

Classical and quantum satisfiability ${ }^{1}$

Author(s):

Anderson de Araújo
Marcelo Finger

[^0]
CLASSICAL AND QUANTUM SATISFIABILITY

Anderson de Araújo Marcelo Finger

Institute of Mathematics and Statistics
Departament of Computer Science
University of São Paulo

General: To analyze the main quantum and classical time-complexity classes ($P, N P, B Q P$ and $Q M A$), studying NP and QMA complete problems.

General: To analyze the main quantum and classical time-complexity classes ($P, N P, B Q P$ and $Q M A$), studying $N P$ and $Q M A$ complete problems.
Specific: To show that the existing quantum versions of the satisfiability problem (SAT) do not allow an adequate logical analysis of the relationship between NP and QMA.

Motivation

General: There are quantum algorithms that efficiently solves some important problems, for example: (1) Shor's algorithm is a quantum algorithm for integer factorization which takes time $O\left((\log n)^{3}\right) ;(2)$ Grover's algorithm is a quantum algorithm for searching an unsorted database with n entries in $O(\sqrt{n})$ time.

Motivation

General: There are quantum algorithms that efficiently solves some important problems, for example: (1) Shor's algorithm is a quantum algorithm for integer factorization which takes time $O\left((\log n)^{3}\right) ;(2)$ Grover's algorithm is a quantum algorithm for searching an unsorted database with n entries in $O(\sqrt{n})$ time.
Specific: There are classical and quantum problems that at first glance seem similar, notably: probabilistic satisfiability problem (PSAT) and quantum satisfiability problem (QSAT). Both are probabilistic problems and can be viewed as linear program problems. In (Finger and de Bona, 2010), a polynomial-time reduction of PSAT to SAT was given. PSAT is NP-complete and QSAT is QMA-complete. So...

Can we use PSAT and QSAT to compare the classes NP and QMA?

Strategy

- To put SAT and QSAT in the same framework.
- To investigate whether all SAT-instances are QSAT-instances, and vice-versa.

Quantum satisfiability problem (Kitaev-Bravyi)

Input: A set with m local density matrices $\left|v_{m}\right\rangle\left\langle v_{m}\right| \otimes I_{n-k}$ defined on a Hilbert space $\mathcal{H}^{\otimes n}$ of n qubits (dimension 2^{n}), where each $\left|v_{m}\right\rangle$ is a vector in the subspace $\mathcal{H}^{\otimes k} \subseteq \mathcal{H}^{\otimes n}$ and I_{n-k} is the identity operator on $\mathcal{H}^{\otimes n-k}$. For
$\left|v_{m}\right\rangle\left\langle v_{m}\right| \otimes I_{n-k}=\left(a_{i j}^{m}\right)$, the condition of locality means that $a_{i j}^{m}$ is given with poly (n) many bits.

Quantum satisfiability problem (Kitaev-Bravyi)

Input: A set with m local density matrices $\left|v_{m}\right\rangle\left\langle v_{m}\right| \otimes I_{n-k}$ defined on a Hilbert space $\mathcal{H}^{\otimes n}$ of n qubits (dimension 2^{n}), where each $\left|v_{m}\right\rangle$ is a vector in the subspace $\mathcal{H}^{\otimes k} \subseteq \mathcal{H}^{\otimes n}$ and I_{n-k} is the identity operator on $\mathcal{H}^{\otimes n-k}$. For
$\left|v_{m}\right\rangle\left\langle v_{m}\right| \otimes I_{n-k}=\left(a_{i j}^{m}\right)$, the condition of locality means that $a_{i j}^{m}$ is given with poly (n) many bits.
Problem: Is there a vector $|v\rangle$ in $\mathcal{H}^{\otimes n}$ such that

$$
\sum_{l=1}^{m}\langle v|\left(\left|v_{l}\right\rangle\left\langle v_{l}\right| \otimes I_{n-k}\right)|v\rangle=0 ?
$$

Or, for each vector $|v\rangle$ in $\mathcal{H}^{\otimes n}$, is it true that

$$
\begin{gathered}
\sum_{l=1}^{m}\langle v|\left(\left|v_{l}\right\rangle\left\langle v_{l}\right| \otimes I_{n-k}\right)|v\rangle \geq \epsilon, \text { where } \epsilon \geq n^{-\alpha} \text { for } \\
\alpha=O(1) \text { is a fixed precision parameter? }
\end{gathered}
$$

Intuition behind QSAT

- The reduzed density matrices $\left|v_{l}\right\rangle\left\langle v_{l}\right| \otimes I_{n-k}$ correspond to unsatisfying assignments of clauses ψ_{l} of a propositional formula ϕ in CNF.

