H3, H4}
H ↓e b→ c = {H5}
where:
H1 = Cnh({a→ b, a→ d}),
H2 = Cnh({a→ b, a ∧ c→ d, d→ c}),
H3 = Cnh({b→ c, a ∧ c→ b, a→ d}),
H4 = Cnh({a∧ c→ b, b→ c, a∧ c→ d, d→ c, a∧ d→

b, a ∧ b→ d}), and
H5 = Cnh({a→ b, a→ d, d→ c})
Note that the two first elements of H ↓e a → c are subsets

of the single element of H ↓e b→ c and hence, cannot belong
to H ↓e a→ c ∧ b→ c.

H ↓e a→ c ∧ b→ c = {H3, H4, H5}
If we take a selection function based on a transitive rela-

tion between remainder sets that gives priority in the order in
which they appear in this example, i.e., H5 ≺ H4 ≺ H3 ≺
H2 ≺ H1, we will have:

H − a→ c = H1

H − b→ c = H5

H − a→ c ∧ b→ c = H3

And we see that H − a → c ∩H − b → c = H1 6⊆ H3 =
H − a→ c ∧ b→ c

The same example shows that the operation does not satisfy
(K−̇8):
a → c 6∈ H − a → c ∧ b → c, but H − a → c ∧ b → c 6⊆

H − a→ c.
If there are no further restrictions on the selection func-

tion, the same example also shows that contraction based on
infra-remainders does not satisfy the supplementary postu-
lates. Note that each remainder set in the example is also an
infra-remainder and that the selection function always selects
a single element. It suffices to assign all the remaining infra-
remainders lower priority.

Now we can show that the operation of partial meet based
on weak remainders (PMWR) has a better behaviour with re-
spect to the supplementary postulates:

Proposition 1 Partial meet based on weak remainders and
a transitive relational selection function satisfies (K−̇7) and
(K−̇8).

We have seen that Epistemic Entrenchment Horn Con-
traction (EEHC) is characterized by a set of ten postulates.
In [Zhuang and Pagnucco, 2010a], it is shown that transi-
tively relational PMWR as defined above is more general than
EEHC. This means that any operation satisfying their set of
10 postulates (which include (K−̇7) and (K−̇8)) is a PMWR.
We have seen that PMWR satisfies (K−̇7) and (K−̇8), hence,
in order to compare PMWR and EEHC, we need to know
whether PMWR satisfies (H−̇5), (H−̇9) and (H−̇10).

Proposition 2 PMWR satisfies (H−̇5).

Proposition 3 PMWR satisfies (H−̇9)

PMWR in general does not satisfy (H−̇10), as the follow-
ing example shows.

Let H = Cnh({a, b}). Then
H ↓↓e a = {H1, H3} and
H ↓↓e a ∧ b = {H1, H2, H3}, where
H1 = Cnh({a ∨ ¬b, b ∨ ¬a}),
H2 = Cnh({a}) and
H3 = Cnh({b}).
Assuming a selection function based on a transitive relation

such that H1 ≺ H2 and H1 ≺ H3 (and H2 � H3 and H3 �
H2), we have
H − a = H3 and H − a ∧ b = H2 ∩H3

Since (a∨b)H = {a, b}, we have that for any χ ∈ (a∨b)H ,
χ 6∈ H − a ∧ b, but b ∈ H − a.

In order to finish the comparison between the sets of pos-
tulates, it is interesting to note the following:

Observation 1 (H−̇9) implies weak relevance.

5 Package Contraction

In this section we consider Horn package contraction. For
belief set H and a set of formulas Φ, the package contraction
H−̇pΦ is a form of contraction in which no member of Φ is

in H−̇pΦ. As [Booth et al., 2009] points out, this operation
is of interest in Horn clause theories given their limited ex-
pressivity: in order to contract by φ and ψ simultaneously,
one cannot contract by the disjunction φ ∨ ψ, since the dis-
junction is generally not a Horn clause. Hence, one expresses
the contraction of both φ and ψ as the package contraction
H−̇p {φ, ψ}.

We define the notion of Horn package contraction, and
show that it is in fact expressible in terms of maxichoice Horn
contraction.

Definition 4 Let H be a Horn belief set, and let Φ =
{φ1, . . . , φn} be a set of Horn formulas.

H ↓↓pΦ is the set of sets of formulas s.t. H ′ ∈ H ↓↓pΦ iff

∃m1, . . . ,mn such that, for 1 ≤ i ≤ n:

mi ∈ |⊤| \ |φi| if 6⊢ φi, otherwise mi = LH

and H ′ = H ∩⋂n

i=1
mi.

