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Summary

Objective: The aim of this article is to propose an integrated framework for extracting
and describing patterns of disorders from medical images using a combination of linear
discriminant analysis and active contour models.

Methods: A multivariate statistical methodology was first used to identify the most
discriminating hyperplane separating two groups of images (from healthy controls and
patients with schizophrenia) contained in the input data. After this, the present work
makes explicit the differences found by the multivariate statistical method by subtracting
the discriminant models of controls and patients, weighted by the pooled variance between
the two groups. A variational level-set technique was used to segment clusters of these
differences. We obtain a label of each anatomical change using the Talairach atlas.

Results: In this work all the data was analysed simultaneously rather than assuming a
priori regions of interest. As a consequence of this, by using active contour models, we
were able to obtain regions of interest that were emergent from the data. The results were
evaluated using, as gold standard, well-known facts about the neuroanatomical changes
related to schizophrenia. Most of the items in the gold standard was covered in our result set.

Conclusions: We argue that such investigation provides a suitable framework for charac-
terising the high complexity of magnetic resonance images in schizophrenia as the results
obtained indicate a high sensitivity rate with respect to the gold standard.

Key words: Multivariate statistical analysis, neuroimage, deformable models,
schizophrenia research.
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1. Introduction

Schizophrenia is a mental disorder char-
acterised by symptoms of psychosis (e.g.,
delusions and hallucinations), apathy and
social withdrawal, as well as cognitive im-
pairment [1]. Although the causes of
schizophrenia are unknown, both genetic [2]
and environmental factors (including bio-
logical - e.g., prenatal infection and obstet-
ric complications - and psychosocial factors)
appear to play a role in its etiology. These
factors are not sufficient to the emergence
of schizophrenia, probably exerting their ef-
fect in a stress-vulnerability model of the
disease [3].

The established illness is associated with
structural and functional brain abnormal-
ities, mainly in prefrontal and temporal
lobes, findings being largely due to recent
advances in in vivo Magnetic Resonance
Imaging (MRI) techniques [4]. However,
none of the brain abnormalities found in
schizophrenia is characteristic of the dis-
ease, and no neuroanatomical finding alone
has a diagnostic value for schizophrenia. It
is conceivable that the abnormality in brain
development is not restricted to a deter-
mined brain structure, being rather diffuse,
affecting the different brain structures si-
multaneously. In an attempt to overcome
these difficulties, in a previous study [5]
we studied 12 Computed Tomography (CT)
parameters in 30 schizophrenic patients and
30 sex- and age-matched controls, and eval-
uated the data simultaneously through mul-
tidimensional scaling (MDS). MDS offers a
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graphic representation in which subtle devi-
ations in the different CT parameters can be
detected, independently of predetermined
criteria for the definition of abnormalities.
MDS distinguished 13 patients from the
controls as having deviant values in one or
more CT parameters. Five of these pa-
tients were first-onset schizophrenics. Our
results suggest that the use of multidimen-
sional techniques may improve the sensitiv-
ity of neuroanatomical data to identify more
precisely schizophrenic patients and to pro-
vide information of the possible influence of
the structural brain abnormalities upon the
course and prognosis of the disorder.

The purpose of this paper is to investi-
gate multidimensional techniques on neu-
roanatomical data through the application
of multivariate statistical methods to ex-
tract the most statistically significant dif-
ferences between controls and patients and
to segment automatically these findings. In
order to report these developments, the
present paper is organised in the following
way: Section 2 describes some pieces of re-
lated research; Section 3 presents the statis-
tical methods used to extract discriminant
features that best differentiate neuroimages
from healthy controls and patients with
schizophrenia; Section 4 describes some re-
sults from the application of the methods
discussed in Section 3 and shows how the
obtained discriminant information can be
automatically segmented using active con-
tour models; Section 5 presents an auto-
matic procedure for labelling the output ob-
tained by the methods presented with the
names of the related brain structure. The
results of this procedure are evaluated ac-
cording to the extent of which well-known
findings about neuroanatomical changes re-
lated to schizophrenia were obtained auto-
matically by the proposed methods (Section
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6). Discussions are drawn in Section 7 and
Section 8 concludes this paper.

2. Related Research

The medical image analysis community
has been mostly concerned with the seg-
mentation of particular anatomic struc-
tures, even considering research on bottom
up (i.e., autonomous and model-free) seg-
mentation, as pointed out in various liter-
ature surveys [6–8]. From this literature
we have to refer to some articles that pro-
pose similar steps to those discussed in the
present paper. The work reported in [9]
presents the results of the segmentation of
the human lungs from MR images using a
combination of neural networks and active
contours, the perceptron is trained to clas-
sify a pixel as belonging to the boundary
of the target structure or not. The result-
ing classification is then used as input to an
active contour model. In [10] a combina-
tion of a C-means clustering algorithm and
active contour is used to segment the tha-
lamus from MRI scans, whereby C-means
provides the input to the active contour seg-
mentation. Adaptive clustering and active
contours are also used in [11] to segment the
hippocampus region in brain MRIs. Simi-
larly, an expectation/maximisation segmen-
tation is used in [12] to initialise an active
model procedure that segments the brain
tissue from MR images of the head.

However, to the best of our knowledge,
the work reported here is the first to pro-
pose the combination of multivariate statis-
tical analysis and active models to search for
statistically significant regions (in contrast
to particular anatomical structures) in the
neuroimages that best differentiate MRI of
schizophrenic patients from those of healthy
controls.

