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Abstract. This paper presents a formalisation of a spatial domain in terms of
a qualitative spatial reasoning formalism, encoded in a probabilistic description
logic. The QSR formalism chosen is a subset of a cardinal direction calculus and
the probabilistic description logic used has the relational structures of the well-
known ALC language, allied with the inference methods of Bayesian Networks.
We consider a scenario consisting of a road navigated by an experimental vehicle
equipped with three on-board sensors: a digital map, a GPS and a video camera.
This paper presents experiments where the proposed formalism is used to answer
queries about driving directions, lanes and vehicles.

1 Introduction
Much work in computer vision in the 70’s and 80’s had as a goal the development of
high-level vision, whereby the numerical (or quantitative) processing feeds a symbol-
ical (or qualitative) level of knowledge from where an agent is capable of interpreting
the world, and acting in accordance to this interpretation. These early attempts were
frustrated by the non-existence (at the time) of efficient algorithms for dealing with un-
certainty, of tractable knowledge representation formalisms and also by the rudimentary
stage of image-processing algorithms.

Since then, important advancements in Artificial Intelligence (AI) suggest that we
may be at the stage of bridging the gap between AI and Computer Vision. The present
paper is related to three of these advancements: Bayesian Networks [1], which are
graphical representations of domain variables that provide efficient probabilistic in-
ference methods; Description Logics (DLs) [15], a family of formalisms (sub-sets of
first-order logic) that have a positive trade-off between expressivity and complexity;
and qualitative spatial reasoning (QSR) [25], that are formalisms for representing and
reasoning about space.

The purpose of this paper is to investigate the use of a qualitative spatial reasoning
formalism, encoded on a probabilistic description logic, to answer queries about a traffic
scenario. The QSR formalism chosen is a sub-set of a cardinal direction calculus [8, 9]
and the probabilistic DL used is CRALC [23, 28], which has the relational structures of
the description logicALC [4], allied with the inference methods of Bayesian Networks.

2 Literature Overview
Qualitative spatial reasoning: The aim of QSR is the logical formalisation of knowl-
edge from elementary spatial entities, such as spatial regions, line segments, cardinal
directions, and so forth [13, 25]. These formalisms provide the basic machinery for a
system to represent and reason about spatial entities on a more abstract level than quan-
titative methods [25].



Relevant to the present work are the developments of spatial formalisms for com-
puter vision and robotics. The first proposal for a logic-based interpretation of images
is described in [2], where image interpretation is reduced to a constraint satisfaction
problem on a set of axioms; [3] proposes a system that generates descriptions of aerial
images, which more recently received a descriptive logic enhancement [24].

A spatial system based on spatio-temporal histories for scene interpretation was
investigated in [14], which was inspired on an earlier proposal for learning event mod-
els from visual information [10]. Recently, [16] proposes a system that uses multiple
spatio-temporal histories in order to evaluate an image sequence. A logic formalisation
of the viewpoint of a mobile agent was presented in [11], and was further explored in
the interpretation of scenes within a mobile robotics scenario in [21, 31]. In [29], func-
tional and geometric properties of roads and intersections could be inferred using an
expressive, deterministic, DL in combination with on-board vehicle sensors.
Probabilistic Description Logics: Description Logics (DLs) are fragments of first-
order logics originated in the 1970s as a means to provide a formal account of frames
and semantic networks. Description logics are based on concepts , which represent sets
of individuals (such as Plant or Animal); and roles, which denote binary relations be-
tween individuals, such as fatherOf or friendOf. Set intersection, union and complement
are usual operators found in DLs, as well as some forms of quantification. A key feature
of most description logics is that their inference is decidable [15].

In recent years there have been an increasing interest in the combination of prob-
abilistic reasoning and logics (and with description logics in particular) [22, 27, 20].
This combination is not only motivated by pure theoretical interest, but it is very rele-
vant from an application standpoint in order to equip a reasoning system with relational
inferences capable of making also probabilistic assessments.

