

Classical and quantum satisfiability 1

Author(s):

Anderson de Araújo Marcelo Finger

¹This work was supported by Fapesp Project LogProb, grant 2008/03995-5, São Paulo, Brazil.

CLASSICAL AND QUANTUM SATISFIABILITY

Anderson de Araújo Marcelo Finger

Institute of Mathematics and Statistics Departament of Computer Science University of São Paulo

LSFA 2011

Objectives

General: To analyze the main quantum and classical time-complexity classes (*P*, *NP*, *BQP* and *QMA*), studying *NP* and *QMA* complete problems.

Objectives

- General: To analyze the main quantum and classical time-complexity classes (*P*, *NP*, *BQP* and *QMA*), studying *NP* and *QMA* complete problems.
- Specific: To show that the existing quantum versions of the satisfiability problem (SAT) do not allow an adequate logical analysis of the relationship between NP and QMA.

Motivation

General: There are quantum algorithms that efficiently solves some important problems, for example: (1) Shor's algorithm is a quantum algorithm for integer factorization which takes time $O((\log n)^3)$; (2) Grover's algorithm is a quantum algorithm for searching an unsorted database with n entries in $O(\sqrt{n})$ time.

Motivation

- General: There are quantum algorithms that efficiently solves some important problems, for example: (1) Shor's algorithm is a quantum algorithm for integer factorization which takes time $O((\log n)^3)$; (2) Grover's algorithm is a quantum algorithm for searching an unsorted database with n entries in $O(\sqrt{n})$ time.
- Specific: There are classical and quantum problems that at first glance seem similar, notably: probabilistic satisfiability problem (PSAT) and quantum satisfiability problem (QSAT). Both are probabilistic problems and can be viewed as linear program problems. In (Finger and de Bona, 2010), a polynomial-time reduction of PSAT to SAT was given. PSAT is NP-complete and QSAT is QMA-complete. So...

Introduction

Problem

Can we use PSAT and QSAT to compare the classes NP and QMA?

LSFA 2011

Strategy

- To put SAT and QSAT in the same framework.
- To investigate whether all *SAT*-instances are *QSAT*-instances, and vice-versa.

 $Quantum \ satisfiability$

Quantum satisfiability problem (Kitaev-Bravyi)

Input: A set with *m* local density matrices $|v_m\rangle\langle v_m| \otimes I_{n-k}$ defined on a Hilbert space $\mathcal{H}^{\otimes n}$ of *n* qubits (dimension 2^n), where each $|v_m\rangle$ is a vector in the subspace $\mathcal{H}^{\otimes k} \subseteq \mathcal{H}^{\otimes n}$ and I_{n-k} is the identity operator on $\mathcal{H}^{\otimes n-k}$. For $|v_m\rangle\langle v_m| \otimes I_{n-k} = (a_{ij}^m)$, the condition of *locality* means that a_{ii}^m is given with *poly*(*n*) many bits.

LSFA 2011

 $Quantum \ satisfiability$

Quantum satisfiability problem (Kitaev-Bravyi)

Input: A set with *m* local density matrices $|v_m\rangle\langle v_m| \otimes I_{n-k}$ defined on a Hilbert space $\mathcal{H}^{\otimes n}$ of *n* qubits (dimension 2^n), where each $|v_m\rangle$ is a vector in the subspace $\mathcal{H}^{\otimes k} \subseteq \mathcal{H}^{\otimes n}$ and I_{n-k} is the identity operator on $\mathcal{H}^{\otimes n-k}$. For $|v_m\rangle\langle v_m| \otimes I_{n-k} = (a_{ij}^m)$, the condition of *locality* means that a_{ii}^m is given with *poly*(*n*) many bits.

Problem: Is there a vector $|v\rangle$ in $\mathcal{H}^{\otimes n}$ such that

 $\sum_{l=1}^{m} \langle v | (|v_l\rangle \langle v_l| \otimes I_{n-k}) | v \rangle = 0?$ Or, for each vector $|v\rangle$ in $\mathcal{H}^{\otimes n}$, is it true that $\sum_{l=1}^{m} \langle v | (|v_l\rangle \langle v_l| \otimes I_{n-k}) | v \rangle \ge \epsilon, \text{ where } \epsilon \ge n^{-\alpha} \text{ for}$ $\alpha = O(1) \text{ is a fixed precision parameter}?$

Intuition behind QSAT

• The reduzed density matrices $|v_l\rangle\langle v_l| \otimes I_{n-k}$ correspond to unsatisfying assignments of clauses ψ_l of a propositional formula ϕ in CNF.

LSFA 2011

7 / 16

Intuition behind QSAT

- The reduzed density matrices $|v_l\rangle\langle v_l| \otimes I_{n-k}$ correspond to unsatisfying assignments of clauses ψ_l of a propositional formula ϕ in CNF.
- A vector $|v\rangle$ in $\mathcal{H}^{\otimes n}$ is such that $\overline{|v_l\rangle}\langle v_l| \otimes I_{n-k}|v\rangle = 0$ if, and only if, v is an assignment to the n variables which satisfies the clause ψ_l .