3. Extracting discriminative informa-
tion

The increasing resolution of 3D anatomi-
cal and functional images nowadays has al-
lowed the visualisation of neuroanatomical
structures of the human brain with impres-
sive detail. For example, the widely used
method of MRI gives good soft-tissue con-
trast with high resolution, that is, com-
monly less than 1mm [13]. However, de-
pending on the brain abnormality and its
progression, neuroanatomical changes may
be too subtle, diffuse, or topologically com-
plex to be detected by simple visual inspec-
tion [13]. Thus, in the last years, a con-
siderable amount of effort has been devoted
to the design of computational methods for
morphological analysis of the human brain.
Traditionally, such analysis of brain images
has been based either on the definition of re-
gions of interest given some a priori hypoth-
esis or on voxel-wise measurements with lit-
tle prior knowledge [14, 15]. In practice,
these methodologies have shown yet lim-
itations in their ability to identify previ-
ously unexplored relationships between con-
trol and patient groups.

In recent years, statistical pattern recog-
nition methods have been proposed to
extract and analyse morphological and
anatomical structures of MR images be-
tween images of a reference group and
the group under investigation [16, 15, 17–
19]. Most of these techniques work in
high-dimensional spaces of particular fea-
tures such as shapes or statistical paramet-
ric maps and have overcome the difficulty
of dealing with the inherent high dimen-
sionality of medical data by analysing seg-
mented structures individually or perform-
ing hypothesis tests on each feature sepa-
rately. As a consequence, changes that are
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relatively more widely distributed and in-
volve simultaneously several structures of
the pattern of interest might be difficult to
detect, despite the possibility of some sta-
tistical learning methods [18, 19] of extract-
ing multivariate differences between image
samples of patients and controls.

The main goal of the methodology de-
scribed in this section is to analyse all
the data simultaneously rather than seg-
mented versions separately or feature-by-
feature. This approach has been specially
designed for extracting discriminative infor-
mation from high dimensional, small sample
size problems [20–23]. In the next subsec-
tions, we discuss our general multivariate
statistical approach to identify and analyse
the most discriminating hyperplane sepa-
rating two groups and explain how we have
quantified the statistical significance of the
multivariate group-differences found.

3.1. Multivariate Statistical Discriminant
Model

In the generic discrimination problem,
where the training sample consists of the
class membership and observations for N
samples, the outcome of interest falls into
g classes and we wish to build a rule for
predicting the class membership of an ob-
servation based on n variables or features.
However, statistical discriminant methods
are suitable not only for classification but
also for characterisation of differences be-
tween a reference group of samples and the
group under investigation. For example, in
clinical diagnosis it might be helpful to de-
termine on the original space of images the
discriminant information captured (or used)
by a statistical classifier to separate MRI
samples of patients and controls.

However, before we can perform a multi-
variate pattern recognition analysis on the

MR images, we need first to map all images
into a common atlas coordinate system.
This pre-processing step, called spatial nor-
malisation or image registration, is essential
because the construction of the multivari-
ate statistical model relies on the correspon-
dences of the image features when compar-
ing patterns across samples. In MRI brain
analysis, this procedure has essentially two
goals [21]: (a) to reduce variability due to
size, position and orientation of the brain
shape [24] and (b) to reduce variability due
to differences in the brain shape [24]. Each
registered image can then be treated as a
point in an n-dimensional space, where n is
the total number of voxels. In this work,
the coordinates of this point represent the
intensity value of each voxel. For this fea-
ture representation to make sense in clas-
sification problems, we are making implic-
itly the assumption that two similar images
correspond to two close points in the high
dimensional original image space. I.e., the
effectiveness of the extracting information
technique would be determined by how well
the samples from different classes can be
separated.

The n-dimensional resulting images are
then projected from the original vector
space to a lower dimensional space using the
well-known Principal Component Analysis
(PCA) [25]. There are a number of reasons
for using PCA to reduce the dimensionality
of the original MR images. PCA is a lin-
ear transformation that is not only simple
to compute and analytically tractable but
also extracts a set of features that is opti-
mal with respect to representing the data
back into the original domain. Moreover,
using PCA as an intermediate step reduces
dramatically the computational and storage
requirements for the subsequent linear dis-
criminant covariance-based method. Since
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in our application of interest the number
of training samples N (or images) is much
smaller than the number of features n (or
voxels), it is possible to transform data in
a way that the samples occupy regions that
are as compact as possible in a lower dimen-
sional feature space, with fewer degrees of
freedom to estimate. Although much of the
sample variability can be accounted for by
a smaller number of principal components,
that is, we could retain only the first two
or three principal components, there is no
guarantee that such additional dimension-
ality reduction will not add artifacts on the
images when mapped back into the original
image space. Since one of our main con-
cerns here is to map the subsequent classi-
fication results back to the image domain
for a further description of the information
content of the findings, we must be cer-
tain that any modification on the images,
such as blurring or subtle differences, is not
related to the PCA dimensionality reduc-
tion. For example, Figure 1 [21] illustrates
on the top a reference image (shown on the
left) reconstructed using several principal
components and on the bottom the corre-
sponding differences between these recon-
structions with respect to the original im-
age. The values in parentheses represent,
respectively, the number of principal com-
ponents used and the corresponding total
variance explained. We can see that, even
when we use a set of principal components
that represent more than 90% of the total
sample variance we still have subtle differ-
ences between the reconstructed image and
the original one. Therefore, in order to re-
produce the total variability of the samples,
we have composed the PCA transformation
matrix by selecting all the principal compo-
nents with non-zero eigenvalues, that is, the
number m of retained principal components

is m = N − 1.
A maximum uncertainty linear discrim-

inant analysis (MLDA) approach [26] has
been applied next to find the best linear dis-
criminant features on that PCA subspace.
The primary purpose of linear discrimi-
nant analysis (LDA) is to separate data
samples of distinct groups by maximising
their between-class separability while min-
imising their within-class variability. It is
well known, however, that the performance
of the standard LDA can be seriously de-
graded if there are only a limited num-
ber of total training observations N com-
pared to the dimension of the feature space.
Since the within-class scatter matrix Sw is
a function of (N − g), or fewer linearly in-
dependent vectors, where g is the number
of groups, its rank is (N − g) or less. In
the current situation, where the number of
training patterns is small with respect to the
number of features, Sw might be singular or
unstable and the standard LDA cannot be
used to perform the task of the classification
stage.

