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Abstract. Real-time dynamic programming (RTDP) solves Markov decision pro-
cesses (MDPs) when the initial state is restricted. By visiting (and updatirhg) o
a fraction of the state space, this approach can be used to solve probitms
intractably large state space. In order to improve the performance bPRa
variant based on symbolic representation was proposed, namedPsRidli-
tional RTDP approaches work best on problems with sparse transitititesa
where they can often efficiently achieseonvergence without visiting all states;
however, on problems with dense transition matrices where most statesah-
able in one step, the sRTDP approach shows an advantage over trddii@mR
by up to three orders of magnitude, as we demonstrate in this paper. &\¥pals
ify a new variant of SRTDP based on BRTDP, named sBRTDP, whictierges
quickly when compared to RTDP variants, since it does less updating kipgna
a better choice of the next state to be visited.

1 Introduction

Markov Decision Processes (MDPs) [1] provide a conveniemhéwork for modeling
fully-observable stochastic planning problems. In an MibB,agent computes a policy
— a mapping from states to actions — in order to maximize aastref rewards. A
popular approach to policy computation is through a valuetion — a function that
assigns a value to each world state. The computation of the fanction can be either
synchronous, where all states are updated during eactioterar asynchronous, where
the agent updates some states more than others.

Recent years have seen a resurgence of interest in asynolkrdynamic program-
ming solutions to MDPs [2]. Of particular interest has bdenttial-based real-time dy-
namic programming (RTDP) approach [3] as evidenced by @&tyaof recent work [4—
6]. RTDP algorithms have a number of distinct advantagepractical MDP solutions,
specifically: (a)Anytime performance: RTDP algorithms can be interrupted at any time,
generally yielding a better solution the longer they arevedid to run; (b)Optimality
without exhaustive exploration: By focusing trial-based search on states reachable from
the set of initial states, RTDP algorithms may obtain anrogtipolicy while visiting
only a fraction of the state space.

However, the advantages of RTDP may break down when theitimmatrix is
not sparse. Yet many MDPs that model interesting real-wprttblems do not have
sparse transition matrices, e.g., elevator scheduling raitdom arrivals, traffic control
with random car movements, and logistical problems witldcan failures. All of these



problems have the property etogenous events — events beyond the agent’s control
that can cause arbitrary state changes between time sttfdedld todense and large
transition matrices. Although dense transition matrices lack structure in teafspar-
sity, they often contain factored (symbolic) structures@&a@ on this last idea, Feng et
al (2003) has proposed a factored variant of RTDP named SieriR6DP (SRTDP).
However they have not shown how this SRTDP behaves whemigadih dense transi-
tion matrices in large state spaces, as we demonstratesipaper. Besides, we propose
a new variant of SRTDP, a Symbolic Bounded RTDP, which maisthoth upper and
lower bounds on the optimal value function. We show that Witk approach we make
less value updates when compared to SRTDP [7].

2 Background

A Markov decision process(MDP) is a tuple(S, A, T, R,~) [1]. S = {s1,...,8n} IS
a finite set of fully observable stated.= {a4,...,a,} is a finite set of actionsI" :
SxAxS — [0,1] is aknown stationary, Markovian transition functidd: Sx A — R
is a fixed known reward function associated with every stateagtion.y is a discount
factor s.t. 0 < ~ < 1 where rewards time steps in the future are discountedy
There is a set of initial states C S, and a possibly empty set of absorbing goal states
G C S where all actions lead to a zero-reward self-transitiompiobability 1.

A policy 7 : S — A specifies the action = 7 (s) to take in states. Our goal is
to find a policy that maximizes the value function, definedreessum of expected dis-

counted reward¥ (s) = E, [Z;ﬁ oY relso = s] wherer; is the reward obtained
at timet.

