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Abstract

Standard approachs to belief change assume that the under-
lying logic contains classical propositional logic. Recently
there has been interest in investigating approaches to be-
lief change, specifically contraction, in which the underly-
ing logic is not as expressive as full propositional logic. In
this paper we consider approaches to belief contraction in
Horn knowledge bases. We develop two broad approaches
for Horn contraction, corresponding to the two major ap-
proaches in belief change, based on Horn belief sets and Horn
belief bases. We argue that previous approaches, which have
taken Horn remainder sets as a starting point, have undesir-
able properties, and moreover that not all desirable Horn con-
traction functions are captured by these approaches. This is
shown in part by examining model-theoretic considerations
involving Horn contraction. For Horn belief set contraction,
we develop an account based in terms of weak remainder sets.
Maxichoice and partial meet Horn contraction is specified,
along with a consideration of package contraction. Following
this we consider Horn belief base contraction, in which the
underlying knowledge base is not necessarily closed under
the Horn consequence relation. Again, approaches to maxi-
choice and partial meet belief set contraction are developed.
In all cases, constructions of the specific operators and sets
of postulates are provided, and representation results are ob-
tained. As well, we show that problems arising with earlier
work are resolved by these approaches.

Introduction

Belief change is the area of knowledge representation con-
cerned with how a rational agent may alter its beliefs in
the presence of new information. The best-known approach
in this area is the so-called AGM paradigm (Alchourrón,
Gärdenfors, and Makinson 1985; Gärdenfors 1988), named
after the original developers. This work focussed on be-
lief contraction, in which an agent may reduce its stock
of beliefs, and belief revision, in which new information is
consistently incorporated into its belief corpus. This work
addresses belief change at the knowledge level, in which
an agent’s beliefs are characterised by belief sets or deduc-
tively closed sets of sentences, and in which the underlying
logic includes classical propositional logic. A second ma-
jor branch of belief change research concerns belief bases
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(Hansson 1999), wherein an agent’s beliefs may not be de-
ductively closed. However, again it is assumed that the un-
derlying logic includes propositional logic.

In this paper we address belief change in the expressively
weaker language of Horn clauses, where a Horn clause can
be written as a rule in the form a1 ∧ a2 ∧ · · · ∧ an → a for
n ≥ 0, and where a, ai (1 ≤ i ≤ n) are atoms. (Thus, ex-
pressed in conjunctive normal form, a Horn clause will have
at most one positive literal.) Specifically, in our approaches
an agent’s beliefs are represented by a Horn clause knowl-
edge base, and the input is a conjunction of Horn clauses.
This topic is interesting for several reasons. It sheds light
on the theoretical underpinnings of belief change, in that it
weakens the assumption that the underlying logic contains
propositional logic. As well, Horn clauses have found exten-
sive use in artificial intelligence and database theory, in areas
such as logic programming, truth maintenance systems, and
deductive databases. Further, as (Booth, Meyer, and Varz-
inczak 2009) points out, results here are also relevant to be-
lief change in description logics, a topic that has also elicited
recent interest. Last, belief change in Horn theories proves
to be interesting in its own right.

Horn clause contraction has been addressed previously in
(Delgrande 2008; Booth, Meyer, and Varzinczak 2009). As
we discuss in the next section, this work centres on the no-
tion of a remainder set, or maximal subset of a knowledge
base that fails to imply a given formula. We show that re-
mainder sets in the Horn case are too restricted and cannot
give all feasible contraction operators. As well they yield
contraction operators with undesirable properties.

We develop two broad approaches to Horn contraction,
depending on whether the (Horn) knowledge base is re-
garded as a belief set, or deductively-closed set of formulas,
or a belief base, i.e. an arbitrary set of Horn formulas. In
the case of Horn belief sets we propose the notion of a weak
remainder set that serves as a basis for generating all maxi-
choice contraction operators. Contraction is also considered
in terms of the underlying model theory, a viewpoint that
proves highly enlightening for studying Horn belief change.
Given a specification for maxichoice contraction based on
weak remainders, we go on to develop a specification for
partial meet Horn contractions, and briefly consider pack-
age contraction.

For the second approach to Horn contraction, we address
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the case where a knowledge base is composed of an arbi-
trary set of Horn formulas. An advantage of this approach is
that not only is contraction specified in a more realistic set-
ting (i.e. closer to an implementation), it also allows for the
nontrivial treatment of inconsistent knowledge bases. Be-
lief base Horn contraction is considered both with respect to
maxichoice and partial meet contraction operators. In all the
contraction operators developed, we provide postulate sets
along with constructions, and show representation results.
Consequently we present a comprehensive exploration of the
landscape of Horn contraction.

The next section introduces belief change and Horn clause
reasoning. This is followed by material that is pertinent to
Horn clause belief contraction. The following two sections
give the approaches, based on belief sets and belief bases,
respectively. The paper concludes with a discussion and
a brief consideration of the prospects for belief revision in
Horn clause theories. Proofs are given in an appendix.

Background: Belief Change

As mentioned previously, the AGM approach (Alchourrón,
Gärdenfors, and Makinson 1985; Gärdenfors 1988) is the
original and best-known approach to belief change. The
goal is to describe belief change at the knowledge level, on
an abstract level and independent of how beliefs are repre-
sented and manipulated. Belief states are modelled by sets
of sentences, called belief sets, closed under the logical con-
sequence operator of a logic that includes classical proposi-
tional logic in a language L. Thus a belief set K satisfies the
constraint:

If K logically entails φ then φ ∈ K.

The central operators addressed are contraction in which an
agent reduces its set of beliefs, and revision in which an
agent consistently incorporates some new belief. In revision,
since the new belief may be inconsistent with an agent’s be-
liefs, some beliefs will need to be dropped in order to main-
tain a consistent set of beliefs. A third operator, belief ex-
pansion was also introduced: For belief set K and formula
φ, the expansion of K by φ K + φ is the deductive closure
of K ∪ {φ}.

These operators are characterised by two means. On the
one hand, a set of rationality postulates for a belief change
functions may be provided; these postulates stipulate con-
straints that should govern any rational belief change func-
tion. On the other hand, specific constructions for a belief
change function are given. Representation results are then
given (or at least are highly desirable) showing that a set of
rationality postulates exactly captures the operator given by
a particular construction.

We review these notions for belief contraction. Infor-
mally, the contraction of a belief set by a formula is a belief
set in which that formula is not believed. Formally, a con-
traction function −̇ is a function from 2L×L to 2L satisfying
the following postulates.

(K−̇1) K−̇φ is a belief set.

(K−̇2) K−̇φ ⊆ K.

(K−̇3) If φ 	∈ K, then K−̇φ = K.

(K−̇4) If not 
 φ, then φ 	∈ K−̇φ.