The main idea of the MLDA approach is
to stabilise the within-class scatter matrix
Sw with a multiple of the identity matrix.
It is based on the maximum entropy covari-
ance selection method that Thomaz et al.
[27, 26] have developed to improve classifi-
cation performance on limited sample size
problems [20–23]. Since the estimation er-
rors of the non-dominant or small eigen-
values are much greater than those of the
dominant or large eigenvalues, the MLDA
algorithm expands the smaller (less infor-
mative) eigenvalues of Sw and keeps most
of its larger eigenvalues unchanged. It is
a straightforward method that overcomes
both, the singularity and the instability of
the within-class scatter matrix when LDA is
applied in limited sample, high dimensional
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Figure 1: An example of the reconstruction of a reference image (shown on the left) using several principal
components. The bottom row illustrates the corresponding differences between the reconstructions and the
original image. The number of principal components used, and the corresponding total sample variance
explained by each one of the sets of principal components, are shown in parentheses [21].

problems.

We can divide the design of the
PCA+MLDA multivariate statistical dis-
criminant model into two main tasks: classi-
fication (training and test stages) and visual
analysis. In the classification task the prin-
cipal components and the maximum uncer-
tainty linear discriminant vector are gen-
erated. As illustrated in Algorithm 1 be-
low, first, a training set is selected (T ) and
the average image vector of all the train-
ing images is calculated (T̄ ) and subtracted
from each pre-processed n-dimensional im-
age vector (resulting on the matrix Z in Al-
gorithm 1). Then the training matrix Z,
composed of zero mean image vectors, is
used as input to compute the PCA trans-
formation matrix P . The columns of this
transformation matrix are eigenvectors, not
necessarily in eigenvalues descending order.
Note that we have retained all the PCA
eigenvectors with non-zero eigenvalues, that
is, m = N−1, and P is a n×m matrix. The
zero mean image vectors are projected on
the principal components and reduced to m-

dimensional vectors representing the most
expressive features of each one of the pre-
processed n-dimensional image vector (F ).
Afterwards, the N ×m data matrix (F ) is
used as input to calculate the MLDA dis-
criminant eigenvector (L). Since we are as-
suming only two classes to separate, that
is, g = 2, there is only one MLDA dis-
criminant eigenvector. The most discrim-
inant feature (MF ) of each one of the m-
dimensional vectors is obtained by multiply-
ing the N ×m most expressive feature ma-
trix by the m×1 MLDA linear discriminant
eigenvector. Thus, the initial pre-processed
training set consisting of N measurements
on n variables, is reduced to a data set con-
sisting of N measurements on only 1 most
discriminant feature.

The other main task performed by this
two-stage multivariate approach, and the
one explored further in this work, is to vi-
sually analyse the most discriminant fea-
ture found by the PCA+MLDA statistical
model. Any point on the most discrimi-
nant feature space can be converted to its
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Algorithm 1 PCA+MLDA statistical dis-
criminant method
N = number of images
n = number of voxels of each image
T = matrix (N x n) with training images, each
row is an image vector

A⇐ T̄ {Average image (1xn)}

Z ⇐ T −A {Zero mean sample set (Nxn)}

P ⇐ PCA(Z) {Principal component of Z (nxm)}

F ⇐ Z ∗ P {Most expressive features (Nxm)}

L⇐MLDA(F ) {Linear discriminant eigenvector (mx1)}

MF ⇐ L ∗ F {Most discriminant features (Nx1)}

corresponding n-dimensional image vector
by simply: (1) multiplying that particular
point by the transpose of the linear dis-
criminant vector previously computed (LT );
(2) multiplying its m most expressive fea-
tures by the transpose of the principal com-
ponents matrix (P T ); and (3) adding the
average image (A) calculated in the train-
ing stage to the n-dimensional image vec-
tor. Therefore, assuming that the clouds of
classes follow a multidimensional Gaussian
joint distribution, and applying limits to the
variance of each cloud, such as ±3σi, where
σi is the standard deviation of each group
i ∈ {1, 2}, we can move along this most dis-
criminant feature and map the result back
into the image domain. This mapping pro-
vides a sequence of images based on a sta-
tistical interpretation of the classification
experiments and describes the discriminant
information captured by the PCA+MLDA
method to separate the groups.

To illustrate the performance of the
knowledge extraction approach, we present
in this subsection some results on facial
expression analysis. Since this applica-
tion does not require a specific knowledge
to understand the differences between the
groups, it seems a useful example to dis-
cuss the main idea of the multivariate sta-

tistical discriminant method. We have used
frontal images of a face database maintained
by the Department of Electrical Engineer-
ing of FEI to carry out the experiments.
The FEI face database contains a set of face
images taken between June 2005 and March
2006 at the Artificial Intelligence Labora-
tory in São Bernardo do Campo, São Paulo,
Brazil, with 14 images for each of 200 in-
dividuals - a total of 2800 images. All
images are colourful and taken against a
white homogeneous background in an up-
right frontal position with profile rotation
of up to about 180 degrees. Scale might
vary about 10% and the original size of
each image is 640x480 pixels. All faces are
mainly represented by subjects between 19
and 40 years old with distinct appearance,
hairstyle, and adorns2.

