
Symbolic Bounded Real-time Dynamic Programming 1

Author(s):
Karina Valdivia Delgado

Cheng Fang

Scott Sanner

Leliane Nunes de Barros

1This work was supported by Fapesp Project LogProb, grant 2008/03995-5, São Paulo, Brazil.

Symbolic Bounded Real-time Dynamic Programming

Karina Valdivia Delgado1, Cheng Fang2, Scott Sanner3, and Leliane Nunes de Barros1

1 University of S̃ao Paulo. S̃ao Paulo, Brazil
2 University of Sydney. Sydney, Australia

3 National ICT Australia. Canberra, Australia

Abstract. Real-time dynamic programming (RTDP) solves Markov decision pro-
cesses (MDPs) when the initial state is restricted. By visiting (and updating) only
a fraction of the state space, this approach can be used to solve problemswith
intractably large state space. In order to improve the performance of RTDP, a
variant based on symbolic representation was proposed, named sRTDP. Tradi-
tional RTDP approaches work best on problems with sparse transition matrices
where they can often efficiently achieveǫ-convergence without visiting all states;
however, on problems with dense transition matrices where most states are reach-
able in one step, the sRTDP approach shows an advantage over traditional RTDP
by up to three orders of magnitude, as we demonstrate in this paper. We also spec-
ify a new variant of sRTDP based on BRTDP, named sBRTDP, which converges
quickly when compared to RTDP variants, since it does less updating by making
a better choice of the next state to be visited.

1 Introduction

Markov Decision Processes (MDPs) [1] provide a convenient framework for modeling
fully-observable stochastic planning problems. In an MDP,the agent computes a policy
— a mapping from states to actions — in order to maximize a stream of rewards. A
popular approach to policy computation is through a value function — a function that
assigns a value to each world state. The computation of the value function can be either
synchronous, where all states are updated during each iteration, or asynchronous, where
the agent updates some states more than others.

Recent years have seen a resurgence of interest in asynchronous dynamic program-
ming solutions to MDPs [2]. Of particular interest has been the trial-based real-time dy-
namic programming (RTDP) approach [3] as evidenced by a variety of recent work [4–
6]. RTDP algorithms have a number of distinct advantages forpractical MDP solutions,
specifically: (a)Anytime performance: RTDP algorithms can be interrupted at any time,
generally yielding a better solution the longer they are allowed to run; (b)Optimality
without exhaustive exploration: By focusing trial-based search on states reachable from
the set of initial states, RTDP algorithms may obtain an optimal policy while visiting
only a fraction of the state space.

However, the advantages of RTDP may break down when the transition matrix is
not sparse. Yet many MDPs that model interesting real-worldproblems do not have
sparse transition matrices, e.g., elevator scheduling with random arrivals, traffic control
with random car movements, and logistical problems with random failures. All of these

problems have the property ofexogenous events — events beyond the agent’s control
that can cause arbitrary state changes between time steps that lead todense and large
transition matrices. Although dense transition matrices lack structure in terms of spar-
sity, they often contain factored (symbolic) structure. Based on this last idea, Feng et
al (2003) has proposed a factored variant of RTDP named Symbolic RTDP (sRTDP).
However they have not shown how this sRTDP behaves when leading with dense transi-
tion matrices in large state spaces, as we demonstrate in this paper. Besides, we propose
a new variant of sRTDP, a Symbolic Bounded RTDP, which maintains both upper and
lower bounds on the optimal value function. We show that withthis approach we make
less value updates when compared to sRTDP [7].

2 Background

A Markov decision process(MDP) is a tuple〈S,A, T,R, γ〉 [1]. S = {s1, . . . , sn} is
a finite set of fully observable states.A = {a1, . . . , am} is a finite set of actions.T :
S×A×S → [0, 1] is a known stationary, Markovian transition function.R : S×A → R

is a fixed known reward function associated with every state and action.γ is a discount
factor s.t. 0 ≤ γ ≤ 1 where rewardst time steps in the future are discounted byγt.
There is a set of initial statesI ⊆ S, and a possibly empty set of absorbing goal states
G ⊂ S where all actions lead to a zero-reward self-transition with probability 1.