(K−̇5) If φ ∈ K, then K ⊆ (K−̇φ) + φ.

(K−̇6) If 
 φ ≡ ψ, then K−̇φ = K−̇ψ.

Thus, contraction yields a belief set (K−̇1) in which the
sentence for contraction φ is not believed (unless φ is a tau-
tology) (K−̇4). No new sentences are believed (K−̇2), and
if the formula is not originally believed then contraction has
no effect (K−̇3). The fifth postulate, the so-called recov-
ery postulate, states that nothing is lost if one contracts and
expands by the same sentence. This postulate is controver-
sial; see for example (Hansson 1999). The sixth postulate
asserts that contraction is independent of how a sentence is
expressed.

Revision represents the situation in which new informa-
tion may be inconsistent with the reasoner’s beliefs K , and
needs to be incorporated in a consistent manner where pos-
sible. A revision function ∗ is a function from 2L × L to
2L satisfying a set of postulates analogous to those for con-
traction; given space limitations we omit the postulate set.
Contraction is usually taken as being the more fundamental
operator for belief change. Revision can be defined in terms
of contraction by means of the Levi Identity:

K ∗ φ = (K−̇¬φ) + φ. (1)

Thus, to revise by φ, make K consistent with φ then expand
by φ. Contraction can be similarly defined in terms of revi-
sion by the Harper identity; we omit the details.

Various constructions have been proposed to characterise
belief change. The original construction was in terms of re-
mainder sets, where a remainder set of K with respect to φ
is a maximal subset of K that fails to imply φ. Formally:

Definition 1 Let K ⊆ L and let φ ∈ L.
K ↓φ is the set of sets of formulas s.t. K ′ ∈ K ↓φ iff

1. K ′ ⊆ K

2. K ′ 	
 φ

3. For any K ′′ s.t. K ′ ⊂ K ′′ ⊆ K , it holds that K ′′ 
 φ.

X ∈ K ↓φ is a remainder set of K wrt φ.

Two classes of contraction functions are relevant for our
concerns. In maxichoice contraction, contraction is defined
to correspond to a single selected remainder set. In partial
meet contraction, contraction corresponds to the intersection
of some subset of the remainder sets.

Belief Change and Horn Clause Theories

Earlier work on belief change and Horn theories focussed
on specific aspects of the problem, rather than a general
characterisation of Horn clause belief change. For example,
the complexity of specific approaches to revising knowledge
bases is addressed in (Eiter and Gottlob 1992), including the
case where the knowledge base and formula for revision are
conjunctions of Horn clauses. Not unexpectedly, results are
generally better in the Horn case. (Liberatore 2000) con-
siders the problem of compact representation for revision in
the Horn case. Basically, given a knowledge base K and for-
mula φ, both Horn, the main problem addressed is whether
the knowledge base, revised according to a given operator,
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can be expressed by a propositional formula whose size is
polynomial with respect to the sizes of K and φ.

(Langlois et al. 2008) approaches the study of revising
Horn formulas by characterising the existence of a com-
plement of a Horn consequence; such a complement cor-
responds to the result of a contraction operator. This work
may be seen as a specific instance of a general framework
developed in (Flouris, Plexousakis, and Antoniou 2004). In
(Flouris, Plexousakis, and Antoniou 2004), belief change is
studied under a broad notion of logic. In particular, they give
a criterion for the existence of a contraction operator satisfy-
ing the basic AGM postulates in terms of decomposability.

(Delgrande 2008) addresses maxichoice belief contrac-
tion in Horn clause theories, where contraction is defined in
terms of remainder sets, using Definition 1, but expressed in
terms of derivations among Horn clauses. (Booth, Meyer,
and Varzinczak 2009) further develops this area, by con-
sidering other versions of contraction, all based on remain-
der sets: partial meet contraction, a generalisation of partial
meet, and package contraction. These approaches are dis-
cussed in more detail once we have introduced appropriate
notation and definitions.

Horn Clause Theories

Preliminary Considerations

We will deal with languages based on finite sets of atoms,
or propositional letters P = {a, b, c, . . .}, where P includes
the distinguished atom ⊥. L is the language of propositional
logic over P and with the usual connectives ¬, ∧, ∨, and
→.1 LHC is the restriction of L to Horn formulas, or con-
junctions of Horn clauses. I.e. LHC is given by:

1. Every p ∈ P is a Horn clause.

2. a1∧a2∧· · ·∧an → a, where n ≥ 0, and a, ai (1 ≤ i ≤ n)
are atoms, is a Horn clause.

3. Every Horn clause is a Horn formula.

4. If φ and ψ are Horn formulas then so is φ ∧ ψ.

For 1 above and (equivalently) the case n = 0 in 2, the Horn
formula is a fact. For a rule r as in 2 above, head(r) is
a, and body(r) is the set {a1, a2, . . . , an}. Allowing con-
junctions of rules, as given in 4, adds nothing of interest to
the expressibility of the language with respect to reasoning.
However, it adds to the expressibility of contraction, as we
are able to contract by more than a single Horn clause.

Semantics: An interpretation of L is a function from P to
{true, false} such that ⊥ is assigned false. Sentences of
L are true or false in an interpretation according to the stan-
dard rules in propositional logic. An interpretation M is a
model of a sentence φ (or set of sentences), written M |= φ,
just if M makes φ true. Mod(φ) is the set of models of
formula (or set of formulas) φ; thus Mod(�) is the set of
interpretations of L. An interpretation is usually identified
with the atoms true in that interpretation. Thus, for language

1To avoid clutter, and because no ambiguity results, we don’t
parameterize L by P.

L = {p, q, r, s} the interpretation given by {p, q} is that
in which p and q are true and r and s are false. For con-
venience, we also will express interpretations by juxtaposi-
tion of atoms. Thus the interpretations {{p, q}, {p}, {}}will
usually be written as {pq, p, ∅}.

All of these notions are inherited by the corresponding
Horn formula language LHC . A key point is that Horn theo-
ries are characterised semantically by the fact that the mod-
els of a Horn theory are closed under intersections of posi-
tive atoms in an interpretation. That is, Horn theories satisfy
the constraint:

If M1, M2 ∈ Mod(H) then M1 ∩ M2 ∈ Mod(H).

This leads to the notion of the characteristic models
(Khardon 1995) of a Horn theory: M is a characteristic
model of theory H just if for every M1, M2 ∈ Mod(H),
M1 ∩ M2 = M implies that M = M1 or M = M2. E.g.
H = Cn({p∧ q → ⊥, r}), has models {pr, qr, r} and char-
acteristic models {pr, qr}. Since pr ∩ qr = r, r isn’t a
characteristic model of H .

Proof Theory: We assume a suitable inference relation 

for classical propositional logic. The following axioms and
rules give an inference relation for Horn formulas, where
for simplicity, a and b, possibly subscripted, are taken as
ranging over atoms.