LSFA 2011

Intuition behind QSAT

- The reduzed density matrices $|v_l\rangle\langle v_l| \otimes I_{n-k}$ correspond to unsatisfying assignments of clauses ψ_l of a propositional formula ϕ in CNF.
- A vector $|v\rangle$ in $\mathcal{H}^{\otimes n}$ is such that $|v_l\rangle\langle v_l|\otimes I_{n-k}|v\rangle = 0$ if, and only if, v is an assignment to the n variables which satisfies the clause ψ_l .
- ϕ is satisfiable if, and only if, $\sum_{l=1}^{m} \langle v | (|v_l\rangle \langle v_l| \otimes I_{n-k}) | v \rangle = 0$ for some $|v\rangle \in \mathcal{H}^{\otimes n}$.

Example (Aharonov and Naveh, 2002)

For the clause $\psi_I = x \lor y \lor \neg z$, we have the Hermitian matrix

since (001) is the only unsatisfying assignment for ψ_I . In this case, v is an assignment to the *n* variables which satisfies the clause ψ_I if, and only if, $|v\rangle$ in $\mathcal{H}^{\otimes n}$ is such that $H_I \otimes I_{n-3} |v\rangle = 0$.

Some difficulties in the previous example

• It does not work a clause $\psi'_l = \neg x_1 \lor x_2 \lor \neg x_3$ in *QSAT*: (101) is the only unsatisfying assignment in this case and H'_l will not be a density matrix since $\operatorname{tr}(H'_l) > 1$.

Some difficulties in the previous example

- It does not work a clause $\psi'_l = \neg x_1 \lor x_2 \lor \neg x_3$ in *QSAT*: (101) is the only unsatisfying assignment in this case and H'_l will not be a density matrix since $\operatorname{tr}(H'_l) > 1$.
- This shows that it is necessary a condition of normalization.

Some difficulties in the previous example

- It does not work a clause $\psi'_l = \neg x_1 \lor x_2 \lor \neg x_3$ in *QSAT*: (101) is the only unsatisfying assignment in this case and H'_l will not be a density matrix since $\operatorname{tr}(H'_l) > 1$.
- This shows that it is necessary a condition of normalization.
- Moreover, the matrices only have elements 0 and 1, but the original problem is general: any polynomial computable complex number which satisfies the condition of normalization can be an element of the matrices.

QSAT': a logical version of QSAT

• Let ψ_l be a clause of a propositional formula ϕ in CNF with degree (k, n), where k is the number of literal in each clause and n the number of variables in ϕ . A quantum assignment to ψ_l is a $2^n \times 2^n$ -matrix $\|\psi_l\|_{v}$ on $\mathbb{C}_2^{\otimes n}$ such that

 $\begin{aligned} \|\psi_{I}\|_{v} &= A_{I}(|v(x_{l_{1}})\cdots v(x_{l_{k}})\rangle\langle v(x_{l_{1}})\cdots v(x_{l_{k}})|\otimes I_{n-k}),\\ \text{where } \{x_{l_{1}},\ldots,x_{l_{k}}\} &= var(\psi_{I}), \ v\in Eval(\phi) \text{ is such that, for all } I \text{ with }\\ 1 \leq I \leq m, \ \hat{v}(\psi_{I}) &= 0, \ A_{I} \text{ is matrix for which } \operatorname{tr}(\|\psi_{I}\|_{v}) = 1,\\ \|\psi_{I}\|_{v} &= \|\psi_{I}\|_{v}^{T*}, \ \langle u| \|\psi_{I}\|_{v} |u\rangle \geq 0 \text{ for all } |u\rangle \in \mathbb{C}_{2}^{\otimes n} \text{ and } a_{ij}^{I} \neq 0 \text{ for }\\ i = j \text{ but } a_{ij}^{I} = 0 \text{ for } i \neq j. \end{aligned}$

LSFA 2011

10 / 16

<u>QSAT':</u> a logical version of QSAT

• Let ψ_l be a clause of a propositional formula ϕ in CNF with degree (k, n), where k is the number of literal in each clause and n the number of variables in ϕ . A quantum assignment to ψ_l is a $2^n \times 2^n$ -matrix $\|\psi_I\|_{\nu}$ on $\mathbb{C}_2^{\otimes n}$ such that

 $\|\psi_l\|_{\mathcal{V}} = A_l(|v(x_h)\cdots v(x_{h})\rangle \langle v(x_h)\cdots v(x_{h})| \otimes I_{n-k}),$

where $\{x_h, \ldots, x_h\} = var(\psi_l), v \in Eval(\phi)$ is such that, for all l with $1 \leq l \leq m$, $\hat{v}(\psi_l) = 0$, A_l is matrix for which $tr(||\psi_l||_{v}) = 1$, $\|\psi_I\|_v = \|\psi_I\|_v^{T*}, \langle u| \|\psi_I\|_v |u\rangle \ge 0$ for all $|u\rangle \in \mathbb{C}_2^{\otimes n}$ and $a'_{ii} \ne 0$ for i = j but $a_{ii}^{l} = 0$ for $i \neq j$.