Value iteration (VI) is a synchronous dynamic programming (DP) solution to an
MDP. Starting with an arbitrary’°(s), VI performs value updates fail statess, com-
puting the next value function**!(s) := UPDATE(V, s):

Q" (s.a) = R(s,a) +v- Y T(s,a,8) - V'(s) 1)
s'esS
Vitl(s) = max {Q"(s,a)}. 2

This update is known asBellman update. For discounted problems and certain restric-
tions of undiscounted problems suchstachastic shortest path (SSP) problems [2],
V(s) converges to the unique optimal value functidh(s) in the infinite limit of up-
dates, i.e., defining. = max; [V!(s) — V*(s)| thenlim;_, . ¢, = 0. The greedy policy
7(s) = GREEDYACTION(V'?, s) w.r.t. V' and states is defined as follows:

7(s) := arg max {R(s, a) + 7 Z T(s,a,s") - Vt(s’)} (3)

a€A s’eS

For discounted problems, the greedy policgerived fromV? loses no more tha2rye;
in value over the infinite horizon compared to the optimalgqyo1].



Algorithm 1: RTDP

begin
I/ nitialize V,, with admissible value function
VA'u =V
while convergence not detected and not out of time do
depth := 0
visited. CLEAR() // Clear visited states stack
Draw s from Z at random/ Pick initial state
while (s ¢ G) A (s # null) A (depth < max-depth) do
depth := depth + 1
visited .PUSH(s)
Vuu(s) := UPDATE(Vy, s) I/ See (1) & (2)
a := GREEDYACTION(V,, s) // See (3)
s := CHOOSENEXTSTATERTDP(s, a) // See (4)

[/ Optimization: end-of-trial update
/I not appearing in the original RTDP
while —visited. EMPTY() do

s := visited.Por()

Vau(s) := UPDATE(V,,, s)

return V,
end

Asynchronous DP & Real-time DP Asynchronous DP methods [2] are a variant of dy-
namic programming that apply the Bellman update to states iarbitrary order while
still retaining convergence properties under certain g¢mrs. The real-time dynamic
programming (RTDP) [3] algorithm (Algorithm 1) is a populasynchronous DP ap-
proach that updates states encountered during trial-tssediations of an MDP. This
variant of DP explores the state space in depth-limitedsteiad performs Bellman up-
dates at each state visited. RTDP selects states to visitamwinh next state samples
from the transition distribution for the current greedyiact: and current state, i.e.,

CHOOSENEXTSTATE(s,a) := s" ~ T(s,a,-). 4)

We say thal/,, is anadmissible upper bound on the optimal valG& (s) if V,,(s) >
V*(s);Vs. Given an admissible upper bound, RTDP converges to thenaptialue
function in the infinite limit of trials. The primary advamga of RTDP is that its solution
is targeted to the initial state set. One weakness of RTDP is that unlikalths tend
to be ignored and as a consequence the convergence of RTW itk Thus, some
extensions of RTDP were proposed in order to improve theagence: Labeled RTDP
(LRTDP) [4], Bounded RTDP (BRTDP) [5] and Bayesian RTDP [6].

Bounded RTDP (BRTDP) [5] maintains upper and lower boundshenoptimal
value functionV,(s) andV;(s) respectively, and focus search in areas with high value
uncertainty. It was proved that the subsequent updatesperiand lower bounds, de-
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Fig. 1. a)Factored MDP reward and b) transition function example. In all ADi& branches
are solid, false branches are dashed.

fined asV,(s) > V*(s) Vs € S andV(s) < V*(s) Vs € S, preserve admissibility and
monotonically converge t&*(s) [5]:

Jim V' (s) = V*(s) = Vi(s).

The gap between upper and lower bounds provides a measure witie uncertainty
for states. BRTDP (Algorithm 2) [5] first initializes botlV,, andV; with an admissible
upper and lower bounds and then perform many trials. Eaahgtarts choosing an
initial state and for each visited state, upper and lowanesmbre updated and a greedy
action is chosen. BRTDP prioritizes the choice of next séaiording to theibound
gap weighted distribution % (Algorithm 3), whereb(s') is given by :

~

b(s") = P(s']s,a)(Vu(s') = Vi(s"). (5)

BRTDP finishes a trial if encounters a goal state, a limitgutliés achieved or there is
low value uncertainty. BRTDP converges for the simple raabat it still updates all

relevant states that RTDP would update, but with a diffedéstribution which biases
the updates for more uncertain states (large gap betweear apd lower bound), thus
reducing the value uncertainty more quickly and leadinggtdr convergence.