In [5, 6] a number of distinct probabilistic logics were proposed where probabilities
were defined over subsets of domain elements. These logics have difficulty in handling
probabilistic assertions over individuals, as statistical information over the domain does
not imply information about individuals; this is known as the direct inference problem
[7]. The direct inference problem is solved in [18] by adopting probabilities only on
assertions. An alternative way around the direct inference problem is to assign proba-
bilities to subsets of interpretations, as assumed in [17, 26] and is also at the kernel of
the probabilistic DL we use here.

3 The credal ALC

The credal ALC (CRALC) [28] is a probabilistic extension of the ALC description
logic [4]. The basic vocabulary of ALC contains individuals, concepts (sets of individ-
uals) and roles (binary relations of individuals). Given two concepts C and D, they can
be combined to form new concepts from conjunction (C u D), disjunction (C t D),
negation (¬C), existential restriction (∃r.C) and value restriction (∀r.C). A concept
inclusion, C v D, indicates that the concept D contains the concept C and a defini-
tion, C ≡ D, indicates that the concepts C and D are identical. The set of inclusions
and definitions constitute a terminology. In general, a terminology is constrained to be
acyclic, i.e., no concept can refer to itself in inclusions or definitions.



The semantics of ALC is defined by a domain D and an interpretation function
I, which maps: each individual to a domain element; each concept to a sub-set of D;
and, each role to a binary relation D × D, such that the following holds: I(C uD) =
I(C)∩I(D); I(CtD) = I(C)∪I(D); I(¬C) = D\I(C); I(∃r.C) = {x ∈ D|∃y :
(x, y) ∈ I(r) ∧ y ∈ I(C)}; I(∀r.C) = {x ∈ D|∀y : (x, y) ∈ I(r) → y ∈ I(C)}.
An inclusion C v D holds if and only if I(C) ⊆ I(D), and a definition C ≡ D holds
if and only if I(D) = I(D) (e.g. C v (∃ hasSibling.Woman) u (∀buys.(Fish t Fruit))
indicates that C contains only individuals who have sisters and buy fruits or fishes).

In the probabilistic version of ALC (CRALC), on the left hand side of inclusions/
definitions only concepts may appear. Given a concept name C, a concept D and a role
name r, the following probabilistic assessments are possible:

P (C) ∈ [α, α], (1)
P (C|D) ∈ [α, α], (2)

P (r) ∈ [β, β]. (3)

We write P (C|D) = α when α = α, P (C|D) ≥ α when α < α = 1, and so on.
In order to guarantee acyclicity, no concept is allowed to use itself in deterministic (or
probabilistic) inclusions and definitions.

The semantics of CRALC is based on probabilities over interpretations so that the
direct inference problem can be avoided. In other words, probabilistic values are as-
signed to the set of all interpretations. The semantics of Formula (1) is, thus: for any
x ∈ D, the probability that x belongs to the interpretation of C is in [α, α] . That is,

∀x ∈ D : P
( {
I : x ∈ I(C)

} )
∈ [α, α].

Informally, the semantics can be represented as ∀x ∈ D : P (C(x)) ∈ [α, α]. The
semantics of Expressions (2) and (3) is then:

∀ x ∈ D : P (C(x)|D(x)) ∈ [α, α],
∀ (x, y) ∈ D ×D : P (r(x, y)) ∈ [β, β].

Given a finite domain, a set of sentences in CRALC specifies probabilities over all
instantiated concepts and roles. In general, a set of probabilities is specified by a set of
sentences; a few assumptions guarantee that a single probability distribution is speci-
fied by a set of sentences: unique-names, point-probabilities on assessments, rigidity of
names [28]. So, a finite domain and a set of sentences specify a unique Bayesian net-
work over the instantiated concepts and roles. To compute the probability of a particular
instantiated concept or role, one can generate this Bayesian network and then perform
probabilistic inference in the network. Because the domains we deal with in this pa-
per are small, we follow this propositionalisation strategy in our examples. For large
domains it may be impractical to explicitly generate a Bayesian network. In this case,
approximate algorithms can be used and, in particular, algorithms based on variational
methods have been developed with success [28].