To minimise image variations that are not
necessarily related to differences between
the faces, we first aligned all of the frontal
face images to a common template so that
the pixel-wise features extracted from the
images correspond roughly to the same lo-
cation across all subjects. In this manual
alignment, we have randomly chosen the
frontal image of a subject as template and
the directions of the eyes and nose as a lo-
cation reference. For implementation con-
venience, all the frontal images were then
cropped to the size of 360x260 pixels and
converted to 8-bit grey scale. Since the
number of subjects is equal to 200 and each
subject has two frontal images (one with a
neutral or non-smiling expression and the
other with a smiling facial expression), there
are 400 images to perform the experiments.
Therefore, N = 400, n = 360×260 = 93600,

2This database is publicly avail-
able for download on the following site
http://www.fei.edu.br/∼cet/facedatabase.html.
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and the coordinates of each n-dimensional
image sample represents a value in the range
of 0 and 255.

Figure 2 shows the most discriminant fea-
tures for the facial expression experiments.
It displays the image regions captured by
the multivariate knowledge extraction ap-
proach that change when we move from one
side (left, group 1 of non-smiling samples) of
the dividing hyper-plane to the other (right,
group 2 of smiling samples), following lim-
its to the standard deviation and mean of
each sample group. As can be seen, the
multivariate discriminant hyper-plane effec-
tively extracts the subtle facial expression
changes, showing exactly what we should
expect intuitively from a face image when
someone changes their expression from non-
smiling to smiling. In fact, it is possible
to note that the knowledge extraction ap-
proach has predicted a facial expression not
necessarily present in our corresponding fa-
cial expression training set, that is, the “def-
initely non-smiling” or may be ”angry” sta-
tus and the “definitely smiling” or may be
“happy” status represented respectively by
the image models −3σ1 and +3σ2 in Fig-
ure 2.

The output of the PCA+MLDA extrac-
tion approach are models of images derived
from the original image data set. The next
subsection attempts to quantify the statis-
tical significance of the models represent-
ing group samples. In order to simplify
our terminology, next subsection uses the
term image model to the output of the
PCA+MLDA process and the term origi-
nal data images to refer to the items in the
original image dataset.

3.2. Statistical significance of the differ-
ences between groups

The PCA+MLDA multivariate discrimi-
nant approach provided a model of the most
distinguishing features between two groups,
however it does not quantify explicitly the
change in each feature from any model in
one group to any model in the other group,
or how significantly relevant is this change
with respect to the original data.

In order to quantify this level of change
between two particular image models, we
decided to subtract the extreme cases of
group 1 and group 2 weighted by a factor
that takes into account the pooled variance
between the two groups. Therefore, given
x1 representing the “definitely group 1” im-
age model, x2 the “definitely group 2” im-
age model (as image models −3σ1 and +3σ2

in Figure 2), N1 the number of samples of
group 1, N2 the number of samples of group

2, and σ2 =
(N1−1)∗σ2

1+(N2−1)∗σ2
2

(N1+N2−2)
the pooled

variance between the two groups, the dif-
ferences are represented in the matrix diff
obtained by the equation (1) below:

diff =
x1 − x2√
σ2

N1
+ σ2

N2

. (1)

The extreme image models were chosen,
instead of the mean models of each group,
since the former represent the most differ-
entiating features between the groups, as
given by the PCA+MLDA multivariate ap-
proach. By making explicit the changes be-
tween the extremes of two groups we are
able to verify the extent of which the re-
sults of the multivariate statistical approach
(on neuroimages from patients and con-
trols) agree with those presented in meta-
analyses about anatomical changes related
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Figure 2: Interpretation and reconstruction of the knowledge extraction approach for the facial expres-
sion experiments. From left (group 1 of non-smiling samples) to right (group 2 of smiling samples):
[−3σ1,mean1,+σ1, boundary,−1σ2,mean2,+3σ2].

to schizophrenia (as we shall see later in this
paper).

To make explicit the most statistically
significant changes we selected the features
in diff that were greater than a threshold
value. Considering the facial expression ex-
periments described in the previous subsec-
tion, Figure 3 illustrates3 the spatial distri-
bution of the intensity changes when using
the statistical extremes described by each
sample group superimposed on a reference
image. In this facial expression example, we
considered a difference important if its abso-
lute value exceeds at least one pooled stan-
dard deviation. In the picture, the colour-
scale shows relative intensity change as a
range of this thresholding. In yellow/red
the marking on the image are brighter in
the smiling samples compared to the non-
smiling ones. Analogously, the areas in
green/blue shows regions of relative dark-
ness in the smiling samples compared to the
non-smiling ones.

We can see clearly that, by exploring the
separating hyper-plane found by the multi-
variate discriminant approach and quantify-
ing its most significant changes, we are able
to identify features that are most discrim-
inant between the smiling and non-smiling

3For colour images, please see the electronic ver-
sion of the paper.

Figure 3: Effect size of the multivariate statistical
differences comparing the intensity values described
by the smiling and non-smiling image models.
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group samples, such as eyes, shadow, cheek,
upper lip and mouth regions (as can be ob-
served on Figure 3).