A policy π : S → A specifies the actiona = π(s) to take in states. Our goal is
to find a policy that maximizes the value function, defined as the sum of expected dis-

counted rewardsVπ(s) = Eπ

[∑∞
t=0 γt · rt

∣∣∣s0 = s
]
, wherert is the reward obtained

at timet.
Value iteration (VI) is a synchronous dynamic programming (DP) solution to an

MDP. Starting with an arbitraryV 0(s), VI performs value updates forall statess, com-
puting the next value functionV t+1(s) := UPDATE(V t, s):

Qt+1(s, a) := R(s, a) + γ ·
∑

s′∈S

T (s, a, s′) · V t(s′) (1)

V t+1(s) := max
a∈A

{
Qt+1(s, a)

}
. (2)

This update is known as aBellman update. For discounted problems and certain restric-
tions of undiscounted problems such asstochastic shortest path (SSP) problems [2],
V t(s) converges to the unique optimal value functionV ∗(s) in the infinite limit of up-
dates, i.e., definingǫt = maxs |V

t(s)−V ∗(s)| thenlimt→∞ ǫt = 0. The greedy policy
π(s) = GREEDYACTION(V t, s) w.r.t. V t and states is defined as follows:

π(s) := arg max
a∈A

{
R(s, a) + γ

∑

s′∈S

T (s, a, s′) · V t(s′)

}
(3)

For discounted problems, the greedy policyπ derived fromV t loses no more than2γǫt

in value over the infinite horizon compared to the optimal policy [1].

Algorithm 1 : RTDP

begin
// Initialize V̂u with admissible value function
V̂u := Vu

while convergence not detected and not out of time do

depth := 0
visited.CLEAR() // Clear visited states stack
Draws from I at random// Pick initial state

while (s /∈ G) ∧ (s 6= null) ∧ (depth < max-depth) do
depth := depth + 1
visited .PUSH(s)
V̂u(s) := UPDATE(V̂u, s) // See (1) & (2)
a := GREEDYACTION(V̂u, s) // See (3)
s := CHOOSENEXTSTATERTDP(s, a) // See (4)

// Optimization: end-of-trial update
// not appearing in the original RTDP
while ¬visited.EMPTY() do

s := visited.POP()
V̂u(s) := UPDATE(V̂u, s)

return V̂u

end

Asynchronous DP & Real-time DP Asynchronous DP methods [2] are a variant of dy-
namic programming that apply the Bellman update to states inan arbitrary order while
still retaining convergence properties under certain conditions. The real-time dynamic
programming (RTDP) [3] algorithm (Algorithm 1) is a popularasynchronous DP ap-
proach that updates states encountered during trial-basedsimulations of an MDP. This
variant of DP explores the state space in depth-limited trials and performs Bellman up-
dates at each state visited. RTDP selects states to visit by drawing next state sampless′

from the transition distribution for the current greedy action a and current states, i.e.,

CHOOSENEXTSTATE(s, a) := s′ ∼ T (s, a, ·). (4)

We say thatVu is anadmissible upper bound on the optimal valueV ∗(s) if Vu(s) ≥
V ∗(s);∀s. Given an admissible upper bound, RTDP converges to the optimal value
function in the infinite limit of trials. The primary advantage of RTDP is that its solution
is targeted to the initial state set. One weakness of RTDP is that unlikely paths tend
to be ignored and as a consequence the convergence of RTDP is slow [4]. Thus, some
extensions of RTDP were proposed in order to improve the convergence: Labeled RTDP
(LRTDP) [4], Bounded RTDP (BRTDP) [5] and Bayesian RTDP [6].

Bounded RTDP (BRTDP) [5] maintains upper and lower bounds onthe optimal
value function,Vu(s) andVl(s) respectively, and focus search in areas with high value
uncertainty. It was proved that the subsequent updates of upper and lower bounds, de-

Fig. 1. a)Factored MDP reward and b) transition function example. In all ADDs,true branches
are solid, false branches are dashed.

fined asVu(s) ≥ V ∗(s) ∀s ∈ S andVl(s) ≤ V ∗(s) ∀s ∈ S, preserve admissibility and
monotonically converge toV ∗(s) [5]:

lim
t→∞

V t
l (s) = V ∗(s) = V t

u(s).