Definition 5 Let γ be a selection function on H such that
γ(H ↓↓pΦ) = {H ′} for some H ′ ∈ H ↓↓pΦ.

The (maxichoice) package Horn contraction based on weak
remainders is given by:

H−̇pΦ = γ(H ↓↓pΦ)

if ∅ 6= Φ ∩H 6⊆ Cnh(⊤); and H otherwise.

The following result relates elements of H ↓↓p Φ to weak
remainders.

Proposition 4 Let H be a Horn belief set and let Φ =
{φ1, . . . , φn} be a set of Horn formulas where for 1 ≤ i ≤ n
we have 6⊢ φi.

Then H ′ ∈ H ↓↓pΦ iff for 1 ≤ i ≤ n there are Hi ∈ H ↓↓e
φi and H ′ =

⋂n

i=1
Hi.



It follows immediately from this that any maxichoice Horn
contraction defines a package contraction, and vice versa.

Example 3 Consider the Horn belief set H = Cnh({a, b})
over P = {a, b, c}. We want to determine elements of

H ↓↓pΦ = Cnh({a, b}) ↓↓p {a, b}.
It proves to be the case that there are a total of 14 elements in
H ↓↓pΦ and so 14 candidate package contractions. We have
the following.

1. There are 4 countermodels of a, given by:

A = {bc, b, c, ∅}.
Thus there are four weak remainders corresponding to
these countermodels, and so four candidates for maxi-
choice Horn contraction by a.

2. Similarly there are 4 countermodels of b:

B = {ac, a, c, ∅}.

3. Members of H ↓↓pΦ are given by

Cl∩(Mod(H) ∪ {x} ∪ {y})
for x ∈ A and y ∈ B.

For example, for x = bc, y = ∅, we have thatCl∩(Mod(H)∪
{x}∪{y}) = {abc, ab, bc, b, ∅}, which is the set of models of
(c→ b) ∧ (a→ b).

For x = bc, y = ac, we have that Cl∩(Mod(H) ∪ {x} ∪
{y}) = Cnh(⊤); this holds for no other choice of x and y.

What this example indicates informally is that there is a
great deal of scope with respect to candidates for package
contraction. To some extent, such a combinatorial explosion
of possibilities is to be expected, given the fact that a formula
will in general have a large number of countermodels, and
that this is compounded by the fact that each formula in a
package contraction does not hold in the result. However, it
can also be noted that some candidate package contractions
appear to be excessively weak; for example it would be quite
drastic to haveCnh(⊤) as the result of such a contraction. As
well, some candidate package contractions appear to contain
redundancies, in that a selected countermodel of a may also
be a countermodel of b, in which case there seems to be no
reason to allow the possible incorporation of a separate coun-
termodel of b. Consequently, we also consider versions of
package contraction that in some sense yield a maximal be-
lief set. However, first we provide results regarding package
contraction.

We have the following result:

Theorem 4 Let H be a Horn belief set. Then if −̇p is an
operator of maxichoice Horn package contraction based on
weak remainders then −̇p satisfies the following postulates.

(H−̇p 1) H−̇pΦ is a belief set. (closure)

(H−̇p 2) For φ ∈ Φ, if not ⊢ φ, then φ 6∈ H−̇pΦ (success)

(H−̇p 3) H−̇pΦ ⊆ H (inclusion)

(H−̇p 4) H−̇pΦ = H−̇p (H ∩ Φ) (vacuity)

(H−̇p 5) H−̇pΦ = H−̇p (Φ \ Cnh(⊤)) (failure)

(H−̇p 5b) H−̇p ∅ = H (triviality)

(H−̇p 6) If φ↔ ψ, then

H−̇p (Φ∪ {φ}) = H−̇p (Φ∪ {ψ}) (extensionality)

(H−̇p 7) If H 6= H−̇pΦ then for

Φ′ = (Φ \ Cnh(⊤)) ∩H = {φ1, . . . , φn}
there is {β1, . . . , βn} s.t. {φi, βi} ⊢ ⊥ and H−̇pΦ ⊆
Cnh(βi) for 1 ≤ i ≤ n;

and ∀H ′ s.t H−̇pΦ ⊂ H ′ ⊆ H, ∃βi s.t. H ′ 6⊆ Cnh(βi).

(maximality)

The following result, which shows that package contrac-
tion generalises maxichoice contraction, is not surprising, nor
is the next result, which shows that a maxichoice contraction
defines a package contraction.