4. Multivariate statistical differences
between controls and schizophrenia
patients

To analyse the most discriminant multi-
variate differences found on MRI samples
of the adult human brain (considering con-
trols and schizophrenic patients), we have
used a data set that contains images of 43
patients with schizophrenia and 25 health
controls. All these images were acquired us-
ing a 1.5T Philips Gyroscan S15-ACS MRI
scanner (Philips Medical Systems, Eind-
hoven, The Netherlands), including a series
of contiguous 1.2mm thick coronal images
across the entire brain, using a T1-weighted
fast field echo sequence (TE = 9ms, TR =
30ms, flip angle 30o, field of view = 240mm,
256 x 256 matrix). All the images were re-
viewed by a MR neuro-radiologist. A previ-
ous study using this dataset was published
in [28]. Ethical permission for this study
was granted by the Ethics Committee of
the Hospital das Cĺınicas, University of São
Paulo Medical School, São Paulo, Brazil.

As stated in the previous section (more
specifically in subsection 3.1), before we can
perform a multivariate discriminant anal-
ysis on the MR images, we need to map
all images into a common atlas coordinate
system. The images were spatially nor-
malised with the standard Statistical Para-
metric Mapping (SPM, version SPM2)[29]
T1-MRI template [30], based on 152 health
subjects from the Montreal Neurological
Institute (MNI), using as matching crite-
rion the residual sum of squared differences
[31]. Such spatial normalisation step was re-
stricted to linear 12-parameter affine trans-

formations, in order to minimise confound-
ing effects of the original data caused by
different positions of the subjects’ heads
when acquiring the corresponding MR im-
ages. The normalised images were then re-
sliced using tri-linear interpolation to a fi-
nal voxel size of 2 x 2 x 2 mm3 and final
resolution of 91 x 109 x 91. As a final pre-
processing step, an automated brain extrac-
tion procedure was performed in all images
using the Steve Smith’s method [32] avail-
able in the MRIcro software [33].

The statistical significant differences be-
tween the control and schizophrenia MRI
samples captured by the multivariate dis-
criminant approach are illustrated4 in Fig-
ure 4. To determine these differences we
have used the MR intensity values as in-
put features and all the spatially normalised
samples for training. In other words, N =
43+25 = 67 and n = 91×109×91 = 902629.
As mentioned earlier, these changes corre-
spond to the differences of one-dimensional
sample group models (“definitely control”
and “definitely patient” samples) on the
PCA+MLDA space projected back into the
image domain weighted by the pooled vari-
ance between the two sample groups. Anal-
ogously to the facial expression experiments
described in the previous section (more
specifically in subsection 3.2), these one-
dimensional sample group models are repre-
sented by points in the PCA+MLDA space
at 3 standard deviations from each corre-
sponding sample group mean.

Figure 4 shows only three slices of the
3D MRI multivariate discriminant differ-
ences extracted, superimposed on a con-
trol brain image randomly selected. The
numbers seen at the top of each slice rep-

4For colour images, please see the electronic ver-
sion of the paper.
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(a) sagittal plane

(b) coronal plane

(c) axial plane

Figure 4: Effect size of the multivariate statistical
differences comparing the intensity values described
by the control and patient image models. The num-
bers seen at the top of each slice represent from left
to right the standard coordinates in z (or axial), y
(or coronal) and x (or sagittal) planes.

resent the standard coordinates in z (or
axial), y (or coronal), and x (or sagittal)
planes. We considered a difference impor-
tant if its absolute value exceeds at least
three pooled standard deviations. In the
picture, the colour-scale shows relative in-
tensity change as a range of this threshold-
ing. In yellow/red the markings on the im-
age are brighter in the control samples com-
pared to the patient samples. Analogously,
the areas in green/blue show regions of rel-
ative darkness in the control samples com-
pared to the patients ones.

It is evident from Figure 4 that the differ-
ences found between the control and patient
sample groups are not restricted to one spe-
cific neuroanatomic structure of the brain.
In fact, there are clusters of multivariate dif-
ferences that may be part of a single neu-
roanatomic structure or may fall in an in-
tersection of various structures. In order to
single out these discriminant regions, next
subsection presents the automatic segmen-
tation of the multivariate differences found
(such as those shown in Figure 4).

Automatic segmentation of the most statis-
tically significant differences

The segmentation of the cluster of points
representing the most statistically signif-
icant differences is accomplished in two
stages. First, we apply a dilation morpho-
logical operator on the matrix diff; second,
the results of this dilation process are used
to initialise an active contour model proce-
dure that runs on the original matrix diff.
The dilation operator is applied so that the
active contours can merge clusters of points
that might be closer together. However
this is only used to generate the contour,
whereas the statistically significant changes
detected are kept unchanged.
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Our main interest with the segmentation
procedure is to automatically generate mul-
tivariate discriminant regions in neuroim-
ages of schizophrenia based on raw data,
in contrast to the regions of interest (ROI)
usually assumed as hypotheses beforehand
and detected separately [15].

In this work we used the active con-
tour technique known as level sets. In
brief, level-set models (or geometric mod-
els) [34, 35] are continuous deformable mod-
els whose curves evolve using only geomet-
ric computation (i.e. without an explicit
parametrisation of the contour). These
models are capable of dealing with com-
plex topology, including splitting or merg-
ing shapes. Its capacity to handle complex
shapes is the reason for the recent popular-
isation of this procedure in medical image
analysis [36].

In the present paper we use an off-the-
shelf variational level-set technique pro-
posed in [37], whose evolution of the level-
set function is derived from the minimisa-
tion of an energy functional. This energy
functional is composed of an internal en-
ergy (which modulates the degree of disper-
sion of the level-set function with respect to
a boundary) and an external energy term
(that forces the level-set function towards
image features). The motivation for using
this technique is two fold: first, due to the
internal energy, there is no need for reini-
tialisation; and second, the initialisation of
the level-set functions can be done from ar-
bitrary regions in the image domain (more
details in [37]).