3 Symbolic MDPs and RTDP

Many MDPs often have a natural factored (symbolic) struecthiat can be exploited in
the form of afactored MDP [8]. Here, states are represented by vecioss (x4, ..., z,)
of lengthn, where each; € X; and for simplicity, we assum&; = {0, 1}; hence the
total number of states i& = 2". Two ways to exploit factored structure in an MDP
first jointly introduced in the SPUDD value iteration algbrm [8] are the use ofly-
namic Bayesian networks (DBNSs) to represent the transition function aalgebraic
decision diagrams (ADDs) [9] to represent the reward, value function, aodditional
probability tables (CPTs) that comprise the DBN.

ADDs provide an efficient means for representing and perfograrithmetic opera-
tions on functions from a factored boolean domain to a rahled range (i.e{0, 1} —



Algorithm 2 : BRTDP
begin
Vo= Vi;
Vi=WV;
while convergence not detected and not out of time do
depth=0;
visited.Clear();
Draw s from I at random;
So = S,
while (s ¢ G) and (s # null) and (depth < maz_depth ) do
depth=depth+1;
visited.Push(s);
Vu(s) =Updat e (V,, s) Il See (1) & (2)
Vi(s) =Updat e (Vi, s) I/ See (1) & (2)
a =G eedyAct i on (V,, s) I See (3)
s =ChooseNext St at eBRTDP (so, s, a, 7) // See Algorithm 3
while — visited.Empty() do
s=visited.Pop();
Vu(s) =Updat e (Vy, s);

Vi(s) =Updat e (¥}, s);

return Vy;

end

Algorithm 3: ChooseNext St at eBRTDP(so,s,a, )
begin
Vs', b(s") = P(s'|s, a) (Vu(s") — Vi(s"));
B =3 _b(s);
if B < Yuls0)=Vi(s0) then
| return nuﬁ;
b(-).
return s’ ~ f;,
end

R). They rely on two main principles to do this: (a) ADDs remesa functionB™ —
R as a directed acyclic graph (DAG) — essentially a decisiea with reconvergent
branches and real-valued terminal nodes and (b) ADDs emfostrict variable order-
ing on the decisions from the root to the terminal node, englad minimal, canonical
diagram to be produced for a given function.

ADDs often provide an efficient representation of functiovith context-specific
independence [10] and redundant structure. For exampﬂe‘ut‘ﬂ:tionZf’:1 xi (x; €
{0,1}) represented in Figure 1.a as an ADD exploits the redundanttsre of sub-
diagrams in a DAG to avoid an exponentially-sized tree regméation. Unary opera-
tions such as scalar multiplicatior) &nd marginalizationX:wieXi) and binary opera-



Algorithm 4 : CHoOOSENEXTSTATE_SRTDP(x,a ) — =’

begin
/I Sample each next state variable 2, from DBN
for all X! do
‘ TG~ oPTY ()
return =’ := (27,...,2})
end

tions such as addition®(), multiplication (), andmax can be performed efficiently on
ADDs [9], hence all operations required for DP can be peréatirectly with ADDs.

A DBN representation of a transition matrix factors the sitian probabilities into
CPTsP(z}|xz;, a) where each next state variahlgis only dependent upon the action
a and its direct parentg; in the DBN. Then the transition model can bampactly
specified asP(z'|z,a) = [, P(z}|z;, a) even when most of the probabilities are
non-zero. Rather than represent each CPTz}|x;,a) in a tabular format, ADDs are
often more compact as shown in Figure 1.b and facilitateiefftccomputation.