Proposition 5 Let −̇p be an operator of maxichoice Horn
package contraction. Then

H−̇φ = H−̇pΦ for Φ = {φ}
is an operator of maxichoice Horn contraction based on weak
remainders.

Proposition 6 Let −̇ be an operator of maxichoice Horn con-
traction based on weak remainders. Then

H−̇pΦ =
⋂

φ∈Φ

H−̇φ

is an operator of maxichoice Horn package contraction.

As described, a characteristic of maxichoice package con-
traction is that there are a large number of members of H ↓↓p
Φ, some of which may be quite weak logically. Of course, a
similar point can be made about maxichoice contraction, but
in the case of package contraction we can eliminate some can-
didates via pragmatic concerns. We have that a package con-
traction H−̇pΦ is a belief set H ′ ∈ H ↓↓pΦ such that, infor-
mally, models of H ′ contain a countermodel for each φi ∈ Φ
along with models of H . In general, some interpretations
will be countermodels of more than one member of Φ, and so
pragmatically, one can select minimal sets of countermodels.
Hence in the case that

⋂
i(Mod(⊤)\Mod(φi)) 6= ∅, a single

countermodel, that is some m ∈ ⋂
i(Mod(⊤) \Mod(φi)),

would be sufficient to yield a package contraction.
Now, it may be that

⋂
i(Mod(⊤) \Mod(φi)) is empty. A

simple example illustrates this case:

Example 4 Let H = Cnh(a → b, b → a) where P =
{a, b}. Then H−̇p {a → b, b → a} = Cnh(⊤). That is,
the sole countermodel of a → b is {a} while that of b → a
is {b}. The intersection closure of these interpretations with
those of H is {ab, a, b, ∅} =Mod(⊤).

Informally then one can select a minimal set of models
such that a countermodel of each member of Φ is in the set.
These considerations yield the following definition:

Definition 6 Let H be a Horn belief set, and let Φ =
{φ1, . . . , φn} be a set of Horn formulas.
HS(Φ), the set of (minimal) hitting sets of interpretations

with respect to Φ, is defined by:
S ∈ HS(Φ) iff



1. S ⊆ |⊤|
2. S ∩ (|⊤| \ |φi|) 6= ∅ for 1 ≤ i ≤ n.

3. For S′ ⊂ S, S′ ∩ (|⊤| \ |φi|) = ∅ for some 1 ≤ i ≤ n.

Thus we look for sets of sets of interpretations, elements
of such a set S are interpretations represented as maximum
consistent sets of formulas (Condition 1). As well, this set S
contains a countermodel for each member of Φ (2) and more-
over S is a subset-minimal set that satisfies these conditions
(3). The notion of a hitting set is not new; see [Garey and
Johnson, 1979] and see [Reiter, 1987] for an early use in AI.
Thus S ∈ HS(Φ) corresponds to a minimal set of counter-
models of members of Φ.

Definition 7 H ↓↓pΦ is the set of sets of formulas s.t.
H ′ ∈ H ↓↓pΦ iff H ′ = H ∩⋂

m∈S for some S ∈ HS(Φ).

Proposition 7 For H ′ ∈ H ↓↓pΦ, H ′ is an operator of maxi-
choice Horn package contraction.

Example 5 Consider where H = Cnh(a, b), P = {a, b, c}.

1. Let Φ = {a, b}. We obtain that

H ↓↓pΦ = { Cnh(⊤), Cnh(c→ a), Cnh(c→ b),

Cnh(c→ a, c→ b),

Cnh(a→ b, b→ a),

Cnh(a→ b, b→ a, c→ a, c→ b) }.

Compare this with Example 3, where we have 14 candi-
date package contractions.

2. Let Φ = {a, a ∧ b}. We obtain that

H ↓↓pΦ = { Cnh(b), Cnh(b ∧ (c→ a)),

Cnh(a→ b, b→ a),

Cnh(a→ b, b→ a, c→ a, c→ b) }.

Any set of formulas that satisfies Definition 7 clearly also
satisfies Definition 5. One can further restrict the set of candi-
date package contractions by replacing S′ ⊂ S by |S′| < |S|
in the third part of Definition 7. As well, of course, one could
continue in the obvious fashions to define a notion of partial
meet Horn package contraction.

6 Forgetting in Horn Formulas

This section examines another means of removing beliefs
from an agent’s belief set, that of forgetting [Lin and Reiter,
1994; Lang and Marquis, 2002]. Forgetting is an operation
on belief sets and atoms of the language; the result of forget-
ting an atom can be regarded as decreasing the language by
that atom.