4 Cardinal Direction Calculus
The cardinal direction calculus (CDC) [8] is a formalism for reasoning about cardinal
directions between spatial objects. The major reasoning task that CDC is concerned



with is to infer the direction between two objects A and C, from the known directions
between A and (another object) B and between B and C. The basic part of the calculus
has nine relations: equal (eq), north (n), east (e), west (w), south (s), northwest (nw),
northeast (ne), southeast (se) and southwest (sw).

We define a CDC inspired on the formulation given in [9], where spatial objects are
points in a two-dimensional space and the cardinal directions between two objects A
and B are defined as the two projections of the straight line from A to B: one on the
axis South-North and the other on the axis West-East.

In order to make clear that we are not dealing with global cardinal directions (while
also taking inspiration of the dynamic nature of a traffic scenes), this paper we as-
sume that each road defines its local cardinal direction system, whereby the directions
“Down-Up” instead of “South-North” goes from the origin of the road towards its end,
following the road’s centre line. In other words, the “Down-Up” direction between two
objects A and B on the road are defined as the projection of the line from A to B on
the road’s centre line. The “East-West” direction, refer as right-left, is defined at every
point of the road as the continuous orthogonal line to the tangent of the centre line at
that point. Figure 1 shows an example of this local CDC.

Fig. 1. The local cardinal system for roads: A is south of B and west of C

5 The CRALC encoding of a traffic scenario
This section presents a formalisation in CRALC of a road traffic domain where incom-
plete sensor data and domain knowledge can be jointly exploited to solve functional
lane recognition tasks. Let ego-road and ego-lane denote, respectively, the road and the
particular lane on which a vehicle is driving. The scenario chosen is composed of a
road, where each of its lanes has either the direction going up or the direction going
down. Dividing every pair of adjacent lanes is either a dashed divider or a solid divider.
The scenario also contains an experimental vehicle equipped with three on-board sen-
sors: a digital map, a GPS and a video camera. The task of the formalism is to estimate
the following functional properties of the ego-road using on-board vehicle sensors:

– Which lane corresponds to the ego-lane? This task is derived from the fact that
current differential GPS receivers are able to reliably determine a vehicle’s ego-
road, but not its ego-lane (e.g. [19]).

– Which driving direction does each lane permit, “going up” or “’going down”?

Extending these tasks in order to allow queries about turning directions and multiple
traffic actors should be straightforward once the above issues are solved.



(a) (b)

Fig. 2. (a) original scene and (b) Example for sensor input from on-board camera, digital map,
and map-matched GPS from scene (a).

Sensor Input: The sensors input available to solve that task are:
– Video-based divider marking recognition: recognises lane divider markings on the

right of the vehicle and classifies them into either dashed or solid divider lines.
Hit and false alarm rate of the recognition task, and the confusion table of the
classification task, are given in Tables 1(a) and 1(b), respectively.

– Map-matched GPS position: retrieves the current road from a digital map and pro-
vides the vehicle’s driving direction on that road segment. The algorithm proposed
in [19] has been shown to be accurate under batch-processing.

– Digital navigation map: provides the classification of the road into either one-way
or two-way traffic. Table 1(c) is a confusion table for this classification task.

It is worth pointing out that tables 1(a) and 1(c) are based on comparing the algo-
rithm’s outcomes with ground truth [29], whereas the data in Table 1(b) was estimated.
A typical sensor input is sketched in Figure 2(b), that shows the information obtained
by the sensors on the situation in Figure 2(a).

Table 1. Sensor model. In the confusion tables (b) and (c), columns denote ground truth and rows
denote estimates.

(a)
Video: Divider

Recognition

Hit rate .51
FA rate .23

(b)
Video: Divider
Classification

So
lid

D
as

he
d

Solid .80 .067
Dashed .20 .933

(c)
Digital map:

Road Classification

O
ne

w
ay

Tw
ow

ay

Oneway .99 .01
Twoway .01 .99

Road Building Regulations: A taxonomy of concepts and roles relevant to the traffic
task is set up, in which the concept Lane is defined by the two primitives GoingUp
and GoingDown, the concept Divider is defined as the union of DashedDivider and



SolidDivider, and Vehicle is either on a one-way road ( OnOneWayRoad) or on a two-
way road ( OnTwoWayRoad):

Lane ≡ GoingUp t GoingDown

Divider ≡ DashedDivider t SolidDivider

Vehicle ≡ OnOneWayRoad t OnTwoWayRoad.