• Given an $\epsilon \geq n^{-\alpha}$ for $\alpha = O(1)$, ϕ is quantum satisfiable if there is $|w\rangle \in \mathbb{C}_2^{\otimes n}$ for which $|v\rangle = |w\rangle + |v(x_1) \cdots v(x_n)\rangle$ is such that $\sum_{l=1}^{m} \langle \mathbf{v} | (|\mathbf{v}_l\rangle \langle \mathbf{v}_l| \otimes I_{n-k}) | \mathbf{v} \rangle = 0.$

Otherwise, ϕ is *quantum unsatisfiable*, i.e., for each vector $|v\rangle$ in $\mathcal{H}^{\otimes n}$, is it true that

> $\sum_{l=1}^{m} \langle \mathbf{v} | (|\mathbf{v}_l\rangle \langle \mathbf{v}_l| \otimes I_{n-k}) | \mathbf{v}_{l}\rangle \geq \langle \mathbf{v}_{l} \rangle \langle \mathbf{v}_{l} \rangle$ LSFA 2011 10 / 16

Araújo and Finger (IME-USP)

Classical and quantum satisfiability

Another example

Take the formula $\phi = (x \lor \neg y) \land (x \lor z)$. The assignment $v \in Eval(\phi)$ such that v(x) = 0, v(y) = 1 and v(z) = 0 is such that $\hat{v}(x \lor \neg y) = \hat{v}(\neg x \lor z) = 0$ and so $\hat{v}(\phi) = 0$. In this case,

and

LSFA 2011 11 / 16

Classical and quantum satisfiability

Araújo and Finger (IME-USP)

As k = 2 and n = 3, $||x \vee \neg y||_{v}$ and $||x \vee z||_{v}$ are, respectively, the following matrices:

for some appropriate 8×8 -matrices A_1 and A_2 .

However, $|v(x)v(y)v(z)
angle = |010
angle = |0
angle \otimes |1
angle \otimes |0
angle$ is the vector

Since $A_1 ||x \vee \neg y||_v |v(x)v(y)v(z)\rangle = 0$ but $A_1 ||x \vee z||_v |v(x)v(y)v(z)\rangle \neq 0$ for any matrices A_1 and A_2 , we conclude that ϕ is quantum unsatisfiable.

LSFA 2011 13 / 16

QSAT' is not an adequate generalization of SAT

Theorem

Let ϕ be a propositional formula in CNF with degree (k, n) such that $var(\phi) = \{x_1, \ldots, x_n\}$. Suppose that ϕ is satisfiable and ψ_p as well as ψ_q are clauses of ϕ such that $var(\psi_p) \neq var(\psi_q)$. Then, there exists an assignment $v \in Eval(\phi)$ such that, for all l, $\hat{v}(\psi_l) = 0$ but there is no vector $|w\rangle$ in $\mathbb{C}_2^{\otimes n}$ such that, for $|v\rangle = |w\rangle + |v(x_1) \cdots v(x_n)\rangle$, both $\langle v | \|\psi_p\|_v |v\rangle = 0$ and $\langle v | \|\psi_q\|_v |v\rangle = 0$.

Proof (idea).

- Permutations of the conjunctions and disjunctions ocurring in ϕ do not change its classical truth-value.
- Put the literals of ψ_p and ψ_q that have different variables in the same position in $\|\psi_p\|_v$ and $\|\psi_q\|_v$.

LSFA 2011

14 / 16

Present work

 The logical relationship between SAT and QSAT was made explicit.
 It was shown that the connection between them is only superficial and not deep enough to allow a direct comparison between NP and QMA.

LSFA 2011

Conclusion

Present work

- The logical relationship between *SAT* and *QSAT* was made explicit. It was shown that the connection between them is only superficial and not deep enough to allow a direct comparison between *NP* and *QMA*.
- Variations of *QSAT* more closed to *PSAT* are just stoquastic versions of *QSAT*. Thus, the same limitations exhibited here also are applicable to them.

LSFA 2011

15 / 16

Present work

- The logical relationship between *SAT* and *QSAT* was made explicit. It was shown that the connection between them is only superficial and not deep enough to allow a direct comparison between *NP* and *QMA*.
- Variations of *QSAT* more closed to *PSAT* are just stoquastic versions of *QSAT*. Thus, the same limitations exhibited here also are applicable to them.
- Is there a *QMA*-complete problem that, from a logical point of view, is an appropriate quantum generalization of *SAT*?

Conclusion

Future work

• If $QSAT^{T}$ is QMA-complete, then the answer is "No!" and perhaps this fact can be used to show that $NP \not\subseteq QMA$.

LSFA 2011

Conclusion

Future work

- If $QSAT^{T}$ is QMA-complete, then the answer is "No!" and perhaps this fact can be used to show that $NP \not\subseteq QMA$.
- If $QSAT^{I}$ is not QMA-complete, then the answer is, perhaps, "Yes!" and we don't know what say about the question " $NP \subseteq QMA$?"!

LSFA 2011

16 / 16