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Abstract. The AGM theory of belief revision provides a formal framework to
represent the dynamics of epistemic states. In this framework, the beliefs of the
agent are usually represented as logical formulas while the change operations are
constrained by rationality postulates. In the original proposal, the logic underlying
the reasoning was supposed to be supraclassical, among other properties. In this
paper, we present some of the existing work in adapting the AGM theory for non-
classical logics and discuss their interconnections and what is still missing for each
approach.
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1. Introduction

Belief Revision deals with the problem of modifying a knowledge base in
view of new information. A knowledge base can be seen as representing
the beliefs of a rational agent.

As an example, suppose an agent believes that Toulouse is in the
South of France, that during Summer the South of France is sunny and
warm, and that it is Summer now. Then the agent arrives in Toulouse
and it is rainy and cold. This new information about the weather con-
tradicts what the agent believed and in order to accommodate it, the
agent must give up some of her previous beliefs. The reason why this
is not a trivial task is that first, it involves choosing what to give up
and this choice usually does not depend purely on logical reasoning,
but rather on some kind of preference. In our example, the agent is
less likely to give up the belief that Toulouse is in the South of France
than the belief that during Summer the South of France is sunny and
warm. Second, giving up some beliefs may have indirect consequences:
the agent believed that she only needed Summer clothes and will have
to give up this belief as well...

In order to be able to formalize belief revision, we need to be able
to represent at least four elements:

− Epistemic states: what the agent believes.

− Epistemic attitudes: which attitudes the agent may have with re-
spect to his beliefs.
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2 Renata Wassermann

− Input : how the new information is represented.

− Change operations: the ways in which the agent can change his
epistemic state.

In the AGM theory [1] , the epistemic state is given by belief sets,
sets of formulas closed under logical consequence. There are three pos-
sible epistemic attitudes: if K is the belief set of the agent, α ∈ K is
interpreted as “the agent believes α”; ¬α ∈ K is interpreted as “the
agent rejects α”; and if neither α nor ¬α are in K, then the attitude
towards α is undetermined. The new information is represented as
a formula. There are three operations of change: expansion consists
in adding the new information without worrying about consistency;
contraction concerns removing a belief from the belief set and revision
is the addition of new information while preserving consistency.

One of the variations of AGM theory that has received attention in
the literature defends the use of belief bases instead of belief sets. Belief
bases are sets of formulas which are usually not closed under logical
consequence. Their use has been defended by several researchers, but
with different meanings: while for some, following [36], a belief base
is simply a more compact way of representing a belief set given by its
closure, the line we follow here regards a base as containing those beliefs
with an independent standing, those which are explicitly believed by an
agent [20, 28, 46]. The use of belief bases introduces the possibility of
representing more epistemic attitudes: given a belief base B, a formula
α can be explicitly accepted (α ∈ B), implicitly accepted (α ∈ Cn(B)),
explicitly rejected (¬α ∈ B), implicitly rejected (¬α ∈ Cn(B)), or
undetermined (α 6∈ Cn(B) and ¬α 6∈ Cn(B)).

Although most people assume that the AGM framework is meant
for classical propositional logic, the class of logics to which it can be
applied is a bit broader than that. Quoting the original paper [1]:

“By a consequence operation we mean, as is customary, an operation
Cn that takes sets of propositions to sets of propositions, such that
three conditions are satisfied, for any sets X and Y of propositions:
X ⊆ Cn(X), Cn(X) = Cn(Cn(X)), and Cn(X) ⊆ Cn(Y ) when-
ever X ⊆ Y . (...) we assume that Cn includes classical tautological
implication, is compact (that is, y ∈ Cn(X ′) for some finite subset
X ′ of X whenever y ∈ Cn(X)), and satisfies the rule of “introduc-
tion of disjunctions in the premises” (that is, y ∈ Cn(X∪{x1∨x2})
whenever y ∈ Cn(X ∪ {x1}) and y ∈ Cn(X ∪ {x2})).”

The first three conditions define a Tarskian consequence operator.
We will refer to the six conditions together as the AGM assumptions.
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DEFINITION 1. An inference operator Inf satisfies the AGM assump-
tions if and only if for every set of formulas X,Y :

− X ⊆ Inf(X) (inclusion)

− Inf(X) = Inf(Inf(X)) (idempotency)

− Inf(X) ⊆ Inf(Y ) whenever X ⊆ Y (monotony)

− Cn(X) ⊆ Inf(X) (supraclassicality)

− α ∈ Inf(X ′) for some finite subset X ′ of X whenever α ∈ Inf(X)
(compactness)

− α ∈ Inf(X ∪ {β1 ∨ β2}) whenever α ∈ Inf(X ∪ {β1}) and α ∈
Inf(X ∪ {β2}) (introduction of disjunction)

Classical logic clearly satisfies all of the AGM assumptions. Why
should one consider other logics for belief revision? One reason is purely
theoretical - as a logical exercise it would be interesting to know what
happens if we abandon the AGM assumptions on the underlying logic.
Which results still hold and which ones do not? But there are many
other reasons for leaving the classical realm: we may be interested in
logics with better behavior in terms of computational complexity, logics
that tolerate some inconsistency, logics that model different kinds of
reasoning, logics used in specific domains of Artificial Intelligence, ...

In this paper we give an overview of some of the work that has been
done on applying AGM theory to different logics. We will deal with both
belief sets and belief bases, making explicit for each logic, whether the
results were obtained for belief sets or for bases. The present paper
is not intended as an exhaustive survey of the field, instead, we have
selected four main collections of systems, grouped by their motivation.

The paper is organized as follows: in the next section, we give the
background on AGM theory which is needed. In Section 3, we present
generalizations of AGM theory which can be applied to different logics.
In the four sections that follow, we present results which were obtained
for particular logics: approximate and local reasoning in Section 4,
paraconsistent and relevance logics in Section 5, Horn logics in Section
6, and description logics in Section 7. Finally, in Section 8 we discuss
the connections between the different approaches and future work.

Notation: Given a language L, we call inference operation, denoted
by Inf, any total function taking sets of formulas to sets of formulas. We
reserve Cn to denote the classical propositional consequence operator.
The Greek letters α, β, γ . . . denote arbitrary formulas; lowercase letters
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p, q, r . . . denote propositional atoms; uppercase letters A,B . . . denote
sets of formulas. For any formula α, V ar(α) is the set of propositional
letters which occur in α.

2. Background

In this Section, we very briefly review the AGM theory. For more
details, the reader is referred to [21, 22, 28].