The results of the level set segmentation
procedure on the images in Figure 4 are
shown in Figure 5.

Figure 5 shows the contours built by the
level-set procedure in yellow, and the clus-
ters of most statistically significant points

(a) sagittal plane

(b) coronal plane

(c) axial plane

Figure 5: Results of the automatic segmentation
using level sets on the images in Figure 4.
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in red and blue (as discussed in Section 4).
We can see that the level-set contours man-
aged to merge, into unique regions, points
from distinct anatomical structures (such as
the contour surrounding part of the lateral
ventricles in Figure 5(c)) or discard points
that fell outside the contours.

Therefore, the combination of procedures
proposed so far in this paper provided a
number of discriminant regions of interest
for schizophrenia research that were emer-
gent from the data. Some of these discrim-
inant regions may indeed point to relevant
changes related to neuroimages of patients
in comparison to those of controls.

The results shown in Figures 4 and 5 are
samples of our result set, since the proce-
dure described was applied to all 91 slices of
the extreme models, each of which included
an average number of 20 regions (containing
around ten points each in average).

Some of the regions emergent from the
data may not have been explored before in
schizophrenia research. However it may also
be the case that they were due to image
artifacts, by-products of the image analy-
sis itself. As illustrated in Figure 6, the
PCA+MLDA linear statistical model has
achieved a relatively high false positive rate
(approximately 40%) with a true positive
rate of around 70%, showing that both con-
trol and patient small sample groups over-
lap and have non-zero linear classification
error.

In order to evaluate the results ob-
tained, and to provide a ranking of the
most informative regions obtained from
the data, we confront the most statis-
tically significant points found with evi-
dences of neuroanatomical changes, related
to schizophrenia, as presented in the liter-
ature. This process starts by labelling the
neuroimage results according to an atlas, as

Figure 6: ROC curve based on the leave-one-out
method of the PCA+MLDA statistical discrimi-
nant model.

discussed in the next section.

5. Labelling the findings

The methods described in the previous
sections are very powerful tools for discover-
ing the most important discriminating fea-
tures between two sets of input images, and
singling them out into distinct regions, how-
ever they are incapable of providing a qual-
itative description of what these features
represent within a certain context. For in-
stance, in [38, 21], MLDA discovered a set of
contraction and expansion regions that best
classified neuroimages of preterm from con-
trol groups of babies. However, a paediatri-
cian was needed to point out which of these
findings were actual differentiating features
between these two groups and which were
possibly originated from other sources (im-
age artifacts for instance). Our goal is to
automate at least part of this process.

In order to bridge the findings presented
above to a more conceptual level, first, the
points grouped by level-set contours are
mapped onto an atlas. As a result we ob-
tain, for each group of points, in every im-
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age slice, the names of the neuroanatom-
ical structures related to the point’s loca-
tion. These descriptions are then contrasted
with findings in the literature in order to
rank the most relevant clusters, according
to the number of matches between anatom-
ical structures pointed out within the clus-
ters with the expected results (as given in
the medical literature). We discuss this pro-
cedure as follows.

Mapping points to an atlas

The points found by the procedures dis-
cussed in Sections 4 were mapped onto the
automated Talairach atlas [39], which is a
freely available web application that pro-
vides the anatomical labels related to 3D co-
ordinates of locations in the human brain5.
However, as the images in this work were
normalised using the MNI brain, we had
to apply the coordinate transformation dis-
cussed in [40], summarised in Algorithm 2
below.

Algorithm 2 Coordinate Transformation
from MNI to Talairach spaces
x, y, z = MNI coordinates

if z >= 0 then
xTalairach ⇐ 0.9900x
yTalairach ⇐ 0.9688y + 0.0460z
zTalairach ⇐ −0.0485y + 0.9189z

else if z < 0 then
xTalairach ⇐ 0.9900x
yTalairach ⇐ 0.9688y + 0.0420z
zTalairach ⇐ −0.0485y + 0.839z

end if

As an example of the labelling proce-
dure, Table 1 shows the labels related to
the points shown in Figure 5(c). It is worth

5In this work we used the Talairach Client avail-
able in http://www.talairach.org/, accessed in
27/02/2009.

pointing out that the Talairach atlas labels
coordinates into five distinct levels: Hemi-
sphere, Lobe, Gyrus, Tissue and Cell (as
shown in the top row of the table).

The task now is to verify whether these
descriptions were already reported in the
medical literature. Next subsection dis-
cusses this issue.

6. Evaluation

In order to evaluate the results obtained
from the procedures discussed above we
consider, as gold standard, literature re-
views of meta-analyses relating schizophre-
nia with neuroanatomical alterations. Ta-
ble 2 shows, in the first column, the neu-
roanatomical structure affected and, in the
second, the related reviews.

We then contrasted every description of
the most significant changes (such as those
presented in Table 1), with the anatomi-
cal structures related to schizophrenia as
provided in the literature (Table 2). In
this context we understand as true positives
(TP), descriptions that agree with the gold
standard, whereas false positives (FP) are
descriptions not present in the gold stan-
dard. In this work, true and false negatives
are not defined as the gold standard only
represents positive facts.