Axioms: ⊥ → a a → a

Rules: 1. From a1∧· · ·∧an → a and b1∧· · ·∧ bn → ai

infer a1∧· · ·∧ai−1∧b1∧· · ·∧bn∧ai+1∧· · ·∧an → a

2. From a1∧· · ·∧an → a infer a1∧· · ·∧an∧b → a

3. For rules r1, r2, if body(r1) = body(r2) and
head(r1) = head(r2) then from r1 infer r2.

4.(a) From φ ∧ ψ infer φ and ψ

(b) From φ, ψ infer φ ∧ ψ

Rule 3 simply states that the order of atoms in the body of a
rule is irrelevant, as are repeated atoms. A formula ψ can be
derived from a set of formulas A, written A 
HC ψ, just if
ψ can be obtained from A by a finite number of applications
of the above rules and axioms; for simplicity we drop the
subscript and write A 
 ψ. If A = {φ} is a singleton set
then we just write φ 
 ψ. A set of formulas A ⊆ L is
inconsistent just if A 
 ⊥. We use φ ↔ ψ to represent
logical equivalence, that is φ 
 ψ and ψ 
 φ.

Notation: We collect here for reference notation that is
used in the paper. Lower-case Greek characters φ, ψ, . . .,
possibly subscripted, denote arbitrary formulas of either L
or LHC . Upper case Roman characters A, B, . . . , possibly
subscripted, denote arbitrary sets of formulas. H (H1, H ′,
etc.) denotes Horn belief sets, so that φ ∈ H iff H 
HC φ.

Cn(A) is the (classical, propositional) deductive closure
of A where A is a formula or set of formulas of propositional
logic. Cnh(A) is the deductive closure of a Horn formula or
set of formulas A under Horn derivability. For set of formu-
las A, Horn(A) = {φ ∈ A | φ is a Horn formula}. |φ| is
the set of maximal, consistent Horn theories that contain φ
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and |¬φ| is the complement of |φ|, i.e., the set of maximal,
consistent Horn theories that do not contain φ.

M (M1, M ′, etc.) will denote (classical, propositional)
interpretations over some understood language. Mod(A) is
the set of models of A. Arbitrary sets of interpretations will
be denoted M (M′ etc.). Cl∩(M) is the intersection clo-
sure of a set of interpretations M;2 i.e. M ⊆ Cl∩(M) and
M1, M2 ∈ Cl∩(M) implies that M1 ∩ M2 ∈ Cl∩(M).

Since P is finite, a (Horn or propositional logic) belief set
may be finitely represented, that is, for X a belief set, there
is a formula φ such that Cn(φ) = X . As well, we make
use of the fact that there is a 1-1 correspondence between
elements of |φ| and of Mod(φ).

Horn Clause Contraction and Remainder Sets

(Delgrande 2008) addressed maxichoice Horn belief set
contraction based on (Horn) remainder sets, while (Booth,
Meyer, and Varzinczak 2009) further investigated this area
by considering partial meet contraction, a generalisation of
partial-meet, based on the idea of infra-remainder sets, as
well as package contraction, again based on remainder sets.
Unfortunately, as we show next, it turns out that remainder
sets (including the infra-remainder sets of (Booth, Meyer,
and Varzinczak 2009)) are not sufficiently expressive for
contraction; as well, contraction based on remainder sets can
be shown to have undesirable properties.

The definition of e-remainder sets for Horn clause belief
sets is the same as that for a remainder set (Definition 1) but
with respect to Horn clauses and Horn derivability. For H
a Horn belief set and φ ∈ LHC , the set of e-remainder sets
with respect to H and φ is denoted by H ↓e φ.

Observation 1 If H ↓e α1 = H ↓e α2, then for any H ′ ⊆
H , α1 ∈ Cnh(H ′) iff α2 ∈ Cnh(H ′).

Observation 2 (Upper bound property) If X ⊆ H and α 	∈
Cnh(X), then there is some X ′ such that X ⊆ X ′ ∈ H ↓e

α.

(Booth, Meyer, and Varzinczak 2009) define infra remain-
der sets as follows:

Definition 2 For belief sets H and X , X ∈ H ⇓e φ3 iff there
is some X ′ ∈ H ↓e φ such that (

⋂
H ↓e φ) ⊆ X ⊆ X ′. The

elements of H ⇓e φ are the infra e-remainder sets of H with
respect to φ.

All e-remainder sets are clearly infra e-remainder sets, as is
the intersection of any set of e-remainder sets.

Example 1 For L = {a, b, c}, let H = Cnh(a ∧ b), and
where we consider candidates for H−̇(a ∧ b). There are
three remainder sets, given by the Horn closures of a∧(c →
b), b ∧ (c → a), and (a → b) ∧ (b → a) ∧ (c → a ∧ b)).
Any infra-remainder set must contain the closure of (c →
a) ∧ (c → b).

2Recall that an interpretation is represented by the set of atoms
true in the interpretation.

3(Booth, Meyer, and Varzinczak 2009) writes X ∈ H ⇓e Φ

where Φ is a set of Horn clauses.

counter- induced resulting KB r.s.
model models

ac a a
a a ∧ (c → b)

√
bc b b
b b ∧ (c → a)

√
c ∅ (a → b) ∧ (b → a)
∅ (a → b) ∧ (b → a) ∧ (c → a ∧ b)

√

Figure 1: Example: Candidates for Horn contraction

The fact that in the example any (infra-)remainder set con-
tains c → a and c → b. is not, on reflection, surprising: In
the case of c → a, since the original belief set contains a it
also contains c → a. A remainder set may not contain a, but
due to the requirement of maximality, there is no reason to
remove c → a, and so c → a remains in any remainder set
(or infra-remainder set). As we discuss below, this leads to
some undesirable properties.

However, it is instructive to first consider remainder sets,
and with them Horn contraction, from the point of view of
the model theory. Assume that H |= φ and we wish to find
a maximal belief set H ′ such that H ′ ⊂ H and H ′ 	|= φ. So
H ′ will be a remainder set of H and φ. In classical AGM
(maxichoice) contraction, from the semantic side one essen-
tially adds a countermodel of φ to the models of H ; this set
characterises a candidate theory for maxichoice contraction.
Consider the analogous process for Horn theories. Since we
want a remainder set to be a Horn theory and the models of
a Horn theory are closed under intersection, we would need
to make sure that this constraint holds here. So, intuitively,
to carry out maxichoice Horn contraction, we would add a
countermodel of the formula for contraction, and close the
result under intersections. However, critically, the theories
resulting from this approach do not correspond to those ob-
tained via remainder sets, and so do not correspond to maxi-
choice e-contraction as defined in (Delgrande 2008). To see
this, consider again Example 1, and where the pertinent re-
sults are summarised in Figure 1.