We start by assuming that the belief state of an agent is represented
by a belief set K = Cn(K). We have seen that in the AGM theory,
the input is a formula α. The operation of expanding K by α can be
defined as:

K + α = Cn(K ∪ {α})

The resulting set is a belief set that contains α and that may be in-
consistent. The other two change operations, contraction and revision,
do not have a unique construction but are constrained by rationality
postulates. Following the formulation given in [21], the AGM postulates
for contraction can be written as:

(K-1) K − ϕ is a belief set (closure)
(K-2) K − ϕ ⊆ K (inclusion)
(K-3) If ϕ 6∈ K, then K − ϕ = K (vacuity)
(K-4) If not ` ϕ, then ϕ 6∈ K − ϕ (success)
(K-5) K ⊆ (K − ϕ) + ϕ (recovery)
(K-6) If ` ϕ↔ ψ, then K − ϕ = K − ψ (equivalence)
(K-7) K − ϕ ∩K − ψ ⊆ K − (ϕ ∧ ψ)
(K-8) If ϕ 6∈ K − ϕ ∧ ψ, then K − ϕ ∧ ψ ⊆ K − ϕ

The first six postulates are considered to be more basic, while the
last two deal with contraction by conjunctions. In the rest of the paper,
when we refer to the postulates, we mean the six basic postulates, unless
explicitly mentioned. The same holds for the revision postulates:

(K*1) K ∗ ϕ is a belief set (closure)
(K*2) ϕ ∈ K ∗ ϕ (success)
(K*3) K ∗ ϕ ⊆ K + ϕ (inclusion)
(K*4) If ¬ϕ 6∈ K, then K + ϕ ⊆ K ∗ ϕ (preservation)
(K*5) K ∗ ϕ = L if and only if ` ¬ϕ (consistency)
(K*6) If ` ϕ↔ ψ, then K ∗ ϕ = K ∗ ψ (equivalence)
(K*7) K ∗ (ϕ ∧ ψ) ⊆ (K ∗ ϕ) + ψ
(K*8) If ¬ψ 6∈ K ∗ ϕ, then (K ∗ ϕ) + ψ ⊆ K ∗ (ϕ ∧ ψ)
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Contraction and revision can be defined in terms of each other
through the Levi or the Harper identities. Revision by a belief α cor-
responds to first contracting by ¬α and then expanding by α:

K ∗ α = (K − ¬α) + α (Levi identity)

In a similar way, contraction by α can be obtained through revision
by ¬α followed by the elimination of what was not in the original set:

K − α = (K ∗ ¬α) ∩K (Harper identity)

Several constructions for the change operators have been proposed in
the literature. Here we will mostly use the construction that appeared
in [1], partial meet contraction. This operation is based on selecting
some of the maximal subsets of the belief set that do not imply the
input formula and taking their intersection. Formally:

DEFINITION 2. [2] The remainder set X⊥α of X and α, where X
is a set of formulas and α a formula, is defined as follows. For any set
Y , Y ∈ X⊥α if and only if:

− Y ⊆ X

− Y 6` α

− For all Y ′ such that Y ⊂ Y ′ ⊆ X, Y ′ ` α.

DEFINITION 3. [1] A selection function for X is a function γ such
that:

− If X ⊥ α 6= ∅, then ∅ 6= γ(X ⊥ α) ⊆ X ⊥ α.

− Otherwise, γ(X ⊥ α) = {X}.

DEFINITION 4. [1] For any sentence α, the operation of partial
meet contraction over a belief set K determined by the selection
function γ is given by:

K −γ α =
⋂
γ(K ⊥ α)

THEOREM 1. [1] Let − be a function which, given a formula α, takes
a belief set K into a new belief set K − α. If the underlying logic
satisfies the AGM assumptions, then for every theory K, − is a partial
meet contraction operation over K if and only if − satisfies the basic
postulates (K-1)-(K-6) for contraction.
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Partial meet revision is defined using the Levi identity and partial
meet contraction.

Another operation which had already been defined in [2] can be
seen as a special case of partial meet contraction. In a maxichoice
contraction, the selection function γ selects a single element of K ⊥ α,
in case this set is not empty. In [1], it is shown that the following pos-
tulate, together with the six basic AGM postulates, fully characterizes
maxichoice contractions:

(K-F) If β ∈ K and β 6∈ K−α, then β → α ∈ K−α (fullness)

The following results show the undesirable effects of maxichoice
operations:

LEMMA 1. [2] If α ∈ K and K−α is defined by means of a maxichoice
contraction operation, then for any formula β, either α∨β ∈ K −α or
α ∨ ¬β ∈ K − α.

COROLLARY 1. [2] If a revision operation is defined from a maxi-
choice contraction by means of the Levi identity, then, for any α such
that ¬α ∈ K, K ∗ α will be maximal, i.e., for every formula β, either
β ∈ K ∗ α or ¬β ∈ K ∗ α.

Suppose I believe p (that Buenos Aires is the capital of Brazil) and
have no idea about q (that the moon is made of cheese). Finding out
that ¬p is the case and revising my belief set using a revision based on
maxichoice contraction means that I will make a decision as to whether
q or ¬q.

The other extreme of partial meet operators is full meet contraction,
also defined in [2], where the whole set K ⊥ α (if not empty) is selected.
Full meet contraction is the only one of the three variations that does
not require a selection function.

Full meet contractions can be characterized by the basic postulates
together with the following postulate:

(K-I) For all α and β, K−(α∧β) = (K−α)∩(K−β) (intersection
condition)

The following results show that full meet contraction deletes beliefs
that intuitively should be preserved:

LEMMA 2. [2] If α ∈ K and K − α is defined by means of a full
meet contraction operation, then β ∈ K − α if and only if β ∈ K and
β ∈ Cn(¬α).

COROLLARY 2. [2] If a revision operation is defined from full meet
contraction by means of the Levi identity, then, for any α such that
¬α ∈ K, K ∗ α = Cn(α).
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Suppose I believe that p (Buenos Aires is the capital of Brazil) and
that q (there is no King of France). When I learn ¬p and revise my
belief set using a revision operation based on full meet contraction, I
give up the belief that there is no King of France.

When instead of belief sets we use belief bases to represent the
agent’s epistemic state, we can still use partial meet constructions to
obtain contraction and revision operators. However, these operations
are not characterized by the same set of postulates as the original
AGM constructions. Hansson [25] has provided sets of postulates and
representation theorems for partial meet contraction and revision of
belief bases.

An alternative construction was proposed in [27], where instead of
using the maximal subsets of a base that do not imply a given formula,
we rely on the minimal subsets that do imply the input formula. The
formal definition of kernel contraction is as follows:

DEFINITION 5. [27] The kernel operation ⊥⊥ is the operation such
that for every set B of formulas and every formula α, X ∈ B ⊥⊥α if
and only if:

− X ⊆ B

− α ∈ Cn(X)

− for all Y , if Y ⊂ X then α 6∈ Cn(Y )

The elements of B ⊥⊥α are called α-kernels.