The results were evaluated according to
their sensitivity and selectivity. Sensitiv-
ity was obtained as the rate between the
number of distinct true positives (DTP), i.e.
the number of items in the gold standard
present in the descriptions, over the size of
the gold-standard set (GS): DTP/GS (ac-
cording to Table 2: GS = 14). Selectivity
measures the rate of true findings (i.e. num-
ber of true positives) over the total amount
descriptions produced by the framework
proposed in this work: TP/(TP + FP ).
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Hemisphere Lobe Gyrus Tissue Cell

Left Cerebrum Limbic Lobe PG GM BA 27
Left Cerebrum Sub-lobar Caudate GM Caudate Head
Left Cerebrum Sub-lobar Thalamus GM MB
Left Cerebrum Sub-lobar Third Ventricle CSF *

Right Cerebrum Limbic Lobe PG GM BA 30
Right Cerebrum Sub-lobar Caudate GM Caudate Head
Right Cerebrum Sub-lobar Claustrum GM *
Right Cerebrum Sub-lobar Lateral Ventricle CSF *
Right Cerebrum Temporal Lobe Extra-Nuclear WM *
Right Cerebrum Temporal Lobe STG GM BA 22

Table 1: Some of the anatomic labels of points from Figure 5(c) as given by the Talairach atlas. The
abbreviation PG stands for parahippocampal gyrus; GM is gray matter; CSF is cerebro-spinal fluid; STG
is superior temporal gyrus; MB is mammillary body and BA is Brodmann area. The symbol “*” refers to
coordinates without a related label in the atlas.

Affected Structure Literature reviews

Lateral Ventricles [4, 41–46]
Third Ventricles [4, 43]
Fourth Ventricles [4]
Temporal Lobe [4, 41, 42]

Medial Temporal Lobe [4]
Amygdala [41, 42]

Hippocampus [41–43]
PG [41–43]

STG [4]
Thalamus [4, 41–43]

Basal Ganglia [45]
Frontal Lobe [4, 41, 42]

Occipital Lobe [4, 41–43]
Parietal Lobe [4, 41, 42]

Table 2: Reviews of anatomical changes related to schizophrenia.
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Informally, sensitivity measures the rate of
“correct” answers provided by our frame-
work, whereas selectivity measures how ob-
jective the framework is. We obtained sen-
sitivity and selectivity values for the data
before and after the level-set segmentation.
Table 3 summarises the results obtained.

TP DTP FP

Before segm. 14,692 10 37,104
After segm. 14,472 10 36,582

Table 3: Results related to the procedure before
and after level-set segmentation. In this table, TP
means true positives, DTP distinct true positives
and FP false positives

We can observe on Table 3 that the appli-
cation of level-set segmentation kept almost
all the original points, as the difference be-
tween TP and FP before and after its appli-
cation is not significant. Therefore, in both
cases we obtained around 0.28 of selectivity
and 0.71 of sensitivity, meaning that 71% of
the gold standard was covered by the results
obtained and that 28% of the points gen-
erated by the procedures discussed in this
paper were relevant with respect to the as-
sumed gold standard. However, these re-
sults do not mean that the points that did
not find a match in the gold standard should
be rejected as noise, but that they should be
considered in further research either for ver-
ifying an increase in selectivity in future ex-
tensions of this work, or as indicators of new
regions of interest to be considered in future
schizophrenia research. On this latter point
we could use the individual sensitivity val-
ues for each region segmented by the level-
set procedure to point out the most promis-
ing candidates of Discriminant Regions, as
obtained from the data. Table 4 shows the
ten highest sensitivity values of segmented
regions, the corresponding image slices con-

taining these regions are shown in Figure 7.

Rank slice Sensitivity
1 27 0.36
2 37 0.36
3 33 0.29
4 38 0.29
5 50 0.29
6 38 0.29
7 28 0.29
8 29 0.29
9 44 0.22
10 27 0.22

Table 4: Segmented regions with the highest sensi-
tivity value.

7. Discussion

This work proposed an integrated frame-
work for classifying and interpreting pat-
terns of the schizophrenia disorder from 3D
MR images using a combination of statis-
tical discriminant analysis and active con-
tour models. In the following paragraphs,
we discuss some points that have emerged
from this study which might be relevant in
other similar investigations.

It is important to remark that the
construction of the multivariate statisti-
cal model (PCA+MLDA) for extracting
the most discriminant features between two
groups relies on the quality of the inter-
subject correspondences calculated by ei-
ther affine or non-rigid registration algo-
rithms. In other words, when we use PCA
as a feature extraction technique we must
have in mind that PCA outputs projec-
tion directions that maximise the total scat-
ter composed of all images of all classes.
As a consequence, when we retain all the
PCA eigenvectors and choose such pro-
jection without any previous alignment of
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(a) slice 27 (b) slice 37 (c) slice 33

(d) slice 38 (e) slice 50 (f) slice 38

(g) slice 28 (h) slice 29 (i) slice 44

(j) slice 27

Figure 7: Slices containing the regions with the highest sensitivity values, according to Figure 4.
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the images, PCA might describe unwanted
variations inherent to any image acquisi-
tion process, such as differences in rotation,
translation, scaling, and shape [21]. In or-
der to minimise those variations (that are
not necessarily related to anatomical differ-
ences between the images) and to transform
data in a way that the images belonging to
distinct classes occupy as compact and dis-
joint regions in a lower dimensional feature
space as possible, the spatial normalisation
of the images provided by the image reg-
istration algorithms is a fundamental pre-
processing stage for the success of the mul-
tivariate statistical model [21].

The output of the multivariate statistical
model was analysed by subtracting the ex-
treme models between the two groups (−3σ1

and +3σ2, cf. Section 3.2) weighted by a
factor related to the pooled variance be-
tween the groups. Taking into account the
implicit hypothesis that the two groups are
normally distributed, the extreme models
are on the opposite ends of the Gaussians
associated with each group. In order to take
this into account, we then selected the dif-
ferences that were higher than a threshold
of three standard deviations. It is left for fu-
ture investigations the analysis of whether
other statistical tests, or a different thresh-
old value, would have any clinical signifi-
cance.