The gap between upper and lower bounds provides a measure of the value uncertainty
for states. BRTDP (Algorithm 2) [5] first initializes botĥVu andV̂l with an admissible
upper and lower bounds and then perform many trials. Each trial starts choosing an
initial state and for each visited state, upper and lower values are updated and a greedy
action is chosen. BRTDP prioritizes the choice of next stateaccording to theirbound
gap weighted distribution b(·)

B
(Algorithm 3), whereb(s′) is given by :

b(s′) = P (s′|s, a)(V̂u(s′) − V̂l(s
′)). (5)

BRTDP finishes a trial if encounters a goal state, a limited depth is achieved or there is
low value uncertainty. BRTDP converges for the simple reason that it still updates all
relevant states that RTDP would update, but with a differentdistribution which biases
the updates for more uncertain states (large gap between upper and lower bound), thus
reducing the value uncertainty more quickly and leading to faster convergence.

3 Symbolic MDPs and RTDP

Many MDPs often have a natural factored (symbolic) structure that can be exploited in
the form of afactored MDP [8]. Here, states are represented by vectorsx = (x1, . . . , xn)
of lengthn, where eachxi ∈ Xi and for simplicity, we assumeXi = {0, 1}; hence the
total number of states isN = 2n. Two ways to exploit factored structure in an MDP
first jointly introduced in the SPUDD value iteration algorithm [8] are the use ofdy-
namic Bayesian networks (DBNs) to represent the transition function andalgebraic
decision diagrams (ADDs) [9] to represent the reward, value function, andconditional
probability tables (CPTs) that comprise the DBN.

ADDs provide an efficient means for representing and performing arithmetic opera-
tions on functions from a factored boolean domain to a real-valued range (i.e.,{0, 1}n →

Algorithm 2 : BRTDP

begin
bVu = Vu;
bVl = Vl;
while convergence not detected and not out of time do

depth=0;
visited.Clear();
Draws from I at random;
s0 = s;
while (s /∈ G) and (s 6= null) and (depth < max depth) do

depth=depth+1;
visited.Push(s);
bVu(s) =Update (bVu, s) // See (1) & (2)
bVl(s) =Update (bVl, s) // See (1) & (2)
a =GreedyAction (bVu, s) // See (3)
s =ChooseNextStateBRTDP (s0, s, a, τ) // See Algorithm 3

while ¬ visited.Empty() do
s=visited.Pop();
bVu(s) =Update (bVu, s);
bVl(s) =Update (bVl, s);

return bVu;
end

Algorithm 3 : ChooseNextStateBRTDP(s0,s,a, τ)

begin
∀s′, b(s′) = P (s′|s, a)(bVu(s′) − bVl(s

′));
B =

P
s′

b(s′);

if B <
bVu(s0)−bVl(s0)

τ
then

return null;
return s′ ∼ b(·)

B
;

end

R). They rely on two main principles to do this: (a) ADDs represent a functionBn →
R as a directed acyclic graph (DAG) – essentially a decision tree with reconvergent
branches and real-valued terminal nodes and (b) ADDs enforce a strict variable order-
ing on the decisions from the root to the terminal node, enabling a minimal, canonical
diagram to be produced for a given function.

ADDs often provide an efficient representation of functionswith context-specific
independence [10] and redundant structure. For example, the function

∑3
i=1 xi (xi ∈

{0, 1}) represented in Figure 1.a as an ADD exploits the redundant structure of sub-
diagrams in a DAG to avoid an exponentially-sized tree representation. Unary opera-
tions such as scalar multiplication (·) and marginalization (

∑
xi∈Xi

) and binary opera-

Algorithm 4 : CHOOSENEXTSTATE SRTDP(x, a) −→ x
′

begin
// Sample each next state variable x′

i from DBN
for all X ′

i do

x′

i ∼ CPT
x
′

i
a (x)

return x
′ := (x′

1, . . . , x
′

n)

end

tions such as addition (⊕), multiplication (⊕), andmax can be performed efficiently on
ADDs [9], hence all operations required for DP can be performed directly with ADDs.

A DBN representation of a transition matrix factors the transition probabilities into
CPTsP (x′

i|xi, a) where each next state variablex′
i is only dependent upon the action

a and its direct parentsxi in the DBN. Then the transition model can becompactly
specified asP (x′|x, a) =

∏n
i=1 P (x′

i|xi, a) even when most of the probabilities are
non-zero. Rather than represent each CPTP (x′

i|xi, a) in a tabular format, ADDs are
often more compact as shown in Figure 1.b and facilitate efficient computation.