DEFINITION 6. [27] An incision function for B is any function σ
such that for any formula α:

− σ(B ⊥⊥α) ⊆
⋃

(B ⊥⊥α), and

− If ∅ 6= X ∈ B ⊥⊥α, then X ∩ σ(B ⊥⊥α) 6= ∅.

DEFINITION 7. [27] Let σ be an incision function. The kernel con-
traction on B determined by σ is the operation −σ such that for all
sentences α:
B −σ α = B \ σ(B ⊥⊥α)

Hansson has provided in [27] a set of postulates and a representation
theorem for this operation and has shown that the operation is more
general than partial meet base contraction.
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3. General results

Some of the results obtained for particular logics proved to hold for a
larger class of logics. As an example, although the operations proposed
in [29] were originally coined for local reasoning (see Section 4), the
corresponding representation theorems hold for several different logics.
To make this clear, we reproduce below one of them:

THEOREM 2. [29] Let Inf satisfy monotony and compactness. Then
− is an operator of partial meet contraction on B based on Inf if and
only if for all sentences α:

− If α 6∈ Inf(∅), then α 6∈ Inf(B − α) (success)

− B − α ⊆ B (inclusion)

− If β ∈ B \ (B−α), then there is some B′ such that B−α ⊆ B′ ⊆
B, α 6∈ Inf(B′) and α ∈ Inf(B′ ∪ {β}) (relevance)

− If for all subsets B′ of B, α ∈ Inf(B′) if and only if β ∈ Inf(B′),
then B − α = B − β (uniformity)

For revision, one more property is needed, which is a property of a
pair Inf,α and states that according to the inference operator Inf, the
formula α cannot be responsible for the derivation of ¬α:

If ¬α ∈ Inf(B∪{α}), then ¬α ∈ Inf(B).(α-local non-contravention)

The representation theorems are basically the same as in the classical
case, proved in [25], but with the classical consequence operator Cn
replaced with a generic operator satisfying the properties specified in
the theorem. What is important is that the same consequence operator
is used both in the construction, to decide whether a subset of the
belief base implies or not a given formula, and in the postulates. Thus,
the meaning of the postulates changes according to the logic used, as
discussed in [50]. For example: the success postulate for contraction
says that after a contraction by α, the resulting belief base should not
imply α. It may well be that the resulting base classically implies α,
but not in the particular logic used.

For belief sets, there are some interesting general results to be ex-
tracted from work in Description Logics and Horn Logics. Flouris [17]
has characterized exactly the logics that admit an AGM contraction op-
erator (one that satisfies the six AGM postulates) through the property
of decomposability :
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For all sets of formulas A, B, such that Cn(∅) ⊂ Cn(B) ⊂ Cn(A),
there exists a set of formulas C such that Cn(C) ⊂ Cn(A) and
Cn(A) = Cn(B ∪ C).

Flouris, Plexousakis and Antoniou have shown that the problem lies
in the recovery postulate:

THEOREM 3. [18] Every Tarskian logic admits a contraction operator
that satisfies the AGM postulates without recovery.

Based on this result, it was shown in [41] that by substituting
the relevance postulate for recovery, one can obtain contraction
operators for more logics, even those that are not decomposable. An
interesting property is that the two sets of postulates (the original AGM
and AGM with relevance instead of recovery) are equivalent for the
logics satisfying the AGM assumptions, which makes the latter a real
extension.

THEOREM 4. [41] Every Tarskian logic admits a contraction operator
that satisfies the AGM postulates with relevance instead of recovery.

Finally, relevance can be used to characterize partial meet contrac-
tion:

THEOREM 5. [41] For every belief set K closed under a Tarskian
consequence operator, − is a partial meet contraction operation over
K if and only if − satisfies the postulates (K-1)-(K-4), (K-6) and
(relevance).

Most papers on belief change, when it comes to construction, con-
centrate on contraction, since it is supposed to be a more fundamental
operation and then rely on the Levi identity for constructing revision.
The Levi identity states that revision by α can be obtained through
contraction by ¬α followed by expansion. This works well for classical
logic, but several non-classical logics lack full classical negation. In
many description logics there is no way to express the negation of an
arbitrary concept inclusion. In Horn logic, also a fragment of classical
logic, with classical semantics, the negation of an arbitrary formula very
often falls outside the language. In other cases, such as paraconsistent
logics and approximate logics, the semantic of negation is not classical,
so it is not always clear whether the Levi identity makes sense at all.
There were attempts both in description logics [43, 42] and in Horn
logics [14] to provide a construction for revision that does not depend
on negation. For belief sets, none of them is general enough (see Section
7).
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For belief bases, six different constructions were studied in [43], each
with an associated set of postulates that fully characterized it. The
main idea is to use a version of the reversed Levi identity [26] where
instead of first contracting by the negation and then expanding, we
first expand the belief base and then contract by the contradiction. In
this way, we do not need an explicit negation of the input formula. The
difference between the six constructions is whether they are based on
kernel or partial meet contraction and the way in which they assure (or
not) that the input is an element of the resulting set. The results can
be applied for any compact and monotonic logic.

In the next sections, we will recall some work on adapting the AGM
theory to other logics. Although we have tried to divide the approaches
mentioned into four main groups, the borders between the groups are
not always clear. We will discuss this in Section 8.

4. Local and Approximate Reasoning

One of the main criticisms against the use of logic for formalizing the
reasoning of an agent is the computational complexity. Even proposi-
tional logic is intractable. However, the use of logic as a representation
language is much less controversial. In this section we will present the
use of approximations to deal with the complexity of reasoning and the
applications to belief revision.

The approaches we will see here are based on the idea of local
reasoning. The main intuition is that an agent with bounded resources
is not able to take everything he knows simultaneously into account.
Usually he does not even need to, in order to perform an inference.
Each logic provides a different method for selecting which part of the
knowledge base should be taken into account. In this section, we only
consider operations on belief bases.

4.1. Local compartments

In [29], a notion of relevant compartments around a given formula was
introduced. This notion tries to capture a kind of logical relevance:
the compartment of a belief base around a formula α contains the
formulas of the belief base that are involved in proving or refuting
α. Compartmentalization is achieved by taking the union of all the
minimal subsets of the base that imply α and those that imply ¬α and
removing the inconsistent ones (since they imply everything). For the
formalization of the logical compartments, we use the notation B ⊥⊥α
introduced in Definition 5:

AGM_NonClassical-final.tex; 27/10/2010; 14:29; p.10



On AGM for Non-Classical Logics 11

DEFINITION 8. [29] The function c is the compartmentalization func-
tion based on Cn if and only if, for all sets of formulas A,B:
c(A,B) =

⋃
α∈A c(α,B),

where c(α,B) =

{
∅ if α ∈ Cn(∅) or ¬α ∈ Cn(∅)⋃

(((B ⊥⊥α) ∪ (B ⊥⊥¬α)) \ (B ⊥⊥⊥)) otherwise.