In general it will be easier to work with a set of Horn
clauses, rather than Horn formulas. Since there is no con-
fusion, we will freely switch between sets of Horn clauses
and the corresponding Horn formula comprising the conjunc-
tion of clauses in the set. Thus any time that a set appears
as an element in a formula, it can be understood as stand-
ing for the conjunction of members of the set. Thus for sets
of clauses S1 and S2, S1 ∨ S2 will stand for the formula

(
∧

φ∈S1
φ)∨(

∧
φ∈S2

φ). Of course, all such sets will be guar-

anteed to be finite.
We introduce the following notation for this section, where

S is a set of Horn clauses.

• S[p/t] is the result of uniformly substituting t ∈ {⊥,⊤}
for atom p in S.

• S↓p = {φ ∈ S | φ does not mention p}
Assume without loss of generality that for φ ∈ S, that
head(φ) 6∈ body(φ).

The following definition adapts the standard definition for
forgetting to Horn clauses.

Definition 8 For set of Horn clauses S and atom p, define
forget(S, p) to be S[p/⊥] ∨ S[p/⊤].

This is not immediately useful for us, since a disjunction
is generally not Horn. However, the next result shows that
this definition nonetheless leads to a Horn-definable forget
operator. Recall that for clauses c1 and c2, expressed as sets
of literals where p ∈ c1 and ¬p ∈ c2, that the resolvent of c1
and c2 is the clause (c1 \ {p}) ∪ (c2 \ {¬p}). As well, recall
that if c1 and c2 are Horn, then so is their resolvent.

In the following, Res(S, p) is the set of Horn clauses ob-
tained from S by carrying out all possible resolutions with
respect to p.

Definition 9 Let S be a set of Horn clauses and p an atom.
Define

Res(S, p) = {φ | ∃φ1, φ2 ∈ S s.t. p ∈ body(φ1),

p = head(φ2), and

φ = (body(φ1) \ {p} ∪ body(φ2)) → head(φ1)}
Theorem 5 forget(S, p) ↔ S↓p ∪Res(S, p).
Corollary 1 Let S be a set of Horn clauses and p an atom.
Then forget(S, p) is equivalent to a set of Horn clauses.

Corollary 2 Let S1 and S2 be sets of Horn clauses and p
an atom. Then S1 ↔ S2 implies that forget(S1, p) ↔
forget(S2, p).

There are several points of interest about these results.
The theorem is expressed in terms of arbitrary sets of Horn
clauses, and not just deductively-closed Horn belief sets.
Hence the second corollary states a principle of irrelevance
of syntax for the case for forgetting for belief bases. As well,
the expression S↓p ∪Res(S, p) is readily computable, and so
the theorem in fact provides a means of computing forget.
Further, the approach clearly iterates for more than one atom.
We obtain the additional result:

Corollary 3

forget(forget(S, p), q) ≡ forget(forget(S, q), p).

(In fact, this is an easy consequence of the definition of
forget.) Given this, we can define for set of atoms A,
forget(S,A) = forget(forget(S, a), A \ {a}) where a ∈
A. On the other hand, forgetting an atom may result in a
quadratic blowup of the knowledge base.

Finally, it might seem that the approach allows for the defi-
nition of a revision operator – and a procedure for computing



a revision – by using something akin to the Levi Identity. Let
A(φ) be the set of atoms appearing in (formula or set of for-
mulas) φ. Then:

FRevise(S, φ)
def
= forget(S,A(S) ∩ A(φ)) + φ.

In fact, this does yield a revision operator, but an operator
that in general is far too drastic to be useful. To see this, con-
sider a taxonomic knowledge base which asserts that whales
are fish, whale → fish. Of course, whales are mammals,
but in using the above definition to repair the knowledge base,
one would first forget all knowledge involving whales. Such
an example doesn’t demonstrate that there are no reasonable
revision operators definable via forget, but it does show that a
naı̈ve approach is problematic.

7 Conclusions

This paper has collected various results concerning Horn be-
lief set contraction. Earlier work has established a general
framework for maxichoice and partial meet Horn contraction.
The present paper then extends this work in various ways.
We examined issues related to supplementary postulates, de-
veloped an approach to package contraction, and explored
the related notion of forgetting. For future work, it would
be interesting to investigate relationships between remainder-
based and entrenchment-based Horn contraction, as well as
to explore connections to constructions for (Horn) belief re-
vision.
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