This method of selecting points accord-
ing to a threshold on standard deviations
is known as effect-size pruning [47], which
is an objective measure of interestingness
that evaluates the degree of diversity in a
compact description (i.e. the image mod-
els) of the data. Usually a threshold on
the group variances is used as such measure
in these cases, but (as discussed in Section
3.2) we preferred to use the effect size of the
matrix diff (Formula 1) as our goal was to

identify the most differentiating features be-
tween controls and patients. These features
are more explicit when comparing extreme
models of the two image groups rather than
their means, which are smooth by defini-
tion.

In Section 6 we present a ranking of the
segmented regions according to the highest
degree of sensitivity value. If this ranking
was made on the other way around (i.e.
ranking the regions with the lowest sensi-
tivity values) it could be used as a measure
of novelty [47]. However, we prefer not to
use the term novelty due to the nature of
our domain: stating that our system found
a novel structure, and that this is indeed re-
lated to schizophrenia, warrants research on
the direction of a meticulous medical eval-
uation of the findings (which is outside the
scope of this paper).

It might be argued that the dilation be-
fore the level-set segmentation could inter-
fere with the data observed. However, we
have to emphasise that the contours were
made to converge on the non-dilated data.
It is possible to initialise the active contours
without the previous application of the mor-
phological operation but, in this case, some
contours end up collapsing and there would
be no merging of various cluster of points
into one region.

We did not obtain a significant distinction
between sensitivity and selectivity values for
our results before and after the application
of the level sets. This means that the level-
sets were used largely to merge cluster of
points and not to filter isolated points in the
image (which could indicate outliers). How-
ever, the active contours allowed the defini-
tion of discriminant regions that were emer-
gent from the data. The sensitivity values
for these regions were used to rank them, in-
dicating discriminant candidates to be con-
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sidered in future research.
The images submitted to the level-set

segmentation were automatically generated
by the multivariate statistical method and,
therefore, there is no ground truth di-
rectly associated to them. In fact, there
is no ground truth associate to image seg-
mentation related to brain regions linked
to schizophrenia, since neuroimaging for
schizophrenia diagnostics is still a matter
of debate [48]. Evaluating the results ob-
tained with a gold standard based on liter-
ature findings (as done in Section 6) was the
best that could be done under these condi-
tions.

We could have evaluated the level-set pro-
cedure, however, using the Internet Brain
Segmentation Repository (IBSR)6 (or any
other MRI repository available [8]), but
this would lead to an orthogonal research
path to that taken in this paper for two
reasons: first, the ground truth segmen-
tation usually given in such repositories is
on raw data (not on statistically significant
changes as provided by a linear discrim-
inant analysis method); second, the pur-
pose of the submitted paper is not to prove
that the statistical discriminant analysis,
or the segmentation method, were better
than other competing procedures in terms
of some evaluation procedure, but to show
that it is possible to extract and interpret
statistically significant regions representing
changes between neuroimages from controls
and patients that can be meaningful for
schizophrenia research.

Future directions

This article extended a general multivari-
ate linear framework [21] to extract statis-

6http://www.cma.mgh.harvard.edu/ibsr/, last
accessed on 5/11/09

tical differences of 3D MR brain images of
adult subjects suffering from schizophrenia
compared to a healthy control group. The
framework is not restricted to a specific lin-
ear discriminant analysis model, other sep-
arating hyper-plane methods can be used,
such as Support Vector Machines (SVM)
[49, 50]. Although the multivariate linear
approach has been demonstrated in two-
class problems, it is extensible to several
classes. Since the brain changes found in
schizophrenia are not exclusively character-
istic of this disease, a multi-class analysis
involving a number of brain disorders and
controls could provide a comprehensive un-
derstanding of abnormalities in brain devel-
opment.

Future work should also consider the
most sensitive regions obtained by the level-
set procedure (as presented in Section 6) as
prior hypothesis on schizophrenia research.
This will provide an experimental evalua-
tion of the methods discussed in this work,
as well as a possible new standpoint on the
neuroanatomical structures related to the
disease.

In Section 6, neuroanatomical structures
(commonly linked to schizophrenia in the
literature) were compared with the changes
in neuroimages obtained in the present
work. This was done in order to evaluate
the present findings. We are currently in-
vestigating the construction of an ontology
about neuroanatomy that could also encom-
pass the knowledge about a domain, and
not only the domain itself, in order to al-
low the organisation and correlation of what
is known about schizophrenia (e.g. in lit-
erature reviews) and the neuroanatomical
structures involved [51]. However, findings
about schizophrenia falls within the episte-
mology (and not ontology) umbrella. A
complete solution of combining ontologies
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with epistemology is a matter for future re-
search. Nevertheless we can envisage that
the results presented in this work could
serve as input knowledge for this formalisa-
tion, providing new epistemological classes
about the input data.

8. Concluding remarks

This article discussed our current re-
search on methods for automatically find-
ing discriminative features and anatomical
regions that characterise schizophrenia from
neuroimages.

In the present work, we discussed the
main issues involving the construction of
an integrated framework for classifying and
analysing patterns of disorders from med-
ical images using a combination of image
registration, multivariate statistics, and ac-
tive contour models. Our central goal was
achieved: in this work all the data was anal-
ysed simultaneously rather than assuming a
priori regions of interest. As a consequence
of this, by using active contours models,
we were able to obtain regions of interest
that were emergent from the data. The
results were evaluated using, as gold stan-
dard, well-known facts about neuroanatom-
ical changes related to schizophrenia. Most
of the items in the gold standard was cov-
ered in our result set, implying on a high
sensitivity rate.
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