3.1 sRTDP
Feng et al (2003) proposed the symbolic RTDP (sRTDP) based onthe ideas of Hoey et
al (1999), i.e., representing the MDP using DBN and ADDs. In this section we explain
in details the sRTDP algorithm. We begin by presenting factored forms of (1) and (2):

Qt+1(x, a) := R(x, a) + γ
∑

x
′

n∏

i=1

P (x′
i|xi, a)V t(x′) (6)

V t+1(x) := max
a∈A

Qt+1(x, a). (7)

From these observations, we can now proceed to define the Symbolic RTDP. To do this,
we still use the basic RTDP procedure in Algorithm 1, but specify an initialization ofV̂u

as an ADD (just a constant if an uninformed upper bound is used), as well as factored
versions of the following:

– UPDATE computes the factored RTDP value function update for statex. All oper-
ations in (6) and (7) can be computed using ADD operations when the reward and
value functions and transition CPTs (denotedCPT

a
x
(X ′

i) = P (X ′
i|x, a) for each

X ′
i) are ADDs. In RTDP, computations ofV t+1(x) yield a constantv for a known

x. Then sRTDP needs only insert this new constantv into the current value function
V t
DD

for statex to obtainV t+1
DD

. This can also be done efficiently in ADDs.
– GREEDYACTION At the same time that UPDATE is performed, the greedy action

π(x) can be easily computed by keeping track of thearg maxa when calculatingv.
– CHOOSENEXTSTATE (Algorithm 4) samples a next statex′ given a current statex

and actiona by using DBN structure to sample each next state variablex′
i.

3.2 sBRTDP
We can now define a new symbolic variant of BRTDP (sBRTDP). We modify Algorithm
2 first by initializing V̂u andV̂l as ADDs. Then we use the same Update and Greedy-
Action procedures from sRTDP. The major difference betweensRTDP and sBRTDP is

the way they choose the next state, which we explain here in details. We can factor the
bound gap weighted distributionb(·)

B
, that is computed in the BRTDP algorithm, as:

P (x′
1, ..., x

′
n|x) = P (x′

n|x
′
1, ..., x

′
n−1,x)...P (x′

2|x
′
1,x)P (x′

1|x). (8)

Note that we can samplex1 independently, then condition on it, we can samplex2, until
we reachxn, we will use this sequential sampling method that is exact. We begin by
presenting a symbolic form ofb(s′) (Equation (5)):

b(x′) =
n∏

i=1

P (x′
i|x, a)VGAP (x′)

whereVGAP = V̂u − V̂l. Then starting fromx′
1 we do the following:

p(x′
1) ∝ b(x′

1) =
∑

x′

i
,i 6=1

n∏

i=1

P (x′
i|x, a)VGAP (x′).

Exploiting the absence of synchronic arcs to decompose, we obtain:

b(x′
1) = P (x′

1|x, a)
∑

x′

2

P (x′
2|x, a)

∑

x′

3

P (x′
3|x, a) · · ·

∑

x′

n

P (x′
n|x, a)VGAP (x′).

Besides the symbolic calculation ofb(s), sBRTDP does also the sample of the state
variables using an extendedcached ADD, i.e., an ADD with labeled arcs. In order to do
so, sBRTDP constructs a cachedVGAP ADD structure: first the transition probabilities
of the current state are cached in the arcs of theVGAP ADD and, in a bottom-up fashion,
the sums from Equation (9) are also cached in the same structure, starting from inside
to outside2s:

b(x′

1) = P (x′

1|x, a)
X

x′

2

P (x′

2|x, a)
P

x′

3

P (x′

3|x, a) · · ·
P

x′

n

P (x′

n|x, a)VGAP (x′) (9)

Finally, with the resultingVGAP ADD, sBRTDP samples each state variable in the
ADD from top to down. This can be done since each box in Equation (9) is precisely
one ofP (x′

j |x
′
1, ..., x

′
j−1,x) in Equation (8), once we have conditioned on the already

sampled variables(x′
1, ·, x

′
j−1). Then if the factorization in Equation (8) is done in

the same order as the ADD variable order, the computation ofP (x′
j |x

′
1, ..., x

′
j−1,x)

always refers to the subdiagram below(x′
1, ..., x

′
j−1) in the ADD and indeed the recur-

sive marginal computations required to compute the true/false probabilities forxj are
already stored locally on the branches ofxj in the subdiagram.

