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Abstract

We prove that quantum logic (OrthoLogic) admits Algebraic Multipliers.
Algebraic multipliers are an alternative form of characterizing validity in a
logic system. They were shown to exist and to be computable for a class
of classical, modal and multivalued logics. However, so far no such result
was known for substructural logics. In this work, Orthologic is the first sub-
structural logic in which validity in terms of algebraic multipliers has been
established.

1 Introduction

We extended the results of algebraic multipliers for Substructural logics. The con-
cept of these multipliers was introduced in [2] where only propositional classical logic
and modal logics were presented.

In [3] the existence of multipliers was proposed from semantic point of view but
due to inherent properties of Substructural Logics in this paper we slightly alter
some key definitions to best fit the Substructural context. This modification is
presented as a syntactic counterpart of Algebraic Multipliers.

To check whether a logic admits algebraic multipliers there is no other proce-
dure than go deep in the logic’s constraints (although the tools for such task were
developed in [3]), hence to develop the result in the substructural level a logic was
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needed and the chosen one was the Quantum Logics, more precisely, the Orthologic.
The choice was quite obvious since this logic lacks distributivity, property which we
don’t require from our connectives.

This work contains in Section 1 the modifications that we made to be able to
reach the substructural level and a fact about syntax meta-theorems for those logics.
In Section 2 we present the orthologic and state the main result. In the Conclusion
(Section 3) we make a comment about the answered questions and the open question
here.

2 Background

First we slightly alter the definitions in [3]. Then we translate the result to a
syntactic context.

2.1 Definitions

Definition 2.1. Let M be a class of matrices for many-valued logics, and let A =
〈A, D〉 ∈ M. If A satisfies the axioms (where d, d1, d2 and d3 are any element of
D, f, f1, f2 and f3 are any elements of A \D and a, b, c ∈ A):

(am1) ¬d = f

(am2) ¬f = d

(am3) a · f1 = f2
(am4) f1 · a = f2
(am5) d1 · d2 = d3
(am6) a+ (b+ c) = d1 iff (a+ b) + c = d2
(am7) f1 + f2 = f3
(am8) d1 + d2 = f

(am9) d1 + f = d2
(am10) a+ b = d1 iff b+ a = d2
then, A is called Multiplier Matrix.
We say that M is a class of multiplier matrix if each A ∈ M is a multiplier

matrix.

Definition 2.2. (Many-valued Characteristic Polynomial). Given an entailment
statement S = a1, ..., an � b1, ..., bm class of multiplier matrix M satisfying (mm1 −
mm10 ) above, its characteristic polynomial over variables x1, ..., xn, y1, ..., ym is

CPS(x1, ..., xn, y1, ..., ym) = x1 · (¬a1) + ...+ xn · (¬an) + y1 · b1 + ...+ ym · bm

The characteristic polynomial has D-roots if there are terms p1, ..., pn, q1, ..., qm
such that for all 〈A, D〉 ∈ M and for all valuation τ

pτ1 · (¬a
τ

1) + ...+ pτ
n
· (¬aτ

n
) + qτ1 · b

τ

1 + ...+ qτ
m
· bτ

m
∈ D

The terms p1, ..., pn, q1, ..., qm are entailment multipliers. For convenience we
denote the polynomial as CPS(X).
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The following is the substructural version of the theorem which links the poly-
nomials and the semantic consequence.

Theorem 2.3 (Algebraic Multipliers for Many-valued Logics). An entailment state-
ment of the form S = a1, ..., an � b1, ..., bm over a class of multiplier matrix M is
valid iff its characteristic polynomial CPS(X) has D-roots.

Proof. For each 〈A, D〉 ∈ M repeat the proof in [3]

2.2 Meta-Theorems

A multiplier matrix imposes restrictions and properties in its syntactic counterpart,
the following theorem express this.

Theorem 2.4. Let L be a logic such that its semantic matrix is M. M is a multiplier
matrix iff the following meta-theorems hold in L:

A ⊢ ⊥
(Sm1)

⊢ ¬A
(Sm6)

A+ (B + C) ⊢ (A+ B) + C

A
(Sm2)

¬A ⊢ ⊥
(Sm6)′

(A+B) + C ⊢ A+ (B + C)

A ⊢ ⊥
(Sm3)

A ·B ⊢ ⊥
(Sm7)

(A+B) ⊢ (B + A)

A ⊢ ⊥
(Sm4)

A ·B ⊢ ⊥
A ⊢ ⊥ B ⊢ ⊥

(Sm8)
⊢ A+ B

⊢ A ⊢ B
(Sm5)

⊢ B · A
⊢ A ⊢ B

(Sm9)
⊢ A+ B

We will call any logic L that derives those meta-theorems a Multiplier Logic.

3 Orthologic

In this section we define the orthologic (OL) and show that OLderives the meta-
theorems of a Multiplier Logic in Theorem 2.4. The characterization presented here
was extracted from [4].