Using compartments, a consequence operator Cnα is defined as
Cnα(X) = Cn(c(α,X)), where c(α,X) is the compartment ofX around
α. This consequence operator is used instead of the classical one to
define operations of contraction and revision of belief bases. For partial
meet operators, if one wants to contract a belief base B by α, the
remainder sets to be considered are those maximal subsets of B that
do not imply α according to Cnα, i.e., the maximal subsets X of B
such that α 6∈ Cn(c(α,X)). The representation theorems provided in
this context are very general, as mentioned in Section 3 and can be used
with any compact and monotonic consequence operator that satisfies α-
local non-contravention as is the case of the local consequence operator
defined in terms of compartments.

A problem with the compartments approach is that computing the
compartments is at least as hard as performing the belief change op-
erations. Hence, although the notion of compartment and local change
seem more adequate to model a realistic agent reasoner, in terms of
computational complexity, there is no gain. Following the idea of select-
ing a relevant part of the base in order to apply a change operator, one
can think of more efficient methods for achieving this selection. In [49],
an abstract relatedness relation R between formulas is used in order to
build a graph that “structures” the belief base. Any relation satisfying
reflexivity, symmetry and the property that for any ϕ, R(ϕ,¬ϕ) can
be used as a relatedness relation. An example of such relation is atom
sharing, i.e., we define R(α, β) if and only if the two formulas have a
propositional variable in common (V ar(α) ∩ V ar(β) 6= ∅).

DEFINITION 9. [49] Let B be a belief base and R be a relation between
formulas. An R-path between two formulas ϕ and ψ in a belief base
B is a sequence P = (ϕ0, ϕ1, ..., ϕn) of formulas such that:

− ϕ0 = ϕ and ϕn = ψ

− {ϕ1, ..., ϕn−1} ⊆ B

− R(ϕi, ϕi+1), 0 ≤ i < n.

The length of a path P = (ϕ0, ϕ1, ..., ϕn) is l(P ) = n
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The idea of having a relatedness relation with respect to a given
belief base as opposed to the whole language was first proposed by
Rodrigues in [45].

The local inference operator takes a natural number i as a parameter
and performs classical inference considering only those formulas from
the belief base that are at distance at most i from the input, where the
distance is given by the length of the shortest path between two for-
mulas. This generates an inference operator that can be used together
with the results in [29]:

Ciα(B) = Cn(X),
where X = {β ∈ B|β is at most at distance i from α}

The notion of approximation becomes apparent here: for each i, Ciα
is sound but possibly incomplete with respect to Cn and as we increase
i, we get closer to classical inference.

Makinson has recently presented an overview of different notions of
relevance and how they relate to AGM revision [34]. He classified the
notions according to their syntax and language dependencies. These
different notions can be used as the relatedness relation R in order to
form the relevant compartments.

4.2. Belief Sequences

A related approach was proposed in [9]. Chopra, Georgatos and Parikh
define a notion of relevance between two formulas which is less syntactic
than simple atom sharing: they consider atom sharing in the minimal
language needed to express the content of the two formulas. If V ar(α)
is the set of propositional letters of a formula α, V armin(α) is defined
as the minimal set of propositional letters that occur in a formula
equivalent to α:

V armin(α) = min{V ar(β)| ` β ↔ α},
where min is defined with respect to set inclusion. Note that the
minimum is unique provided that either > or ⊥ are in the language.

Thus, although (p ∨ ¬p) ∧ q and ¬q → p ∧ q → p share the atoms
p and q, they are not considered related since the first is equivalent to
q and the second to p. This relation could be used as the relatedness
relation R in the relevance graph approach.

The main difference between this work and the previous two is that
in this one, revision is not defined in the AGM sense. The epistemic
states are represented by sequences of formulas, instead of sets. Revision
by α is the simple concatenation of α at the end of the sequence. The
beliefs of the agent are given not by the classical closure of the set of
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beliefs, but buy a prioritized inference on the sequence, that takes into
account the linear ordering (more recent beliefs have higher priority)
and relevance. This can be seen as an example of the vertical mode of
revision as opposed to the AGM horizontal mode discussed in [46].

The inference is achieved by reordering the sequence according to
relevance to α (a formula is more relevant to α than another if it is
closer to α in terms of the path through relevance links) using the
original temporal ordering to break ties. Then a maximal consistent
subset of formulas is computed by following the sequence, starting from
the most relevant formula and adding to the subset those formulas
which are consistent with the ones previously added. The authors show
that the revision defined from the relevant sequence using prioritized
inference satisfies at least two AGM postulates - success and exten-
sionality. The others were not checked and should be reformulated for
the sequences setting before they can be verified.

4.3. Belief structures

Following the line of local reasoning, Chopra and Parikh [10] state that
in a belief change operation only the part of the agent’s beliefs which
is relevant to the input should be changed. A trivial revision operator,
which forgets all the previous beliefs and keeps only the consequences of
the input should be avoided, although it satisfies the AGM postulates
for revision. Starting from Parikh’s notion of splitting language [37],
they represent the epistemic state of an agent by a B-structure. A B-
structure is a tuple of the form {(L1, B1), ..., (Ln, Bn)} where in each
Bi only atoms from Li occur. To decide whether α is implicitly believed
in a B-structure, one looks at the minimal language needed to express
α, V armin(α) and sets Bα =

⋃
{Bi|Li ∩ V armin(α) 6= ∅}. If Bα is

consistent, and Bα ` α, then α is implicitly believed. So once more,
the inference operator is built by applying classical inference to a subset
of the belief base. In this case, the base is divided a priori into sub-bases
and the relevant sub-bases are selected for a given input. The authors
define two strategies for revision which only change the sub-bases rele-
vant to the input but provide no postulates or representation theorems.
The relationship between this approach and the logical compartments
approach is partially explored in [38].

4.4. Approximate logics

A very different approach was suggested in [11]. In this work, the ap-
proximations of classical logics introduced by Schaerf and Cadoli [47]
are applied to operations of contraction and revision of belief bases.
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14 Renata Wassermann

The idea behind the approximations is to generate logics which are
weaker than classical propositional logics and for which satisfiability
is easier to compute. This is achieved by disconsidering some of the
propositional letters involved in a base. The belief based is assumed to
be in clausal form. Schaerf and Cadoli propose two different approxi-
mations of classical entailment: |=1

S which is complete but not sound,
and |=3

S which is sound and incomplete. Both take a set S of atoms
as a parameter. In an S1 assignment, if x ∈ S, then x,¬x are given
opposite truth values; if x 6∈ S, then x,¬x both get the value 0. In an
S3 assignment, if x ∈ S, then x,¬x get opposite truth values, while if
x 6∈ S, x,¬x do not both get 0, but may both get 1. There are two
extreme cases: when S contains all the atoms involved in an entailment
check, the approximations coincide with classical entailment; and when
S = ∅, |=1

S is trivial, i.e., for any α,β, we have α |=1
S β and |=3

S corre-
sponds to Levesque’s logic for explicit beliefs [33]. Schaerf and Cadoli
show that testing whether B |=3

S α or B |=1
S α takes O(|B|.|α|.2|S|)

time. Thus, the idea of approximations is to start with a small S. If
B |=3

S α, then we already know that B |= α, since S3 approximation is
sound. If B 6|=1

S α, then B 6|= α, since S1 is complete. In case neither
B |=3

S α nor B 6|=1
S α for a given S, we have to add atoms to S.