Intuition behind QSAT

- The reduzed density matrices $\left|v_{l}\right\rangle\left\langle v_{l}\right| \otimes I_{n-k}$ correspond to unsatisfying assignments of clauses ψ_{l} of a propositional formula ϕ in CNF.
- A vector $|v\rangle$ in $\mathcal{H}^{\otimes n}$ is such that $\left|v_{l}\right\rangle\left\langle v_{l}\right| \otimes I_{n-k}|v\rangle=0$ if, and only if, v is an assignment to the n variables which satisfies the clause ψ_{l}.

Intuition behind QSAT

- The reduzed density matrices $\left|v_{l}\right\rangle\left\langle v_{l}\right| \otimes I_{n-k}$ correspond to unsatisfying assignments of clauses ψ_{l} of a propositional formula ϕ in CNF.
- A vector $|v\rangle$ in $\mathcal{H}^{\otimes n}$ is such that $\left|v_{l}\right\rangle\left\langle v_{l}\right| \otimes I_{n-k}|v\rangle=0$ if, and only if, v is an assignment to the n variables which satisfies the clause ψ_{l}.
- ϕ is satisfiable if, and only if, $\sum_{l=1}^{m}\langle v|\left(\left|v_{l}\right\rangle\left\langle v_{l}\right| \otimes I_{n-k}\right)|v\rangle=0$ for some $|v\rangle \in \mathcal{H}^{\otimes n}$.

Example (Aharonov and Naveh, 2002)

For the clause $\psi_{l}=x \vee y \vee \neg z$, we have the Hermitian matrix

$$
H_{l}=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=|001\rangle\langle 001|,
$$

since (001) is the only unsatisfying assignment for ψ_{l}. In this case, v is an assignment to the n variables which satisfies the clause ψ_{l} if, and only if, $|v\rangle$ in $\mathcal{H}^{\otimes n}$ is such that $H_{l} \otimes I_{n-3}|v\rangle=0$.

Some difficulties in the previous example

- It does not work a clause $\psi_{1}^{\prime}=\neg x_{1} \vee x_{2} \vee \neg x_{3}$ in QSAT: (101) is the only unsatisfying assignment in this case and H_{j}^{\prime} will not be a density matrix since $\operatorname{tr}\left(H_{l}^{\prime}\right)>1$.

Some difficulties in the previous example

- It does not work a clause $\psi_{l}^{\prime}=\neg x_{1} \vee x_{2} \vee \neg x_{3}$ in QSAT: (101) is the only unsatisfying assignment in this case and H_{j}^{\prime} will not be a density matrix since $\operatorname{tr}\left(H_{l}^{\prime}\right)>1$.
- This shows that it is necessary a condition of normalization.

Some difficulties in the previous example

- It does not work a clause $\psi_{1}^{\prime}=\neg x_{1} \vee x_{2} \vee \neg x_{3}$ in QSAT: (101) is the only unsatisfying assignment in this case and H_{j}^{\prime} will not be a density matrix since $\operatorname{tr}\left(H_{l}^{\prime}\right)>1$.
- This shows that it is necessary a condition of normalization.
- Moreover, the matrices only have elements 0 and 1 , but the original problem is general: any polynomial computable complex number which satisfies the condition of normalization can be an element of the matrices.