3.1 sRTDP

Feng et al (2003) proposed the symbolic RTDP (sRTDP) basdideoideas of Hoey et
al (1999), i.e., representing the MDP using DBN and ADDshis section we explain
in details the sSRTDP algorithm. We begin by presenting fattdorms of (1) and (2):

Q"N (x,0) == R(w,a) +7 ) _ [ [ Plailei, o)V (") (6)
x’ =1
Vitl(x) = max Q"™ (x,a). (7

From these observations, we can now proceed to define thedigrRI DP. To do this,
we still use the basic RTDP procedure in Algorithm 1, but dgem initialization ofV,,
as an ADD (just a constant if an uninformed upper bound is )} sesdwell as factored

versions of the following:
— UpPDATE computes the factored RTDP value function update for statll oper-

ations in (6) and (7) can be computed using ADD operationgwthe reward and
value functions and transition CPTs (denot@B T, (X/) = P(X/|x,a) for each
X!) are ADDs. In RTDP, computations &' (z) yield a constant for a known
x. Then sRTDP needs only insert this new constento the current value function
v}, for statex to obtainV};H'. This can also be done efficiently in ADDs.

— GREEDYACTION At the same time that REDATE is performed, the greedy action
m(a) can be easily computed by keeping track ofdéhgmax, when calculating.

— CHOOSENEXTSTATE (Algorithm 4) samples a next staie given a current state
and actioru by using DBN structure to sample each next state variaple

3.2 sBRTDP
We can now define a new symbolic variant of BRTDP (sBRTDP). Wdifg Algorithm

2 first by initializing V., andV; as ADDs. Then we use the same Update and Greedy-
Action procedures from sRTDP. The major difference betwsl®TDP and sBRTDP is



the way they choose the next state, which we explain heretailsléde can factor the
bound gap weighted distributid’rg, that is computed in the BRTDP algorithm, as:

P, ., a,|z) = Pl |2, ... 2l,_y, ®).. P2y, @) Pa)|z). (8)

Note that we can samplg independently, then condition on it, we can samleuntil
we reachr,,, we will use this sequential sampling method that is exa&.bagin by
presenting a symbolic form &{s’) (Equation (5)):

b(a') = [[ P(a}lz, a)Vear(a)
=1
whereVgap = 17“ — 171 Then starting from) we do the following:
p(x]) o< b(x]) Z HP N, a)Vaap(x').

xli#l i=1

Exploiting the absence of synchronic arcs to decompose piaro

b(z}) = P(x'1|:c,a)ZP(x’2|a:,a)ZP rh|z, a) ZP "z, a)Vaap(x').

Besides the symbolic calculation bfs), SBRTDP does also the sample of the state
variables using an extendedched ADD, i.e., an ADD with labeled arcs. In order to do
s0, SBRTDP constructs a cachiégd,p ADD structure: first the transition probabilities
of the current state are cached in the arcs olfagpr ADD and, in a bottom-up fashion,
the sums from Equation (9) are also cached in the same steystarting from inside

to outsideds:

b(z)) = P(ai]e,a) Y | Plablz,a) Y,

P
T3

P(aylz.a)- -5, [ P(eh]e. a)Vaar(@)]|(9)

o~

Finally, with the resultinglz4p ADD, SBRTDP samples each state variable in the
ADD from top to down. This can be done since each box in Equdi®) is precisely
one of (2|2, ...,z ) in Equation (8), once we have conditioned on the already
sampled varlableszl, ,_1). Then if the factorization in Equation (8) is done in
the same order as the ADD variable order, the computatioﬁ(@mm’l, e iy, )
always refers to the subdiagram bel@w, ..., 2%, ) in the ADD and indeed the recur-
sive marginal computations required to compute the triss/farobabilities forr; are
already stored locally on the branchesegfin the subdiagram.