These two entailments can be used instead of classical logic in order
to provide constructions and rationality postulates for belief base op-
erations. In [11], it is shown that the approximate entailments satisfy
the properties needed for the general results in [29] to hold. If we look
at contraction, an operation defined using S1 discards more formulas
than one using classical entailment while the same operation using S3
discards less. This means that we can use them as lower and upper
bounds to what the classical result should be. If we have more resources
available, we can increase the size of S and obtain a finer interval.

5. Paraconsistent and Relevant Logics

A logic is said to be paraconsistent if it is not the case that for any
formulas α and β it holds that α,¬α ` β. Relevant logics (or relevance
logics) do not have such a clear cut definition, but in general, these
logics reject implications where the antecedent and the consequent are
not related. One of the rejected implications is ` (p ∧ ¬p) → q, which
means that relevant logics are also paraconsistent. In this section, we
present some of the existing approaches for adapting AGM to paracon-
sistent and relevant logics. It is interesting to note that the inference
operators introduced in Section 4 are all paraconsistent and relevant.
The reason for them to be in a separate section is that they have
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a different motivation. The works presented in this section deal with
belief sets, although usually not closed under classical consequence.

The general motivation for adopting a paraconsistent logic varies:
while some authors claim that inconsistencies exist in the world, other
appeal to the fact that we do not always know how to solve an in-
consistency, so we should learn how to reason in their presence. In
classical logic, inconsistency leads to trivialization, i.e., in the presence
of inconsistency one can derive any formula of the language. This means
that all information is lost. In a paraconsistent logic, inconsistency does
not directly lead to trivialization.

5.1. The C hierarchy

Da Costa and Bueno [12] argue that most of the belief revision literature
following Levi and Gärdenfors simply take for granted that a belief
state must be consistent. This is due to the fact that in classical logic,
inconsistency leads to trivialization and so means lack of information.
Gärdenfors considers an inconsistent belief state as an “epistemic hell”
to be avoided by all means [21].

Da Costa and Bueno do not defend the existence of “true contra-
dictions” but motivate the use of paraconsistent logics by the need
to account for reasoning in the presence of inconsistency, and avoid
trivialization. Then a question that arises is whether there is need for
revision, or whether one should just keep all the information in the
belief state. The logics they use (the C hierarchy of da Costa [13]) all
allow for inconsistency, but can be trivialized by some contradictions.
These are the ones to be avoided in revision. The logics in the C
hierarchy avoid trivialization by changing the behavior of negation.

As an example of such logics, we look at Da Costa’s system C1, the
first logic in the hierarchy. Some formulas are said to be well behaved
and for them, negation behaves classically. For formulas which are not
well behaved, it may happen that both the formula and its negation are
assigned the value true. Thus, having α and ¬α in a belief set does not
necessarily lead to trivialization. But having α and ¬α together with
¬(α∧¬α), which is not a tautology in C1, does mean that one can infer
any formula of the language. As one moves higher in the hierarchy, the
logics become weaker and thus, harder to trivialize.

Da Costa and Bueno suggest a slight change in he AGM postulates
for contraction and revision, where the consequence operation is one of
the Ci in the hierarchy and any mention of inconsistency is substituted
by trivialization. What is interesting in their proposal is that when
one comes across a trivial belief set, there are at least two alternatives:
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16 Renata Wassermann

change the underlying logic for one higher in the hierarchy or revise.
The authors do not provide any construction for the operations.

5.2. Four-valued logics

In their paper [40] Slaney and Restall defend the use of first degree en-
tailment [4] instead of classical logic for closing belief sets. The version
of logic they use is based on the idea of allowing for subsets of {T, F}
as truth values, so that formulas can be true, false, both or neither true
nor false. The language is formed by atoms and the connectives ∧,∨,¬.
Valuations on the atoms are extended to formulas in the following way:

T ∈ v(α ∧ β) iff T ∈ v(α) and T ∈ v(β)

F ∈ v(α ∧ β) iff F ∈ v(α) or F ∈ v(β)

T ∈ v(α ∨ β) iff T ∈ v(α) or T ∈ v(β)

F ∈ v(α ∨ β) iff F ∈ v(α) and F ∈ v(β)

T ∈ v(¬α) iff F ∈ v(α)

F ∈ v(¬α) iff T ∈ v(α)

Finally, α ∈ Cnfde(X) if and only if any valuation making each
element of X at least true makes α at least true.

Restall and Slaney first look at the AGM postulates, and abandon
recovery for contraction. The axioms for revision remain the same.
They are obtained from the ones for contraction via the Levi identity,
as in the classical case. The Harper identity, however, does not always
produce a contraction. The authors examine three classical construc-
tions for contraction operators and their relation to the postulates in
the setting of first-degree entailment. First they show that the classical
representation result for a construction based on entrenchment [21]
goes through even without recovery. For partial meet constructions
they need an adaptation, dropping the maximality of remainders, then,
according to them, the representation theorem holds. The consequence
of abandoning the maximality of remainders is that any set contained
in a maximal remainder could be the result of contraction. There is no
minimal change involved, thus recovery is not replaced by any other
postulate. But then, as was done in another context by [6] (see section
6) if we allow for non-minimal remainders, there is no need to take
their meet, one can simply set one of the remainders as the result of
contraction. The last construction they examine is based on systems of
spheres [23]. They propose a modification of the definition of spheres
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so that they are not based on possible worlds, which correspond to
classical valuations, but on prime theories, which correspond to the
four-valued setting described above. For this construction there is no
representation result.

The authors end the paper by suggesting a way in which inconsisten-
cies can be solved gradually and locally. This can be achieved by fixing
a vocabulary and requiring that the beliefs built from this vocabulary
are the most deeply entrenched, or hardest to be given up. The belief
set restricted to this vocabulary should be consistent.

Independently and with a different motivation, Lakemeyer and Lang
also proposed the use of four-valued logics for AGM revision. In [32],
they present postulates very similar to the ones presented by Restall
and Slaney, with the main concern being computational tractability
instead of verifying representation theorems.