We have that ac (viz. {a,¬b, c}) is a countermodel of H ;
this is given in the first entry of the first row of the table.
Since H has a model ab, the intersection of these models,
ab ∩ ac = a must also be included; this is the item in the
second column. The resulting belief set is characterised by
the interpretations Mod(H) ∪ {ac, a} = {abc, ab, ac, a},
which is the set of models of formula a, given in the third
column. The result isn’t a remainder set, since Cnh(a∧(c →
b)) is a logically stronger belief set that fails to imply a ∧ b.

As previously noted, there are three remainder sets, as in-
dicated in the last column. This result is problematic for
both (Delgrande 2008) and (Booth, Meyer, and Varzinczak
2009). For example, in none of the approaches in these pa-
pers is it possible to obtain H−̇e (a∧ b) ↔ a, nor is it pos-
sible to obtain H−̇e (a ∧ b) ↔ (a ≡ b). But presumably
these possibilities are desirable as potential contractions. To
sharpen this point, in all of the approaches developed in the
cited papers, it is not possible to have a contraction wherein
a ∧ ¬b ∧ c corresponds to a model of the contraction.
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The diagnosis of the problem is clear. In the example, and
for the countermodel given by a ∧ ¬b ∧ c, it is not possible
to have a set of interpretations M satisfying:

1. M is closed under intersections

2. Mod(H) ⊆ M
3. {a,¬b, c} ∈ M (whence M 	|= a ∧ b), and

4. M is a minimal set of interpretations satisfying 1, 2, 3,
and M 	|= a ∧ b.

The solution also seems clear: From a semantic point of
view, one wants the characteristic models of maxichoice
candidates for H−̇e φ to consist of the characteristic models
of H together with a single interpretation from Mod(�) \
Mod(φ). The resulting theories, called weak remainder
sets, would correspond to the theories given in the third col-
umn in Figure 1.

Before considering possible ways to (re)define e-
contraction, we note also that contraction based on remain-
der sets alone has undesirable properties. First, it has been
pointed out4 that maxichoice e-contraction suffers from a
triviality result analogous to that in AGM contraction. As
well, for contraction (or package contraction) defined in
terms of remainder sets, or intersections of remainder sets,
or infra remainder sets, we have the result:

For p not mentioned in H , we have (H−̇φ) + p 
 φ.

The proof is straightforward; it is omitted due to space con-
straints, but is included in the full paper. Here is an illustra-
tive example of this phenomenon (with apologies to (Hans-
son 1999)), in terms of package contraction:

1. You believe Cleopatra had a son and a daughter (s ∧ d).

2. You learn that the source of information was unreliable,
so you remove this belief; i.e. you compute the package
contraction H−̇{s, d}.

3. You learn that it is raining outside (r).

4. You conclude that Cleopatra had a son and daughter (s∧d)

Horn Clause Belief Set Contraction

The previous section showed that basing Horn contractions
solely on remainder sets (or infra-remainder sets) is prob-
lematic. We then suggested that an adequate version of con-
traction should be based on weak remainder sets where for
belief set H and formula φ, there is a 1-1 correspondence be-
tween countermodels of φ and weak remainder sets. In this
section we develop Horn contraction based on weak remain-
der sets. We first give two constructions for weak remainder
sets, in terms of belief sets and in terms of sets of models,
and show the constructions equivalent. We then characterise
maxichoice Horn contraction in terms of weak remainder
sets, showing via a representation result that the character-
isations are equivalent. Following this we similarly char-
acterise partial meet contraction, and briefly consider pack-
age contraction. We note that due to the added generality of
weak remainder sets, the aforementioned triviality results do
not hold in any of the approaches developed.

4David Makinson, personal communication

Definition 3 Let H be a Horn belief set, and let φ be a Horn
formula.5

H ↓↓e φ is the set of sets of formulas s.t. H ′ ∈ H ↓↓e φ iff
H ′ = H ∩ m for some m ∈ |¬φ|.

H ′ ∈ H ↓↓e φ is a weak remainder set of H and φ.

Example 2 For P = {a, b, c}, let H = Cnh(a ∧ b),
φ = a ∧ b. For m = Cnh(a ∧ ¬b ∧ c) ∈ |¬φ|, we have
that H ∩ m = Cnh(a), since H and m are both closed un-
der Horn consequence. (Note that full propositional closure
gives Cn(H ∩ m) = Cn(a ∧ (b ∨ c)).)

Definition 4 Let H be a Horn belief set, and let φ be a Horn
formula. H ||e φ is the set of sets of formulas s.t. H ′ ∈ H ||e φ
iff there is M 	∈ Mod(φ) s.t. Mod(H ′) = Cl∩(Mod(H)∪
{M}).
In our running example, H ||e φ is given by the closure of the
sets of formulas in column 3 in Figure 1.

Theorem 1 For H a Horn belief set and φ a Horn formula:

H ↓↓e φ = H ||e φ.

Definition 5 Let H be a Horn belief set. γ is a selection
function for H if, for every φ ∈ LHC ,

1. If H ↓↓e φ 	= ∅ then ∅ 	= γ(H ↓↓e φ) ⊆ H ↓↓e φ.

2. If H ↓↓e φ = ∅ then γ(H ↓↓e φ) = {H}.
Definition 6 Let γ be a selection function on H such that
γ(H ↓↓e φ) = {H ′} for some H ′ ∈ H ↓↓e φ.

The maxichoice Horn contraction based on weak remain-
ders is given by:

H−̇w φ = γ(H ↓↓e φ)

We obtain the following representation result, relating the
constructions to a postulate set characterising contraction:

Theorem 2 Let H be a Horn belief set. Then −̇w is an op-
erator of maxichoice Horn contraction based on weak re-
mainders iff −̇w satisfies the following postulates.

(H−̇w 1) H−̇w φ is a belief set. (closure)

(H−̇w 2) If not 
 φ, then φ 	∈ H−̇w φ. (success)

(H−̇w 3) H−̇w φ ⊆ H. (inclusion)

(H−̇w 4) If φ 	∈ H, then H−̇w φ = H. (vacuity)

(H−̇w 5) If 
 φ then H−̇w φ = H (failure)

(H−̇w 6) If φ ↔ ψ, then H−̇w φ = H−̇w ψ. (extensional-
ity)

(H−̇w 7) If H 	= H−̇w φ then ∃β ∈ LHC s.t. {φ, β} is
inconsistent, H−̇w φ ⊆ Cnh({β}) and ∀H ′ s.t H−̇w φ ⊂
H ′ ⊆ H we have H ′ 	⊆ Cnh({β}). (maximality)

Partial Meet Contraction: Partial meet contraction pro-
vides a general characterisation of, here, Horn contraction.
The definition is analogous to that in AGM contraction, but
based on weak remainder sets:

5Recall that a Horn formula is a conjunction of Horn clauses.
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Definition 7 Let γ be a selection function on H such that
γ(H ↓↓e φ) ⊆ (H ↓↓e φ).