In Formulae (4)–(7) and (9) we use the abbreviation disjoint(t1, t2, . . . , tn) to repre-
sent the set of statements about pairwise disjoint terms, i.e., ti v ¬tj ∀i, j ∈ 1, ..., n, i 6= j.

disjoint(Vehicle, Divider, Lane) (4)
disjoint(GoingUp, GoingDown) (5)
disjoint(DashedDivider, SolidDivider) (6)
disjoint(OnOneWayRoad, OnTwoWayRoad). (7)

The taxonomy of roles consists of CDC relations only. Out of the nine cardinal
directions, only three are relevant to the task at hand right (ri), left (le), since the domain
does not have cross-roads, and equal (eq):

cdc ≡ ri t le t eq (8)
disjoint(ri, le, eq). (9)

Next, a set of hard constraints about road building regulations are formulated, mak-
ing use of the concepts and roles introduced before.The Formulae (10) and (11) for-
malise the semantics of right-handed traffic: to the right of a lane allowing for traffic
going up the road (with respect to the road’s egocentric coordinate system) there must
only be lanes allowing for “going up” traffic, and to the left of traffic going down the
road there must only be “going down” lanes.

GoingUp v ∀ri.(GoingUp t ¬Lane) (10)
GoingDown v ∀le.(GoingDown t ¬Lane). (11)

Formulae (12) and (13) refer to the dividers function, which may be distinct in dif-
ferent countries; these axioms holds for right-handed traffic. A dashed divider divides
two lanes, a solid divider either marks the road border or it separates roads with op-
posing driving directions. And, the axiom states that a two-way road has traffic in both
directions (Formula (14)).

DashedDivider v ∃ri.Lane u ∃le.Lane (12)
SolidDivider v¬∃ri.Lane t ¬∃le.Lane t (∃cdc.GoingUp u ∃cdc.GoingDown) (13)
OnTwoWayRoad v ∃cdc.GoingUp u ∃cdc.GoingDown. (14)

Sensor Model: Concepts are added to represent all probabilistic inputs from sensors:
SensedOnOneWayRoad, SensedOnTwoWayRoad and SensedDivider, that can be ei-
ther SensedDashedDivider or SensedSolidDivider. The confusion tables (Tables 1(a)–
1(c)) show joint probabilities of an event and its detection by a sensor, and those condi-
tional probabilities are formulated as a set of axioms:

P (DashedDivider|SensedDashedDivider) = 0.93
P (SolidDivider|SensedDashedDivider) = 0.07
P (DashedDivider|SensedSolidDivider) = 0.20
P (SolidDivider|SensedSolidDivider) = 0.80.



Fig. 3. Bayesian Network representing a traffic domain.

6 Coding and running the scenarioThe formalisation presented in the previous section is within the basic definitions of
CRALC. However, the original role hierarchies are not within the scope of ALC (and,
consequently, not within CRALC). Therefore, we could not represent directly Formulae
8 and 9. Instead, the spatial information about the domain was implicit in the definitions
of each of the lanes and their possible directions. This information was included by
grounding the descriptions ∃eq.Lane (“there is a vehicle in the lane”) to new concepts
Onl1, Onl2 and Onl3 (“the vehicle is on the lane li, for i ∈ 1, 2, 3” ). An analogous idea
was used with respect to the lane directions, where Upli and Downli (for i ∈ 1, 2, 3)
where used to represent that the lane li is a going up (resp. down) lane. By merging the
roles taken on by the individuals l1, l2, and l3 into concepts Onli, Upli and Downli, it was
possible to represent the Bayesian network for only one individual, the vehicle, and not
for {l1, l2, l3 and ν}. Our solution for representing formulae such as disjoint(A,B,C) was
to include probabilistic statements, such as P (A|B) = 0 and P (C|A ∨B) = 0.