ORTHOLOGIC AXIOMS

(OL1) Γ ∪ {A} ⊢ A (identity)

Γ ⊢ A ∆ ∪ {A} ⊢ B
(OL2) (transitivity)

T ⊢ A

(OL3)Γ ∪ {A ∧ B} ⊢ A (∧-elimination)

(OL4) Γ ∪ {A ∧ B} ⊢ B (∧-elimination)
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Γ ⊢ A,Γ ⊢ B
(OL5) (∧-introduction)

Γ ⊢ A ∧ B

Γ ∪ {A,B} ⊢ C
(OL6) (∧-introduction)

Γ ∪ {A ∧ B} ⊢ C

A ⊢ B A ⊢ ¬B(OL7) (Absurdity)
⊢ ¬A

(OL8) Γ ∪ {A} ⊢ ¬¬A (weak double negation)

(OL9) Γ ∪ {¬¬A} ⊢ A (strong double negation)

(OL10) Γ ∪ {A ∧ ¬A} ⊢ B (Duns Scotus)

A ⊢ B(OL11) (Contraposition)
¬B ⊢ ¬A

Lemma 3.1 (Lemma 1). ¬¬A ⊢ ¬¬B
(Lemma1)

A ⊢ B

Proof.

(OL8)
A ⊢ ¬¬A

(Hypothesis)
¬¬A ⊢ ¬¬B

(OL2)
A ⊢ ¬¬B

(OL9)
¬¬B ⊢ B

(OL2)
A ⊢ B

Lemma 3.2 (Lemma2). A ∧B ⊢ C
(lemma2)

{A,B} ⊢ C

Proof.
{A,B} ⊢ A {A,B} ⊢ B

(OL5)
{A,B} ⊢ A ∧ B

(Hypothesis)
A ∧ B ⊢ C

(OL2)
{A,B} ⊢ C

The main theorem follows

Theorem 3.3. The following properties are hold for OL:
(1) OL is a multiplier matrix.
(2) There is a fragment of OL which is a multiplier logic.

Proof. Let’s prove (2) and (1) follows immediately. Define the following abbrevia-
tion:

(a) A · B
.
= A ∧B;

(b) A+B
.
= ¬((¬A) · (¬B)).

And we prove that OL satisfy (Sm1)− (Sm9) from theorem 2.4.

• (Sm1) and (Sm2) follow by (OL11).

• (Sm3)
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B · A ⊢ A
(OL4)

B · A ⊢ A
(Hypothesis)

A ⊢ ⊥
(OL2)

B · A ⊢ ⊥

• (Sm4)

A ·B ⊢ A
(OL3)

A ·B ⊢ A
(Hypothesis)

A ⊢ ⊥
(OL2)

A ·B ⊢ ⊥

• (Sm5) Follows from (OL5).

• (Sm6) Note that A+(B+C) is equivalent to ¬(¬A · ¬¬(¬B · ¬C)), and then:

¬(¬A · ¬¬(¬B · ¬C)) ⊢ ¬(¬A · ¬¬(¬B · ¬C))
(OL11 OL9)

(¬A · (¬B · ¬C) ⊢ ¬A · (¬B · ¬C)
(Lemma2)

{¬A, (¬B · ¬C)} ⊢ ¬A · (¬B · ¬C)
(Lemma2)

{¬A,¬B,¬C} ⊢ ¬A · (¬B · ¬C)
(Lemma2)

{(¬A · ¬B),¬C} ⊢ ¬A · (¬B · ¬C)
(OL6)

(¬A · ¬B) · ¬C ⊢ ¬A · (¬B · ¬C)
(OL6)

¬((¬A · (¬B · ¬C)) ⊢ ¬((¬A · ¬B) · ¬C)
(OL11)

A+ (B + C) ⊢ (A+ B) + C

• (Sm6)
′ Is analogous to (Sm6).

• (Sm7)

¬(¬A · ¬B) ⊢ ¬(¬A · ¬B)
(OL11, OL9, Lemma1)

¬A · ¬B ⊢ ¬A · ¬B
(Lemma2)

{¬A,¬B} ⊢ ¬A · ¬B
(OL6)

¬B · ¬A ⊢ ¬A · ¬B
(OL11)

¬(¬B · ¬A) ⊢ ¬(¬A · ¬B)

A+ B ⊢ B + A

• (Sm8)

A ⊢ ⊥
(OL11)

⊢ ¬A
B ⊢ ⊥

(OL11)
⊢ ¬B

(OL5)
⊢ ¬A · ¬B

(OL11)
¬(¬A · ¬B) ⊢ ⊥

A+ B ⊢ ⊥

• (Sm9)

¬A,¬B ⊢ ¬A ¬A ⊢ ⊥
(OL2)

¬A,¬B ⊢ ⊥
(OL6)

¬A · ¬B ⊢ ⊥
(OL11)

⊢ ¬(¬A · ¬B)

⊢ A+ B
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4 Conclusion

With this work we obtained a positive result for the existence of multipliers in a
substructural logic. In addition, condition (2) in Theorem 3.3 also says the extension
is not unique. Moreover, for the first time we have a syntax counterpart in the
algebraic multipliers theory, which we believe is a fundamental step in substructural
context.

The question about a logic which doesn’t accept multipliers remains open.
To finish we state our conjecture about Intuitionism:

Conjecture 4.1. Intuitionistic Logic is not a multiplier Logic.

Reasoning. Suppose that there is ∼,+ and · satisfying the axioms from (Sm1) to
(Sm9) in Intuicionistic Calculus. Derivate a contradiction proving that the set of
connectives {¬,∨,∧,→} is not independent.
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