Then the partial meet Horn contraction based on weak re-
mainders is given by:

H−̇pm φ =
⋂

γ(H ↓↓e φ)

A representation result involves a modification of the last
postulate for maxichoice contraction:

Theorem 3 Let H be a Horn belief set. Then −̇w is an op-
erator of partial meet Horn contraction based on weak re-
mainders iff −̇w satisfies the postulates (H−̇w 1) – (H−̇w 6)
and:

(H−̇pm 7) If β ∈ H \ (H − α), then there is some H ′ such

that H−α ⊆ H ′, α 	∈ Cnh(H ′) and α ∈ Cnh(H ′∪{β})
(weak relevance)

Example 3 For our running example, the partial meet given
by the first and last weak remainder sets in Figure 1 is given
by Cnh((b → a) ∧ (c → a)). In terms of models, it is given
by the models of a ∧ b, together with the two countermodels
given by atoms ac and ∅, and closed under intersections.

Package Contraction: Given its usefulness in Horn
clauses knowledge bases, we briefly consider package con-
traction next. For belief set H and a set of formulas Φ,
the package contraction H−̇pa Φ is a form of contraction in

which no member of Φ is in H−̇pa Φ.
We define a notion of Horn package contraction, and show

that it is expressible in terms of maxichoice Horn contrac-
tion. Due to space limitations, we defer additional details
to the full paper; as well, the full paper addresses a stronger
version of package contraction where single countermodels
of all members of Φ are added, where possible.

Definition 8 Let H be a Horn belief set, and let Φ be a set
of Horn formulas.

H ↓↓p Φ is the set of sets of formulas s.t. H ′ ∈ H ↓↓p Φ iff

1. H ′ ⊆ H , and

2. for every φ ∈ Φ where φ 	∈ Cnh(�), H ′ ⊆ m for some
m ∈ |¬φ|, and

3. for every H ′′ where H ′ ⊂ H ′′ ⊆ H , we have H ′′ 	⊆ m
for some φ ∈ Φ where m ∈ |¬φ|.
Condition 2 states that for every φ ∈ Φ that is not a tau-

tology, some countermodel of φ is in Mod(H ′). The third
condition states that H ′ is a largest subset of H that satisfies
Condition 2. In the next definition, the notion of a selec-
tion function on H (Definition 5) is extended in the obvious
fashion to apply to a set of Horn formulas.

Definition 9 Let γ be a selection function on H such that
γ(H ↓↓p Φ) = {H ′} for some H ′ ∈ H ↓↓p Φ.

The (maxichoice) package Horn contraction based on
weak remainders is given by:

H−̇pa Φ = γ(H ↓↓p Φ)

if ∅ 	= Φ ∩ H 	⊆ Cnh(�); and H otherwise.

The following result relates elements of H ↓↓p Φ to weak
remainders.

Theorem 4 Let H be a Horn belief set and let Φ =
{φ1, . . . , φn} ⊂ LHC . We have that H ′ ∈ H ↓↓p Φ iff
H ′ =

⋂n

i=1
Hi where Hi ∈ H ↓↓e φi, 1 ≤ i ≤ n.

It follows from this that any maxichoice Horn contraction
defines a package contraction, and vice versa.

Example 4 Consider a variant on our running example
where as before P = {a, b, c}, H = Cnh(a ∧ b). Then
among candidates for H−̇pa {a, b} we have Cnh((c →
b) ∧ (a → b)) and Cnh(a ≡ b).

Horn Clause Belief Base Contraction

In this section we turn our attention to contraction of Horn
belief bases, sets of Horn formulas not necessarily closed
under Horn consequence. We first note that the definition
of e-remainders can be used directly for Horn belief bases.
(Makinson 1987) has already defended maxichoice contrac-
tion on the grounds that it is not a construction that should be
applied to belief sets, but only to belief bases. The operation
of maxichoice defined in (Delgrande 2008), when applied
to arbitrary sets of Horn formulas does not suffer from the
same drawbacks as when applied to belief sets. Let us look
at a slightly adapted version of Example 1:

Example 5 For L = {a, b, c}, let B1 = {a, b}, B2 =
{a, b, a → b, b → a}, and B3 = {a, b, c → a, c → b} and
again we consider candidates for Bi−̇(a ∧ b). Although the
three bases represent the same information at the belief set
level (i.e, Cnh(B1) = Cnh(B2) = Cnh(B3)), the choice
of which beliefs to represent explicitly leads to different re-
sults:

B1 ↓e a ∧ b = {{a}, {b}}
B2 ↓e a∧ b = {{a, b → a}, {b, a → b}, {a → b, b → a}}
B3 ↓e a ∧ b = {{a, c → a, c → b}, {b, c → a, c → b}}
Only in the last case we have that independently of the

selection function, B3 ⊆ (B3−̇a ∧ b) + c.

For classical logic, maxichoice contraction satisfies the
following postulate:

If β ∈ B \ (B−̇α), then α 	∈ Cn(B−̇α) and α ∈
Cn(B−̇α ∪ {β}) (fullness)

We can prove the following result for Horn belief bases:

Theorem 5 The operation −̇e is an operator of maxichoice
e-contraction on B if and only if for all sentences α:

• If α 	∈ Cnh(∅), then α 	∈ Cnh(B−̇eα) (success)

• B−̇eα ⊆ B (inclusion)

• If β ∈ B \ (B−̇eα), then α 	∈ Cnh(B−̇eα) and α ∈
Cnh(B−̇eα ∪ {β}) (fullness)

• If for all subsets B′ of B α ∈ Cnh(B′) if and only if
β ∈ Cnh(B′), then B−̇eα = B−̇eβ (uniformity)

The proof is a simple generalization of Hansson’s original
proof for classical propositional logic to the Horn case.

Although for belief bases maxichoice and its characteris-
ing postulate fullness do not lead to trivialisation as is the
case for belief sets, it is interesting to look at the general
case of partial meet contraction. We can prove the following
representation result:
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Theorem 6 Let B be an arbitrary set of Horn formulas.
Then −̇ is an operator of partial meet contraction on B if
and only if for all Horn formulas α:

• If α 	∈ Cnh(∅), then α 	∈ Cnh(B−̇α) (success)

• B−̇α ⊆ B (inclusion)

• If β ∈ B \ (B−̇α), then ∃B′ such that B−̇α ⊆ B′ ⊆ B,
α 	∈ Cnh(B′) and α ∈ Cnh(B′ ∪ {β}) (relevance)

• If for all subsets B′ of B α ∈ Cnh(B′) if and only if
β ∈ Cnh(B′), then B−̇α = B−̇β (uniformity)

The theorem follows from the results in (Hansson and
Wassermann 2002), where it was shown that it holds for ev-
ery underlying logic which is compact and monotonic. From
this, we know that partial-meet e-contraction satisfies rele-
vance, which is a weaker form of recovery. It states that if
a belief is removed from the belief base, it was involved in
some derivation of the contracted sentence.