Given the formalisation presented in Section 5 (and the consideration above), the
system generated automatically the Bayesian network for only one individual repre-
sented in Figure 3, where the nodes in blue are observed variables, i.e. sensors’ states.
It is now possible to answer the queries specified in Section 5, which correspond to the
following:
1. argmaxliP ((v : Onli)), i.e. li is the lane with maximum probability of being the ve-

hicle’s (v) ego-lane .
2. ∀i : P (li : GoingUp), i.e. for each lane li, the probability of being a GoingUp lane.

Consulting the network in Figure 3 for all of the eight possible states of the three
sensors, we obtained the answers presented in Tables 2 and 3 for the queries 1 and 2 re-
spectively. In these tables we used the abbreviations STWR for SensedOnTwoWayRoad
and SDD for SensedDashedDivider. Table 2 shows probable lane on which the vehicle
v is driving (argmaxliP ((v,Onli))), given the evidences, represented on the first three
columns. The first line of the table, for instance, represents the state where the sensor
obtained GoingDown, vehicle on a one way road and a solid divider. Given these evi-
dences the node Onli with the highest probability was Onl3. This case is shown in Figure
4(c).



Table 2. Answer to query 1: the probability on the ego-lane given the evidence A (expressed on
the first three columns)

GPS map video argmaxliP ((v : Onli|A))

GoingUp STWR SDD
0 0 0 l3
0 0 1 l1 ∨ l2
0 1 0 l2
0 1 1 l3
1 0 0 l1
1 0 1 l2 ∨ l3
1 1 0 l1
1 1 1 l2

(a) (b) (c)
Fig. 4. Examples of three traffic situations, where the vehicle is an one way road and going down.

Table 3 represents the probabilities of each of the li lanes be a GoingDown lane, given
the evidences on the first three columns (the probability of GoingUp is the complement
of the values stated in the table). Take for instance the first line, the highest probabil-
ity for l1, l2 and l3 is GoingDown, which is consistent with the evidences GoingDown
for the vehicle, and SensedOnOneWayRoad. Similarly for the remainder sensor states
represented in the table.

Table 3. Answer to query 2: the probability for the lane’s driving direction given the evidence A
(expressed on the first three columns)

GPS map video l1 l2 l3
GoingUp STWR SDD P (l1:GoingDown|A) P (l2:GoingDown|A) P (l3:GoingDown|A)

0 0 0 0.99 0.99 1.00
0 0 1 0.99 0.99 1.00
0 1 0 0.01 0.76 1.00
0 1 1 0.01 0.95 1.00
1 0 0 0.00 0.01 0.01
1 0 1 0.00 0.00 0.01
1 1 0 0.00 0.61 0.99
1 1 1 0.00 0.09 0.99



7 Conclusion
The representation of QSR systems into description logics is a recent endeavour [12,
30]. The major difficulty of this task is the representation of transitive relations, which
are fundamental pieces of spatial knowledge. In particular, [12] presents undecidability
results of various ALC extensions that allow composition-based role inclusion axioms,
such as A v B u R1 ∪ . . . ∪ Rn [30]. Decidability of description logic representations
of spatial formalisms were proved in [30] for a combination of ALC with a decidable
constraint system (calledALC(C), whereC is the constraint system). The investigation
of probabilistic extensions of ALC(C), and whether decidability is maintained, is an
interesting issue for future research.

In this paper we investigated the formalisation of a spatial domain into a proba-
bilistic extension of a basic description logic, CRALC. In this formalisation we were
capable of using the expressivity of a relational formalism (the description logicALC),
with the treatment of uncertainty provided by Bayesian networks, with which sensor
model was encoded. To the best of our knowledge, this paper presented the first princi-
pled approach on sensor modelling in a logic language.

This work was successful in showing that the expected queries were consequences
of the formalisation of the assumed domain. Given this initial success we conjecture that
there is a suitable extension of CRALC capable of representing (and reasoning about)
spatial domains from any qualitative spatial reasoning system. The development of this
formalism is a task of future research
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