5.3. Rejection sets

Mares [35] proposes to exchange the notion of consistency for what he
calls coherence. He defines the belief state of an agent to consist of two
sets, one for accepted beliefs and one for rejected beliefs. The coherence
condition states that the two must not overlap. He uses the relevant
logic R [5] as a paraconsistent logic, but all the results are valid for
other relevant logics between B and RM3. Acceptance sets are closed
under logical consequences. Rejection sets are closed under downward
consequences, i.e., a rejection set contains every formula that entails any
of its formulas. Mares proceeds to define constructions for contraction,
expansion, package contraction and revision. While the constructions
for the acceptance sets follow the AGM construction of partial meet,
for rejection sets things are redefined in a dual way, using downward
consequences.

Given a rejection set ∆, the rejection remainders of ∆ and α, denoted
by ∆>α are the maximal subsets of ∆ such that none of their elements
are implied by α. Rejection contraction is defined by selecting some of
the rejection remainder and taking their intersection. Then revision is
defined in two different ways: revising by a new acceptance and revising
by a new rejection. Since acceptance and rejection sets are not allowed
to overlap in a coherent state, accepting a new belief usually involves
contracting the rejection set and vice-versa. The revisions satisfy four
of the six basic AGM postulates for revision and fail preservation and
consistency, as expected, since the underlying logic is paraconsistent.
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5.4. Other proposals

Priest [39] suggests a model for belief change that is supposed to be
more general than AGM. He proposes to take for each set of beliefs
and a set of criteria, a measure of how good the set is according to
each criterion. Then the different measures must be amalgamated ac-
cording to weights. A partial ordering is given by this amalgamated
measures. The model fails every single AGM postulate for revision and
Priest argues that it should be so. Actually, he is concerned with an
operation quite different from AGM revision, since he wants to account
for “conceptual breakthroughs”. This is a very general paper and does
not adopt any particular logic.

Tanaka [48] proposes to adopt paraconsistent logics and allow for
inconsistent belief sets. He proposes alternative Grove like sphere sys-
tems, that as in [40] uses prime theories instead of possible worlds. In
the paper he investigates what happens when classical logics are sub-
stituted by four different systems: the relevant logic B [5], Da Costa’s
system Cω [13], a variation of it called Cn and a non-adjunctive logic
[30]. He looks at what happens concerning his version of Grove sys-
tems and the AGM postulates for contraction and revision in each
case. Considering the eight AGM axioms for contraction, they all hold
for Cn, while for the logics B, Cω and non-adjunctive, all contraction
postulates hold except for maybe recovery, which is left uncertain,
i.e., the paper neither proves that it holds nor that it does not. For
the revision postulates, consistency does not hold in any of the four
systems and for non-adjunctive logics, K*7 does not hold and K*8 is
not shown to hold or not.

6. Horn Logics

A fragment of classical logics that deserves attention in the Artificial
Intelligence community is Horn logics, due to its good computational
properties. A Horn clause is a disjunction of literals where at most
one is positive. A Horn formula is a conjunction of Horn clauses. Horn
logic inherits the semantics of classical propositional logic and all the
connectives are interpreted in the classical way. The Horn consequence
operator Cnh produces those consequences of a set that are expressible
in Horn logics, i.e., Cnh(X) = {α ∈ Cn(X)|α is a Horn formula}.

In [14], Delgrande suggests two different ways in which a remain-
der set can be defined, one based on entailment and the other on
inconsistencies. Entailment based remainder sets, or e-remainders, are
defined in the usual way, as maximal subsets of a belief set (but here
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a belief set is closed under Horn consequence, instead of classical) not
implying a given formula. Inconsistency based remainder sets, or i-
remainders are defined as maximal subsets of a belief set which are
consistent with a given formula. In principle, partial meet construc-
tions based on i-remainders should be used in order to define revision
while e-remainder constructions are suitable for partial meet contrac-
tion. Delgrande gives a set of rationality postulates that the operations
satisfy, but the postulates are not strong enough to characterize them.
Basically, the operations satisfy five of the six basic AGM postulates
for contraction, the exception being recovery. However, the operations
have some undesirable properties. One of them is that for any p not
mentioned in K, we have (K−φ)+p ` φ. This holds for any operation
built on e- or i-remainder sets.

In [6], Booth, Meyer, and Varzinczak show that the construction
based on e-remainders lacks a property that partial meet constructions
for classical logics have, which they called convexity. In classical logic,
for a given belief set K and a formula α, any set that contains the
full meet contraction of K by α and is contained in one of the pos-
sible outcomes of maxichoice contraction (i.e., any set K ′ such that⋂

(K⊥α) ⊆ K ′ ⊆ X ∈ K⊥α) can be obtained by a partial meet
construction. In Horn logics, as the following example shows, convexity
does not hold:

EXAMPLE 1. [6] Let K = Cn{¬p ∨ q,¬q ∨ r}. It is easy to verify
that, for the e-contraction of ¬p ∨ r, maxichoice yields either K1

mc =
Cnh{¬p ∨ q} or K2

mc = Cnh{¬q ∨ r,¬p ∨ ¬r ∨ q}, that full meet yields
Kfm = Cnh{¬p ∨ ¬r ∨ q}, and that these are the only three possibilities
for partial meet e-contractions. Now consider the Horn belief set K ′ =
Cnh{¬p ∨ ¬q ∨ r,¬p ∨ ¬r ∨ q}. It is clear that Kfm ⊆ K ′ ⊆ K2

mc, but
there is no partial meet e-contraction yielding K ′.

Booth et al. then propose the use of infra-remainder sets, defining
those as any set between full meet and maxichoice contractions. The
outcome of contraction is defined as one infra-remainder, selected by
some function. In [7], a representation result is given and it is shown
that this operation is equivalent to performing a kernel contraction and
closing the result under Horn consequence. Although this operation sat-
isfies convexity, it also suffers from the same drawback as Delgrande’s
operations: adding any atom not mentioned in K will bring back the
contracted formula.

It must be noted that these problems only arise when considering be-
lief sets. On Horn belief bases, both e-contraction and infra-remainder
contraction work perfectly well, as defined in [15] and [7]. For belief
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sets, another construction is proposed in [15], based on weakening the
notion of e-remainder set.

DEFINITION 10. [15] Let H be a Horn belief set, and let φ be a Horn
formula. We define H ↓↓eφ as: H ′ ∈ H ↓↓eφ iff H ′ = H ∩m, where m
is some maximal Horn theory that does not contain φ.

We call H ′ ∈ H ↓↓eφ a weak remainder set of H and φ.