Figure 2 shows an example. Suppose we are in the statex1 = T , x2 = T and
x3 = T ; the greedy action isa1 and we want to choose the next state. First we cache
the probabilities from the CPTs (Figure 2.a) inVGAP (Figure 2.b), and then we compute
and cache all2s from Equation (9) inVGAP from bottom to up (Figure 2.c). Based on
these values we can now sample each state variable (top-down) in turn, conditional on
the current values of the above variables that has been sampled. For example using
the cached values inVGAP (Figure 2.c), suppose that we have sampledx′

1 = T and

x
1

x
2

100

x
3

20

V
U

V
L

V =
GAP

’

’

’

x 1

x
1

x
1

0.6

’

 0.3 0.40.7

 P(x’ |x ,a)=
1 1

x 2

x
2

x
2

0

’

 1

 P(x’ |x ,a)=
2 2

1

1

x 3

0.8

’

 0.2

 P(x’ |a)=
3 1

0.3

0.7

1
0

 0.2 0.8

x
1

x
2

x
3

20

’

’

’

0.3

0.7

1
0

 0.2 0.8

 = 25.2

=70

=4 =80

 = 84
 =0

100

a) b) c)

Fig. 2.Computingb(x′) =
Q

n

i=1 P (x′

i|x, a)VGAP (x′) caching the values inVGAP .

Algorithm 5 : ChooseNextState sBRTDP(x0,x,a, τ ,VUDD
,VLDD

) −→ x
′

begin
VGAP = VUDD

− VLDD
;

for all X ′

i do

putCPT
x
′

i
a (x) in VGAP

bottom-up inVGAP computeb(x′

1) (Equation 9) and cache2s inVGAP ;
for all X ′

i do
// top-down inVGAP

B =
P

x′

i

b(x′

i) ;

if B <
bVu(x0)−bVl(x0)

τ
then

return null;
//samplingx′

i

x′

i ∼
b(x′

i
)

B
;

dismiss the other parts ofVGAP ;

return x
′ := (x′

1, . . . , x
′

n)
end

x′
2 = F . The state variablex′

3, which is not represented in the ADD in the case of
x′

1 = T andx′
2 = F , is sampled with 0.5 probabilities. Algorithm 5 has as inputthe

initial and current state, actiona, a constantτ , VUDD
andVLDD

and returnsx′ sampled
according with the previous described procedure.

4 Empirical Results
First we focus on problems with dense transition matrices where traditional RTDP may
be inappropriate (recall that dense matrices can occur in problems with a large exoge-
nous event space). We evaluate Enumerated RTDP and sRTDP on two problems: the
logistical problem SYSADMIN in the uni-ring configuration with random exogenous
equipment failures as defined in [11] and a TRAFFIC MDP for signal control at a single
intersection with random exogenous traffic movements [12].

We first analyse properties of the two algorithms on TRAFFIC problem with 12
variables (212 states) in Figure 3 where we show the averaged results of 10 training and

 36
 37
 38
 39
 40
 41
 42
 43
 44
 45

 0.1 1 10 100 1000
R

ew
ar

d
fr

om
 S

im
ul

at
io

n

Logarithmic Time (sec)

Performance vs Time - Traffic (12 Vars)

Factored RTDP
Enumerated RTDP

 0

 100

 200

 300

 400

 500

 600

 0 4000 8000 12000 16000

T
im

e
(s

ec
)

Number of Updates

Time vs Updates - Traffic (12 Vars)

Factored RTDP
Enumerated RTDP

Fig. 3.Various analyses of Factored vs. Enumerated RTDP on the TRAFFIC problem.

 1

 10

 100

 1000

 10000

 10 11 12 13 14 15 16

T
im

e
(s

ec
)

Number of variables

Time per 1000 Updates - Traffic

Factored RTDP
Enumerated RTDP

 0.01

 0.1

 1

 10

 100

 6 7 8 9 10 11 12 13 14

T
im

e
(s

ec
)

Number of variables

Time per 1000 Updates - Uni Ring

Factored RTDP
Enumerated RTDP

Fig. 4.Analysis of the time per RTDP update for Factored vs. Enumerated RTDP.

policy simulation runs. In the left plot showing performance vs. a log-scale of RTDP
training time, we note that sRTDP begins to reach high performance levelslong before
Enumerated RTDP has finished its initial training trials. Toexplain why, in the plot on
the right, we see that the time per RTDP UPDATE for Enumerated RTDP is much larger
than sRTDP; Enumerated RTDP slightly speeds up on its later updates as its state cache
begins to saturate and yield frequent hits, reducing overhead.