Discussion of Related Work

This section summarising the technical differences between
the different operations defined on Horn belief sets:

• Every e-remainder is a weak remainder, but the converse
is not true.

This is clearly seen in Figure 1. For a Horn theory H and
formula φ, the e-remainders are the maximal subsets of H
that do not imply φ. The weak remainders are characterised
by the models of H together with a single countermodel of
φ, and then closed under intersection. In propositional logic
these notions would coincide; here they do not.

As well, this means that weak remainders and partial meet
are distinct notions, the latter corresponding to intersections
of weak remainders.

• Not all infra-remainders are weak-remainders.

Looking again Figure 1, the set Cnh({c → a, c → b, a →
b}) is an infra-remainder but not a weak-remainder. It can
however be obtained as the intersection of two remainders.

Consider Example 3.2 in (Booth, Meyer, and Varzinczak
2009), where H = Cnh({p → q, q → r}) and one wants to
contract by p → r: In this case, the weak remainders coin-
cide with the remainders. The set {p ∧ q → r, p ∧ r → q}
is an infra-remainder and cannot be obtained as the intersec-
tion of weak-remainders. The authors claim that this set is a
desirable result of the contraction, but do not give any strong
motivation.

• Not all weak remainders are infra-remainders.

Infra-remainders, by definition, must contain full-meet
and be contained in some remainder. Weak remainders
are contained in some remainder (or are a remainder) but
do not always contain full meet, as can be seen in the ta-
ble in Figure 1. Full-meet in that example would con-
tain {c → a, c → b} and there are two weak remainders
(Cnh(a) and Cnh(b)) which do not contain both formulas.

The last two items show that weak remainders and infra-
remainders are independent concepts and their relation
should be studied in more detail.

Another point that deserves attention can be seen again
in the example from (Booth, Meyer, and Varzinczak 2009):
For H = Cnh({p → q, q → r}), we have H ↓e p → r =
H ↓↓e p → r = {Cnh({p → q}), Cnh({q → r, p ∧ r →
q})}. There is an asymmetry here - while it is possible
to obtain Cnh({p → q}) as the result of contraction, e-
remainders, weak remainders or infra-remainders do not al-
low for Cnh({q → r}) as a possible outcome. This has
motivated the study of Horn belief base contraction, where
one may obtain Cnh({q → r}), and where we think we may
find other interesting alternatives.

Conclusion
In this paper we have (further) explored the landscape of be-
lief contraction in Horn knowledge bases. Approaches to
maxichoice and partial meet belief contraction for both be-
lief sets and belief bases were presented. As well, package
contraction in the case of Horn belief sets was also consid-
ered. In the case of belief set contraction, it proved to be
the case that founding contraction on remainder sets (as is
done in propositional logic) is problematic, in that the result-
ing approach is inexpressive and has undesirable properties.
Based on an examination of model-theoretic considerations
we developed an account of maxichoice Horn contraction
in terms of weak remainder sets. This account captures the
full range of maxichoice contraction, and hence partial meet
contraction. We also developed approaches to Horn belief
base contraction, in which the underlying knowledge base
is not necessarily closed under the Horn consequence rela-
tion. Such approaches are valuable, in that the result of con-
traction reflects the syntactic expression of the knowledge
base, which in turn may better reflect the knowledge base
designer’s intentions. In all cases, constructions of the con-
traction operators were specified, along with sets of charac-
terising postulates, and representation results were provided,
linking the constructions and postulate sets. last, we showed
that problems arising with earlier work are resolved by these
approaches.
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Proofs of the main results
Lemma 1 Let T be a set of propositional formulas. Then
Cl∩(Mod(T )) = Mod(Horn(Cn(T ))).

Proof: We have that Cl∩(Mod(T )) is the least set of
models such that Mod(T ) ⊆ Cl∩(Mod(T )) and where
Cl∩(Mod(T )) specifies a Horn theory. But this is just the
least upper Horn approximation of T (Selman and Kautz
1996). But the least upper Horn approximation of T is given
by

T h = {α | T 
 α where α is a Horn prime implicate of T }.
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We have that Cnh(T h) = Horn(Cn(T )) from which the
result follows.

Proof of Theorem 1

1. H ↓↓e φ ⊆ H ||e φ:

Let H ′ ∈ H ↓↓e φ; we show that H ′ ∈ H ||e φ.

Since H ′ ∈ H ↓↓e φ, by definition H ′ = H ∩ m for some
m ∈ |¬φ|, and so Mod(H ′) = Mod(H ∩ m). H and m
are Horn theories, thus H ∩ m is a Horn theory,

Using the fact that for Horn theory T , T =
Horn(Cn(T )), we have that H ∩ m = Horn(Cn(H ∩
m)) and so Mod(H ′) = Mod(Horn(Cn(H ∩ m)).

Applying Lemma 1 to H ∩ m we obtain that
Mod(Horn(Cn(H ∩ m)) = Cl∩(Mod(Cn(H ∩ m))).
Now, Cl∩(Mod(Cn(H ∩m))) = Cl∩(Mod(H ∩m)) =
Cl∩((Mod(H) ∪ Mod(m))).

By definition, there is M ∈ Mod(�) such that
Mod(m) = {M}. Putting the above together we get that
Mod(H ′) = Cl∩((Mod(H)∪M)), that is, H ′ ∈ H ||e φ.

2. H ||e φ ⊆ H ↓↓e φ:

This part follows immediately by essentially taking the
preceding part in reverse order.

Proposition 1 Maximality (H−̇w7) is equivalent to the fol-
lowing property, which we will call (H−̇w7′):

If H 	= H−̇φ then ∃m ∈ |¬φ| s.t. H−̇φ ⊆ m and ∀H ′

s.t. H−̇φ ⊂ H ′ ⊆ H we have H ′ 	⊆ m.

Proof: Assume first that the property holds. Let β be the
conjunction of literals appearing in m. So Cnh(β) = m,
and so (H−̇w7) holds.
For the other direction, assume that (H−̇w7) holds.

Claim: For given H and φ, if β satisfies the given conditions
in (H−̇w7) then for any p ∈ P, so does one of β ∧ p or
β ∧ (p → ⊥).

Proof of Claim: It is clear that if {φ, β} is inconsistent
then so is {φ, β∧l} for l ∈ {p, p → ⊥}; and if H−φ ⊆
Cnh(β) then H ′ ⊆ Cnh(β ∧ l) for l ∈ {p, p → ⊥}.