EXAMPLE 2. [15] Consider a language containing only three atoms,
a, b,and c, let H = Cnh(a ∧ b), φ = a ∧ b. For m = Cnh(a ∧ ¬b ∧ c),
we have that H ∩m = Cnh(a), since H and m are both closed under
Horn consequence. Note that using classical logic, K = Cn(a ∧ b) and
m = Cn(a ∧ ¬b ∧ c), gives Cn(K ∩m) = Cn(a ∧ (b ∨ c)).

In classical logics, each remainder set in K⊥α corresponds, seman-
tically to the models of K together with one single counter-model of
α. This is not true for e-remainders. The idea of weak-remainders is
to restore this correspondence. But one cannot simply add a counter-
model, or the resulting theory may not be expressible in Horn logic. If
one identifies a model with the set of atoms true in it, the models of
a Horn theory are closed under intersection. A weak remainder set is
equivalent to adding a counter-model of α to the models of H and clos-
ing them under intersection. Representation results are given both for
maxichoice and for partial meet constructions using weak remainders
instead of e-remainders. It is interesting to note that, as shown in [15],
weak remainders and infra-remainders are incomparable, neither being
more general than the other.

In [3], the authors propose to use a rule base language as the under-
lying logic for revision and contraction. The language LW contains two
kinds of formulas: literals and rules of the form a1 ∧ a2 ∧ ... ∧ an → b
where the ai and b are literals. This is slightly more general than Horn,
as we may have ¬p → q as a formula. However, there is only one
derivation rule, a form of generalized modus ponens:

From a1, a2, ..., an and a1 ∧ a2 ∧ ... ∧ an → b derive b.

The consequence operator CW based on this derivation is weaker
than taking the classical consequences which are in the language, i.e.,
in general CW (X) 6= Cn(X) ∩ LW . This can be seen by taking p → q
and ¬p → q, which in classical logic imply q but not according to the
operator CW . Alechina et al. define a contraction algorithm based on
Truth Maintenance Systems and show that it satisfies the AGM basic
postulates for contraction without recovery. As revision cannot be de-
fined using the Levi identity, the authors use a semi-revision (expansion
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followed by contraction of the contradiction). This operation satisfies
the basic AGM postulates for revision without success.

7. Description Logics

Description logics (DL) belong to a family of logics used to represent
terminological knowledge. A knowledge base in description logics is a
combination of two distinct sets: a TBox for terminological knowledge
(knowledge about concepts) and an ABox for assertional knowledge
(knowledge about individuals). Starting from a set of atomic concepts
and roles, new concepts and roles can be formed using the constructors
in the language. The set of constructors and axiom types allowed in a
particular description logic is what distinguishes it from the others.

The logic ALC , for example, given concepts C and D and role R, al-
lows for union (CtD), intersection (CuD), complement (¬C) and value
restrictions (∀R.C and ∃R.C). Besides the constructors, ALC allows for
concept subsumption (C v D), concept equivalence (C ≡ D), concept
assertions (C(x)) and role assertions (R(x, y)) as axioms. Description
logics are equivalent to tractable fragments of first-order logic, where
a concept can be seen as a monadic predicate and a role as a binary
predicate.

There have been several recent attempts to apply belief revision to
description logics. One of the first was [17], where belief set and belief
base approaches were examined. In his thesis, Flouris shows that AGM
is not directly applicable to several description logics, only to those that
satisfy the property of decomposability (see Section 3). Logics which are
not decomposable do not admit a contraction operator that satisfies the
six basic AGM postulates. Flouris shows that several important DLs
do not satisfy this property, not even ALC with a non-empty ABox.
An example of a logic that does satisfy the property is ALC with an
empty ABox, provided there are infinite roles.

In order to check whether a given description logic admits an AGM
contraction operator, the following result can be used:

THEOREM 6. [19] Any description logic which admits:

− At least two role names and one concept name

− At least one of the operators ∀, ∃, (≥n), (≤n) for some n

− Any (or none) of the operators ¬, t, u, −, ⊥, >, {...}

− Only the connective v applicable to both concept and roles
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does not admit an AGM contraction operator.

As the theorem above shows, most expressive description logics are
not AGM-compliant.

Flouris then proposes to substitute recovery by an alternative pos-
tulate:

If (K − α) + α ⊂ Cn(Y ∪ {α}) for some Y ⊆ K, then Cn(∅) ⊂
Cn({α}) ⊆ Cn(Y ).

The intuition behind this postulate is that instead of requiring that
(K − α) + α is equal to K, the resulting set is only required to be
maximal (thus preserving as much information as possible), in the sense
that, if there was some subset Y of K that when expanded by α would
give a “larger” set than (K−α), the closure of this Y would necessarily
contain α and hence not be suitable as a result of contraction by α.

Flouris, Plexousakis and Antoniou show that for logics that admit
an AGM contraction operator, the set of postulates obtained by sub-
stituting recovery by their new postulate is equivalent to the original
set.

In [41], it was noted that instead of the above postulate, relevance,
which appears in Theorem 2, could be used to replace recovery. To-
gether with the other five postulates, relevance fully characterizes
partial meet contraction. This result can be used with most descrip-
tion logics such as ALC and more expressive description logics such
as SHIF(D) and SHOIN (D), which are the underlying logics of
OWL-Lite and OWL-DL.

For revision things get more complex, since we cannot simply rely
on the Levi identity and construct revision from contraction. The Levi
identity requires contracting by the negation of the input formula, but
most description logics do not admit the negation of an arbitrary for-
mula. This means that revision must be constructed directly, without
relying on contraction.

One such result, following the line of [29] in making precise state-
ments about the conditions on the logic was obtained for belief sets:

DEFINITION 11 (Maximally consistent set w.r.t α). [14] If α is con-
sistent then X ∈ K ↓ α iff:

− X ⊆ K

− X ∪ {α} is consistent

− For all X ′, if X ⊂ X ′ ⊆ K then X ′ ∪ {α} is inconsistent
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If α is inconsistent then K ↓ α = {K}.

Consider the following properties of inference operators:

− Whenever K is inconsistent, then for all formulas α, α ∈ Cn(K)
(inconsistent explosion)

− For all sets of formulas X,Y and W , Cn(X∪(Cn(Y )∩Cn(W ))) =
Cn(X ∪ Y ) ∩ Cn(X ∪W ) (distributivity)

THEOREM 7 (Revision without negation). [42] For any monotonic
and compact logic that satisfies inconsistent explosion and distributiv-
ity, a revision operator ∗ is a revision without negation

⋂
γ(K ↓ α)+α

for some selection function γ if and only if it satisfies closure, success,
inclusion, consistency, relevance and uniformity.

The two new properties mentioned in the representation theorem
are far less general than monotonicity and compactness. Unfortunately,
many description logics do not satisfy distributivity, Horn logic does not
either. And clearly, paraconsistent and relevant logics do not satisfy in-
consistent explosion. This means that this result is not general enough.
In [44] it is shown which description logics satisfy the two properties.
A more general characterization of partial meet revision of belief sets
in description logics is still needed.