QSAT ${ }^{\prime}$: a logical version of QSAT

- Let ψ_{l} be a clause of a propositional formula ϕ in CNF with degree (k, n), where k is the number of literal in each clause and n the number of variables in ϕ. A quantum assigment to ψ_{l} is a $2^{n} \times 2^{n}$-matrix $\left\|\psi_{l}\right\|_{v}$ on $\mathbb{C}_{2}^{\otimes n}$ such that

$$
\left\|\psi_{l}\right\|_{v}=A_{l}\left(\left|v\left(x_{l_{1}}\right) \cdots v\left(x_{l_{k}}\right)\right\rangle\left\langle v\left(x_{l_{1}}\right) \cdots v\left(x_{l_{k}}\right)\right| \otimes I_{n-k}\right),
$$

where $\left\{x_{l_{1}}, \ldots, x_{l_{k}}\right\}=\operatorname{var}\left(\psi_{l}\right), v \in \operatorname{Eval}(\phi)$ is such that, for all $/$ with $1 \leq I \leq m, \hat{v}\left(\psi_{l}\right)=0, A_{l}$ is matrix for which $\operatorname{tr}\left(\left\|\psi_{l}\right\|_{v}\right)=1$, $\left\|\psi_{l}\right\|_{v}=\left\|\psi_{l}\right\|_{v}^{T *},\langle u|\left\|\psi_{l}\right\|_{v}|u\rangle \geq 0$ for all $|u\rangle \in \mathbb{C}_{2}^{\otimes n}$ and $a_{i j}^{\prime} \neq 0$ for $i=j$ but $a_{i j}^{\prime}=0$ for $i \neq j$.

QSAT ${ }^{\prime}$: a logical version of QSAT

- Let ψ_{I} be a clause of a propositional formula ϕ in CNF with degree (k, n), where k is the number of literal in each clause and n the number of variables in ϕ. A quantum assigment to ψ_{l} is a $2^{n} \times 2^{n}$-matrix $\left\|\psi_{l}\right\|_{v}$ on $\mathbb{C}_{2}^{\otimes n}$ such that

$$
\left\|\psi_{l}\right\|_{v}=A_{l}\left(\left|v\left(x_{l_{1}}\right) \cdots v\left(x_{l_{k}}\right)\right\rangle\left\langle v\left(x_{l_{1}}\right) \cdots v\left(x_{l_{k}}\right)\right| \otimes I_{n-k}\right),
$$

where $\left\{x_{I_{1}}, \ldots, x_{I_{k}}\right\}=\operatorname{var}\left(\psi_{l}\right), v \in \operatorname{Eval}(\phi)$ is such that, for all $/$ with $1 \leq I \leq m, \hat{v}\left(\psi_{l}\right)=0, A_{l}$ is matrix for which $\operatorname{tr}\left(\left\|\psi_{l}\right\|_{v}\right)=1$, $\left\|\psi_{l}\right\|_{v}=\left\|\psi_{l}\right\|_{v}^{T *},\langle u|\left\|\psi_{l}\right\|_{v}|u\rangle \geq 0$ for all $|u\rangle \in \mathbb{C}_{2}^{\otimes n}$ and $a_{i j}^{\prime} \neq 0$ for $i=j$ but $a_{i j}^{l}=0$ for $i \neq j$.

- Given an $\epsilon \geq n^{-\alpha}$ for $\alpha=O(1), \phi$ is quantum satisfiable if there is $|w\rangle \in \mathbb{C}_{2}^{\otimes n}$ for which $|v\rangle=|w\rangle+\left|v\left(x_{1}\right) \cdots v\left(x_{n}\right)\right\rangle$ is such that

$$
\sum_{l=1}^{m}\langle v|\left(\left|v_{l}\right\rangle\left\langle v_{l}\right| \otimes I_{n-k}\right)|v\rangle=0 .
$$

Otherwise, ϕ is quantum unsatisfiable, i.e., for each vector $|v\rangle$ in $\mathcal{H}^{\otimes n}$, is it true that

$$
\sum_{l=1}^{m}\langle v|\left(\left|v_{l}\right\rangle\left\langle v_{l}\right| \otimes I_{n-k}\right)|v\rangle \geq \epsilon
$$