So we just need to show that for Horn theory H ′ where
H − φ ⊂ H ′ ⊆ H , either H ′ 	⊆ Cnh(β ∧ p) or H ′ 	⊆
Cnh(β ∧ (p → ⊥)).

Towards a contradiction, assume otherwise. Then
H ′ ⊆ Cnh(β ∧ p) and H ′ ⊆ Cnh(β ∧ (p → ⊥)).
But since Cnh(β) = Cnh(β ∧ α) ∩ Cnh(β ∧ ¬α),
and consequently H ′ ⊆ Cnh(β), this contradicts that
β satisfies (H−̇w7) for H and φ.

Hence our assumption was incorrect, and so H ′ 	⊆
Cnh(β ∧ p) or H ′ 	⊆ Cnh(β ∧ (p → ⊥)).

We have just shown that if β satisfies (H−̇w7) for given
H and φ, then so does one of β ∧ p or β ∧ (p → ⊥). An
induction over (the finite set) P then establishes that if β
satisfies (H−̇w7) for given H and φ, then so does some β′

where β′ 
 p or β′ 
 (p → ⊥) for every p ∈ P. Hence β′

is such that Cnh(β′) ∈ |¬φ|, and thus taking m = Cnh(β′)
satisfies the property.

Proof of Theorem 2:

1. Construction to Postulates:

That the construction satisfies the first five postulates fol-
lows directly from the definitions of weak remainders and
selection functions. To see that it satisfies (H−̇w 6) we
only have to note that φ ↔ ψ implies that H ↓↓e φ = H ↓
↓e ψ and since γ is a function, H−̇w φ = H−̇w ψ.

To see that the construction satisfies (H−̇w 7), suppose
H 	= H−̇w φ. This means that H ↓↓e φ 	= ∅ and hence,
there is m ∈ |¬φ| such that H−̇w φ = H ∩ m. Let β
be the conjunction of all literals appearing in m. Then,
since Cnh(β) = m, we have that {φ, β} is inconsistent,
H−̇w φ ⊆ Cnh({β}) and ∀H ′ s.t H−̇w φ ⊂ H ′ ⊆ H we
have H ′ 	⊆ Cnh({β}).

2. Postulates to Construction:

The proof uses (H−̇w 7′) rather than (H−̇w 7), as they
were shown to be equivalent in Proposition 1 above.

Let −̇w be an operator that satisfies (H−̇w 1) – (H−̇w 7′).
Let γ be defined by γ(H ↓↓e φ) = {H−̇w φ}.

We have that γ is a function:

Assume that H ↓↓e φ = H ↓↓e ψ; we need to show
that γ(H ↓↓e φ) = γ(H ↓↓e ψ). If φ 	∈ H , then
H ↓↓e φ = {H} and since H ↓↓e φ = H ↓↓e ψ, we
have that H ↓↓e ψ = H and hence ψ 	∈ H . Then, by
(H−̇w 4), H−̇w φ = H−̇w φ = H and by definition
γ(H ↓↓e φ) = γ(H ↓↓e ψ).
Now let us consider the case where φ, ψ ∈ H . Since
H ↓↓e φ = H ↓↓e ψ we have that {H ∩ m | m ∈
|¬φ|} = {H ∩ m | m ∈ |¬ψ|}. It follows6 that
|¬φ| = |¬ψ|, whence |φ| = |ψ| and so φ ↔ ψ.
From (H−̇w 6) we have H−̇w φ = H−̇w ψ, and so
γ(H ↓↓e φ) = γ(H ↓↓e ψ).

If φ 	∈ H , then from (H−̇w 4) we have that H−̇w φ = H .
Similarly, if 
 φ, then from (H−̇w 5) we again have that
H−̇w φ = H .

Consequently assume that φ ∈ H and not 
 φ. We need
to show that H−̇w φ ∈ H ↓↓e φ, that is, H−̇w φ = H ∩ m
for some m ∈ |¬φ|.
Since not 
 φ, from (H−̇w 2) we have φ 	∈ H−̇w φ; since
φ ∈ H we then have that H 	= H−̇w φ.

Since H 	= H−̇w φ, from (H−̇w 7′) we get that there is
m ∈ |¬φ| such that H−̇w φ ⊆ m.

As well, (H−̇w 3) gives H−̇w φ ⊆ H , and so this with
H−̇w φ ⊆ m implies that H−̇w φ ⊆ (m ∩ H).

We need to show that H−̇w φ = (m ∩ H). Towards a
contradiction assume that H−̇w φ 	= (m ∩ H), that is to
say, H−̇w φ ⊂ (m ∩ H).

6Suppose {H ∩ m | m ∈ |¬φ|} = {H ∩ m | m ∈ |¬ψ|}
and |¬φ| �= |¬ψ|. Without loss of generality, suppose there is
m′ ∈ |¬φ| such that m′ �∈ |¬ψ|. Then m′ is a maximal consistent
theory that contains ψ. Since ψ ∈ H , we know that ψ ∈ H ∩ m′.
This means that H ∩ m′ ∈ {H ∩ m | m ∈ |¬φ|}, but H ∩ m′ �∈
{H ∩ m | m ∈ |¬ψ|}, as for any m ∈ |¬ψ| by definition ψ �∈ m.
This contradicts the initial hypothesis.
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Let ψ ∈ (m ∩ H) \ (H−̇w φ). Then

H−̇w φ ⊂ Cnh(H−̇w φ ∪ {ψ}) ⊆ m ∩ H ⊂ H.

But, substituting Cnh(H−̇w φ∪ {ψ}) for H ′ in (H−̇w 7)
we get that Cnh(H−̇w φ ∪ {ψ}) 	⊆ m, contradiction.

Hence the assumption that H−̇w φ 	= (m ∩ H) is incor-
rect; hence H−̇w φ = (m∩H) where (m∩H) ∈ H ↓↓e φ,
which was to be shown.

Proof of Theorem 3:

1. Construction to Postulates:

(H−̇w 1) follows from the fact that the intersection of
Horn theories is a Horn theory. Postulates (H−̇w 2) −
(H−̇w 6) follow immediately from the definitions of weak
remainder, selection function and partial meet contrac-
tion.

To see that the construction satisfies weak relevance, note
that if β 	∈ H \ H − φ, then there is some X ∈ γ(H ↓
↓e φ) such that β 	∈ X . Since β ∈ H , then there is
some m ∈ |¬φ| such that β 	∈ m and X = H ∩ m.
Take H ′ = m. Then H − φ ⊆ H ′, φ 	∈ Cnh(H ′) and
φ ∈ Cnh(H ′ ∪ {β}) = Cnh(⊥).