Figure 2 shows an example. Suppose we are in the state 7, zo = T and
x3 = T; the greedy action ia; and we want to choose the next state. First we cache
the probabilities from the CPTs (Figure 2.a)ip 4 p (Figure 2.b), and then we compute
and cache allis from Equation (9) if/g 4 p from bottom to up (Figure 2.c). Based on
these values we can now sample each state variable (top}dowrn, conditional on
the current values of the above variables that has been sdmipbr example using
the cached values iz 4p (Figure 2.c), suppose that we have sampltéd= T and
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Fig. 2. Computingb(z’) =[]}, P(zi|z,a)Veapr(z') caching the values ifgap.

Algorithm 5: ChooseNext St at e_sBRTDP(zo,z,a, 7,.Vu, 5 Vi) — &’

begin
Vaar = Vupp — Vipp:
for all X! do

| putCPTE () in Voar
bottom-up inVe .4 p computeb(z) (Equation 9) and caches in Vg ap;
for all X! do
/I top-down inVg ap
B=3%, b(z});
if B < Vulo)=Vi(zo) then
| return nuITI;
lIsamplingx’;

’ b(z}) .
Ty~ ~p

dismiss the other parts &z 4 p;

return =’ := (27,...,2})

end

xh, = F. The state variable’, which is not represented in the ADD in the case of
x} = T andz), = F, is sampled with 0.5 probabilities. Algorithm 5 has as infinet
initial and current state, action a constant, Vi, , andV7,,, and returns’ sampled
according with the previous described procedure.

4 Empirical Results

First we focus on problems with dense transition matricesrevitraditional RTDP may
be inappropriate (recall that dense matrices can occurabl@ms with a large exoge-
nous event space). We evaluate Enumerated RTDP and sRTDR@rdblems: the
logistical problem SSADMIN in the uni-ring configuration with random exogenous
equipment failures as defined in [11] and RAFFIC MDP for signal control at a single
intersection with random exogenous traffic movements [12].

We first analyse properties of the two algorithms oRAFFIC problem with 12
variables £'2 states) in Figure 3 where we show the averaged results o&itirtg and
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Fig. 4. Analysis of the time per RTDP update for Factored vs. Enumerated RTDP.

policy simulation runs. In the left plot showing performanes. a log-scale of RTDP
training time, we note that SRTDP begins to reach high peréorce level$ong before
Enumerated RTDP has finished its initial training trials.€kplain why, in the plot on
the right, we see that the time per RTDPATE for Enumerated RTDP is much larger
than sRTDP; Enumerated RTDP slightly speeds up on its |lai#ates as its state cache
begins to saturate and yield frequent hits, reducing owsthe

Since time-per-update is the most crucial detail indigptive relative speed of Enu-
merated and sRTDP, in Figure 4, we provide a time-per-upaiaddysis over two do-
mains varying problems with different number of state Jalda. Here we see that the
overhead of SRTDP may make it slower than Enumerated RTDRnatl problems,
but as the problem size grows, sRTDP requires substankistytime. For the largest
problems (with a large exogenous event space), Enumerdt@® Rid not finish in the
time limit given by the upper bound of the plaiad given the log-scale time axis, we
note an improvement up tbree orders of magnitude on large TRAFFIC problems.

Finally we analyse the performance vs number of updatesdtr bymbolic al-
gorithms sRTDP and sBRTDP, for the grid problem 16x16. Fégbirshows that the
sBRTDP converges making 140000 less updates.

5 Concluding Remarks

While RTDP approaches have proved very popular in recensyfeaitheir ability to
exploit initial state knowledge and sparse transition ioas; the advantages of tradi-
tional Enumerated RTDP are often lost on MDPs with densesitian matrices. As we
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Fig. 5. Symbolic RTDP vs. Symbolic BRTDP.

showed in the experiments sSRTDP can speedup learning evauimerated state coun-
terpart by up tahree orders of magnitude. Motivated by the results of SRTDP [7], we
have proposed a new variant of BRTDP [5] named sBRTDP whielblis to converge
to the optimal value function with much less updates thanBRTThis is due to the
additional information used for sampling next states. Titigitmal idea proposed in this
paper is how to sample state variables in the symbolic reptason using the ADD
structure.
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