Another example

Take the formula $\phi=(x \vee \neg y) \wedge(x \vee z)$. The assigment $v \in \operatorname{Eval}(\phi)$ such that $v(x)=0, v(y)=1$ and $v(z)=0$ is such that $\hat{v}(x \vee \neg y)=\hat{v}(\neg x \vee z)=0$ and so $\hat{v}(\phi)=0$. In this case,

$$
\begin{gathered}
|v(x) v(y)\rangle\langle v(x) v(y)|=|01\rangle\langle 01|=|0\rangle \otimes|1\rangle\langle 0| \otimes\langle 1|=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
\text { and }
\end{gathered}
$$

$$
|v(x) v(z)\rangle\langle v(x) v(z)|=|00\rangle\langle 00|=|0\rangle \otimes|0\rangle\langle 0| \otimes\langle 0|=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

As $k=2$ and $n=3,\|x \vee \neg y\|_{v}$ and $\|x \vee z\|_{v}$ are, respectively, the following matrices:

$$
A_{1}\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), A_{2}\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

for some appropriate 8×8-matrices A_{1} and A_{2}.

However, $|v(x) v(y) v(z)\rangle=|010\rangle=|0\rangle \otimes|1\rangle \otimes|0\rangle$ is the vector

$$
\left(\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right) .
$$

Since $A_{1}\|x \vee \neg y\|_{v}|v(x) v(y) v(z)\rangle=0$ but $A_{1}\|x \vee z\|_{v}|v(x) v(y) v(z)\rangle \neq 0$ for any matrices A_{1} and A_{2}, we conclude that ϕ is quantum unsatisfiable.

QSAT ${ }^{\prime}$ is not an adequate generalization of SAT

Theorem

Let ϕ be a propositional formula in CNF with degree (k, n) such that $\operatorname{var}(\phi)=\left\{x_{1}, \ldots, x_{n}\right\}$. Suppose that ϕ is satisfiable and ψ_{p} as well as ψ_{q} are clauses of ϕ such that $\operatorname{var}\left(\psi_{p}\right) \neq \operatorname{var}\left(\psi_{q}\right)$. Then, there exists an assigment $v \in \operatorname{Eval}(\phi)$ such that, for all $I, \hat{v}\left(\psi_{l}\right)=0$ but there is no vector $|w\rangle$ in $\mathbb{C}_{2}^{\otimes n}$ such that, for $|v\rangle=|w\rangle+\left|v\left(x_{1}\right) \cdots v\left(x_{n}\right)\right\rangle$, both $\langle v|\left\|\psi_{p}\right\|_{v}|v\rangle=0$ and $\langle v|\left\|\psi_{q}\right\|_{v}|v\rangle=0$.

Proof (idea).

- Permutations of the conjunctions and disjunctions ocurring in ϕ do not change its classical truth-value.
- Put the literals of ψ_{p} and ψ_{q} that have different variables in the same position in $\left\|\psi_{p}\right\|_{v}$ and $\left\|\psi_{q}\right\|_{v}$.

Present work

- The logical relationship between SAT and QSAT was made explicit. It was shown that the connection between them is only superficial and not deep enough to allow a direct comparison between NP and QMA.
- The logical relationship between SAT and QSAT was made explicit. It was shown that the connection between them is only superficial and not deep enough to allow a direct comparison between NP and QMA.
- Variations of QSAT more closed to PSAT are just stoquastic versions of QSAT. Thus, the same limitations exhibited here also are applicable to them.
- The logical relationship between SAT and QSAT was made explicit. It was shown that the connection between them is only superficial and not deep enough to allow a direct comparison between NP and QMA.
- Variations of QSAT more closed to PSAT are just stoquastic versions of QSAT. Thus, the same limitations exhibited here also are applicable to them.
- Is there a QMA-complete problem that, from a logical point of view, is an appropriate quantum generalization of SAT?
- If QSAT' is QMA-complete, then the answer is "No!" and perhaps this fact can be used to show that $N P \nsubseteq Q M A$.
- If QSAT ${ }^{I}$ is QMA-complete, then the answer is "No!" and perhaps this fact can be used to show that $N P \nsubseteq Q M A$.
- If QSAT' is not QMA-complete, then the answer is, perhaps, "Yes!" and we don't know what say about the question " $N P \subseteq Q M A$?"!

[^0]: ${ }^{1}$ This work was supported by Fapesp Project LogProb, grant 2008/03995-5, São Paulo, Brazil.