Since time-per-update is the most crucial detail indicating the relative speed of Enu-
merated and sRTDP, in Figure 4, we provide a time-per-updateanalysis over two do-
mains varying problems with different number of state variables. Here we see that the
overhead of sRTDP may make it slower than Enumerated RTDP on small problems,
but as the problem size grows, sRTDP requires substantiallyless time. For the largest
problems (with a large exogenous event space), Enumerated RTDP did not finish in the
time limit given by the upper bound of the plotsand given the log-scale time axis, we
note an improvement up tothree orders of magnitude on large TRAFFIC problems.

Finally we analyse the performance vs number of updates for both symbolic al-
gorithms sRTDP and sBRTDP, for the grid problem 16x16. Figure 5 shows that the
sBRTDP converges making∼ 140000 less updates.

5 Concluding Remarks

While RTDP approaches have proved very popular in recent years for their ability to
exploit initial state knowledge and sparse transition matrices, the advantages of tradi-
tional Enumerated RTDP are often lost on MDPs with dense transition matrices. As we

-180

-160

-140

-120

-100

-80

-60

-40

-20

0.0e+00 2.0e+04 4.0e+04 6.0e+04 8.0e+04 1.0e+05 1.2e+05 1.4e+05 1.6e+05 1.8e+05

P
er

fo
rm

an
ce

Number of updates

grid-16x16

Factored RTDP
Factored BRTDP

Fig. 5.Symbolic RTDP vs. Symbolic BRTDP.

showed in the experiments sRTDP can speedup learning over its enumerated state coun-
terpart by up tothree orders of magnitude. Motivated by the results of sRTDP [7], we
have proposed a new variant of BRTDP [5] named sBRTDP which isable to converge
to the optimal value function with much less updates than sRTDP. This is due to the
additional information used for sampling next states. The original idea proposed in this
paper is how to sample state variables in the symbolic representation using the ADD
structure.

References

1. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley, New York (1994)

2. Bertsekas, D.P.: Distributed dynamic programming. IEEE Transactions on Automatic Con-
trol 27 (1982) 610–617

3. Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-time dynamic program-
ming. Technical Report UM-CS-1993-002, U. Mass. Amherst (, 1993)

4. Bonet, B., Geffner, H.: Labeled RTDP: Improving the convergence of real-time dynamic
programming. In: ICAPS-03, Trento, Italy (2003) 12–21

5. McMahan, H.B., Likhachev, M., Gordon, G.J.: Bounded real-time dynamic programming:
RTDP with monotone upper bounds. In: ICML-05. (2005) 569–576

6. Sanner, S., Goetschalckx, R., Driessens, K., Shani, G.: Bayesian real-time dynamic pro-
gramming. In: 21st IJCAI, San Francisco, CA, USA (2009) 1784–1789

7. Feng, Z., Hansen, E.A., Zilberstein, S.: Symbolic generalization for on-line planning. In:
19th UAI. (2003) 209–216

8. Hoey, J., St-Aubin, R., Hu, A., Boutilier, C.: SPUDD: Stochastic planning using decision
diagrams. In: UAI-99, Stockholm (1999) 279–288

9. Bahar, R.I., Frohm, E., Gaona, C., Hachtel, G., Macii, E., Pardo, A., Somenzi, F.: Alge-
braic Decision Diagrams and their applications. In: IEEE /ACM International Conference
on CAD. (1993) 428–432

10. Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific independence in
Bayesian networks. In: UAI-96, Portland, OR (1996) 115–123

11. Guestrin, C., Koller, D., Parr, R., Venktaraman, S.: Efficient solution methods for factored
MDPs. JAIR19 (2002) 399–468

12. Delgado, K.V., Sanner, S., de Barros, L.N., Cozman, F.G.:Efficient Solutions to Factored
MDPs with Imprecise Transition Probabilities. In: 19th ICAPS, Thessaloniki, Greece (2009)