For revision of belief bases, the results in [43] can be applied for most
description logics. In [24], an algorithm was proposed and tested for one
of the six operations listed in [43], namely, using kernel contraction and
not ensuring the success postulate. The tests were performed using the
logic SHOIN .

Recently, a proposal of revision for the family of logics DL-Lite
appeared in [8]. The DL-Lite family underlies one of the profiles for
OWL2, and is receiving much attention for being tractable. The paper
analyzes several existing operation for the evolution of databases, most
of which would be classified as update operators in the sense of [31].
They propose a formula-based operation very close to maxichoice revi-
sion, and show that it satisfies three desiderata related to consistency,
success and minimal change.

8. Discussion and conclusions

In the previous sections we have seen several different logics for which
there are applications or adaptations of the AGM theory. Very often
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these different approaches are developed for one particular logical sys-
tem, but can be useful for other logics as well. In this section, we
discuss the connections between the different logical systems and what
is missing on each side.

As we have already mentioned, all of the logics in Section 4 are
paraconsistent. In [16], Schaerf and Cadoli’s system S3 has been ex-
tended to full propositional logic and compared to da Costa’s C1. The
difference between the two systems is just the set of formulas that
behave classically. We can use this fact together with the discussions of
the use of C1 for belief revision in [12] and [48] to improve the results of
using S3 obtained in [11]. Recall that the use of S3 in [11] is restricted
to clausal form and to belief bases, while the two approaches for C1

deal with belief sets. As suggested in [12], the C hierarchy can be seen
as an approximation of classical logic, where for i < j, Ci is closer to
classical logic than Cj .

Another logic that bears resemblance to S3 is first-degree entailment.
By establishing the correct relation between the two, we can expect that
the approaches in [11] and [40] can benefit from each other. The clausal
fragment is an interesting one for computational purposes, so clausal
belief bases using other paraconsistent logics than S1 and S3 should be
given attention.

Restall and Slaney [40] have proposed the use of non-maximal re-
mainder sets in order to provide constructions for contraction of belief
sets using first-degree entailment. This was also proposed by Booth et
al. [6] in the context of Horn logics and later shown to be equivalent to
kernel constructions. However, the infra-remainder sets proposed in [6]
always contain the result of full meet contraction, while there is no such
constraint in the work of Restall and Slaney. It would be interesting to
see whether the results can be transferred from one logic to the other,
and to compare the non-maximal remainders to the weak remainders
of [15].

What most of the non-classical logics in this paper have in common
is the fact that negation does not behave classically. For Horn and
description logics, given a formula α, there does not necessarily exist
a formula in the language which expresses the negation of ¬α. This
makes the definition of revision an issue, since one cannot rely on the
Levi identity. The results for revising belief bases in description logics
can probably be used for Horn. However, for belief sets, there is not
yet a good proposal.
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30. Jaśkowski, S.: 1969, ‘Propositional Calculus for Contradictory Deductive

Systems’. Studia Logica 24, 143–157.
31. Katsuno, H. and A. O. Mendelzon: 1992, ‘On the difference between updating a

knowledge base and revising it’. In: P. Gärdenfors (ed.): Belief Revision, Vol. 29
of Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, pp. 183–203.

32. Lakemeyer, G. and W. Lang: 1996, ‘Belief revision in a nonclassical logic’. In:
G. Görz and S. Hölldobler (eds.): KI-96: Advances in Artificial Intelligence,
Vol. 1137 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
pp. 199–211.

33. Levesque, H.: 1984, ‘A logic of implicit and explicit belief’. In: Proceedings of
AAAI-84.

34. Makinson, D.: 2009, ‘Propositional relevance through letter-sharing’. Journal
of Applied Logic 7(4), 377 – 387. Special Issue: Formal Models of Belief Change
in Rational Agents.

35. Mares, E. D.: 2002, ‘A Paraconsistent Theory of Belief Revision’. Erkenntnis
56(2), 229–246.

AGM_NonClassical-final.tex; 27/10/2010; 14:29; p.26



On AGM for Non-Classical Logics 27

36. Nebel, B.: 1990, Reasoning and Revision in Hybrid Representation Systems,
Vol. 422 of Lecture Notes in Artificial Intelligence. Springer-Verlag.

37. Parikh, R.: 1996, ‘Beliefs, belief revision and splitting languages’. In:
Proceedings of Itallc-96.

38. Parsia, B.: 2009, ‘Topic-Sensitive Belief Revision’. Ph.D. thesis, University of
Maryland.

39. Priest, G.: 2001, ‘Paraconsistent belief revision’. Theoria 67(3), 214 – 228.
40. Restall, G. and J. Slaney: 1995, ‘Realistic belief revision’. In: M. D. Glas

and Z. Pawlak (eds.): Proceedings of the Second World Conference on the
Fundamentals of Artificial Intelligence. pp. 367–378.

41. Ribeiro, M. M. and R. Wassermann: 2006, ‘First Steps Towards Revising On-
tologies’. In: Proceedings of the Second Workshop on Ontologies and their
Applications (WONTO).

42. Ribeiro, M. M. and R. Wassermann: 2009a, ‘AGM Revision in Description
Logics’. In: Proceedings the IJCAI Workshop on Automated Reasoning about
Context and Ontology Evolution (ARCOE).

43. Ribeiro, M. M. and R. Wassermann: 2009b, ‘Base Revision for Ontology
Debugging’. Journal of Logic and Computation 19(5), 721–743.

44. Ribeiro, M. M. and R. Wassermann: 2010, ‘More About AGM Revision in De-
scription Logics’. In: Proceedings the ECAI Workshop on Automated Reasoning
about Context and Ontology Evolution (ARCOE).

45. Rodrigues, O. T.: 1997, ‘A Methodology for Iterated Information Change’.
Ph.D. thesis, Imperial College, University of London.

46. Rott, H.: 2001, Change, Choice and Inference: A Study of Belief Revision and
Nonmonotonic Reasoning. Oxford University Press.

47. Schaerf, M. and M. Cadoli: 1995, ‘Tractable Reasoning via Approximation’.
Artificial Intelligence 74(2), 249–310.

48. Tanaka, K.: 2005, ‘The AGM theory and inconsistent belief change’. Logique
et analyse 48(189-192), 113–150.

49. Wassermann, R.: 2001, ‘On Structured Belief Bases’. In: H. Rott and M.-A.
Williams (eds.): Frontiers in Belief Revision. Kluwer.

50. Wassermann, R.: 2003, ‘Generalized Change and the Meaning of Rationality
Postulates’. Studia Logica 73(2), 299–319.

AGM_NonClassical-final.tex; 27/10/2010; 14:29; p.27



AGM_NonClassical-final.tex; 27/10/2010; 14:29; p.28