2. Postulates to Construction:

Let γ(H ↓↓e φ) = {X ∈ H ↓↓e φ | H − φ ⊆ X}.

We have to show that: (1) γ is a function; (2) γ is a selec-
tion function; and (3)

⋂
γ(H ↓↓e φ) = H − φ.

(1) Let H ↓↓e φ1 = H ↓↓e φ2. We must show that γ(H ↓
↓e φ1) = γ(H ↓↓e φ2). As in the proof for maxichoice,
H ↓↓e φ1 = H ↓↓e φ2 implies that 
 φ1 ↔ φ2 and then, by
postulate (H−̇w 6), H−φ1 = H−φ2. By the construction
of γ, γ(H ↓↓e φ1) = γ(H ↓↓e φ2).

(2) From the construction of γ, we know that γ(H ↓↓e

φ) ⊆ H ↓↓e φ. So we have to show that if H ↓↓e φ 	= ∅,
then γ(H ↓↓e φ) 	= ∅ and otherwise γ(H ↓↓e φ) = {H}.

(i) If H ↓↓e φ 	= ∅, then H 	= ∅ and |¬φ| 	= ∅. By (H-
2) and (H-1), φ 	∈ Cn(H − φ). Then there is m ∈ |¬φ|
such that H − φ ⊆ m. By (H-3), H − φ ⊆ H , hence,
H − φ ⊆ H ∩ m ∈ γ(H↓↓φ).

(ii) If H ↓↓e φ = ∅, then 
 φ and by (H-5), H−φ = H .

(3) We know that H−φ ⊆ ⋂
γ(H ↓↓e φ). Suppose there is

β ∈ ⋂
γ(H ↓↓e φ) such that β 	∈ H − φ. Since

⋂
γ(H ↓

↓e φ) ⊆ H , β ∈ H \ (H − α) and by weak relevance
we know that there is some H ′ such that H − φ ⊆ H ′,
φ 	∈ Cnh(H ′) and φ ∈ Cnh(H ′ ∪ {β}). Then there is
m ∈ |¬φ| such that H ′ ⊆ m and β 	∈ m. Take X =
H ∩ m. Then X ∈ H↓↓φ and from (H-3) we have that
H − φ ⊆ X and hence, X ∈ γ(H ↓↓e φ). But β 	∈ X ,
which leads to a contradiction.

Proof of Theorem 4: Let H be a Horn belief set and
Φ = {φ1, . . . , φn} ⊂ LHC .

1. ⇐=:

For each 1 ≤ i ≤ n, let Hi ∈ H ↓↓e φi. Then for H ′ =⋂n

i=1
Hi, to show that H ′ ∈ H ↓↓p Φ we show that H ′

satisfies the three conditions in Definition 8:

1. Clearly
⋂n

i=1
Hi ⊆ H , since we have that Hi ⊆ H for

1 ≤ i ≤ n.

2. Consider φ ∈ Φ where φ 	∈ Cnh(�). We have that
H ′ ⊆ Hi and Hi ∈ H ↓↓e φi. From Definition 3 we
have that Hi = H ∩ m for some m ∈ |¬φ|; hence
H ′ ⊆ m for that m ∈ |¬φ|.

3. Let H ′′ be such that H ′ ⊂ H ′′ ⊆ H . If there is no such
H ′′ then the third condition is satisfied vacuously.

Let ψ ∈ H ′′ and ψ 	∈ H ′. Thus ψ 	∈ ⋂n

i=1
Hi, and so

for some j, 1 ≤ j ≤ n, we have that ψ 	∈ Hj .

We have that Hj = H ∩m for some m ∈ |¬φj |. Since
ψ ∈ H ′′, so ψ ∈ H ; hence ψ 	∈ m.

Since ψ ∈ H ′′, ψ 	∈ m, we have that H ′′ 	⊆ m.

Since H ′′ was arbitrarily chosen, this shows that the
third condition is satisfied.

Thus H ′ =
⋂n

i=1
Hi satisfies the three conditions of Def-

inition 8. Hence H ′ ∈ H ↓↓p Φ.

2. =⇒:

Let H ′ ∈ H ↓↓p Φ.

From Definition 8 we have:

1. H ′ ⊆ H ;

2. for every φ ∈ Φ where φ 	∈ Cnh(�), H ′ ⊆ m for
some m ∈ |¬φ|; and

3. for every H ′′ where H ′ ⊂ H ′′ ⊆ H , we have H ′′ 	⊆ m
for some φ ∈ Φ where m ∈ |¬φ|.

From 1, 2 we obtain that for each i, 1 ≤ i ≤ n, that there
is mi ∈ |¬φi| such that:

H ′ ⊆ H ∩ ⋂n

i=1
mi =

⋂n

i=1
(H ∩ mi)

For each i, 1 ≤ i ≤ n, we have H ∩ mi ∈ H ↓↓e φi by
Definition 3.

Assume toward a contradiction that H ′ ⊂ ⋂n

i=1
(H ∩mi)

and let ψ 	∈ H ′ but ψ ∈ ⋂n

i=1
(H ∩ mi).

But then
⋂n

i=1
(H∩mi) ⊆ mi for 1 ≤ i ≤ n. Thus setting

H ′′ =
⋂n

i=1
(H ∩ mi) contradicts the third condition of

Definition 8. This in turn contradicts the fact that H ′ ∈
H ↓↓p Φ.

We conclude that H ′ 	⊂ ⋂n

i=1
(H ∩ mi); thus H ′ =⋂n

i=1
(H ∩ mi).

Proof Sketch of Theorem 5:

The proof for the classical case can be found in (Hansson
1999). For the Horn case, we just need Observations 1 and
2.

Proof Sketch of Theorem 6:

The proof is almost identical to the proof of Theorem
5.2.8 in (Wassermann 2000), given Observations 1 and 2.

151



References

Alchourrón, C.; Gärdenfors, P.; and Makinson, D. 1985. On
the logic of theory change: Partial meet functions for con-
traction and revision. Journal of Symbolic Logic 50(2):510–
530.

Booth, R.; Meyer, T.; and Varzinczak, I. J. 2009. Next
steps in propositional Horn contraction. In Proceedings of
the International Joint Conference on Artificial Intelligence.

Delgrande, J. 2008. Horn clause belief change: Contraction
functions. In Brewka, G., and Lang, J., eds., Proceedings of
the Eleventh International Conference on the Principles of
Knowledge Representation and Reasoning, 156–165. Syd-
ney, Australia: AAAI Press.

Eiter, T., and Gottlob, G. 1992. On the complexity of propo-
sitional knowledge base revision, updates, and counterfactu-
als. Artificial Intelligence 57(2-3):227–270.

Flouris, G.; Plexousakis, D.; and Antoniou, G. 2004. Gener-
alizing the AGM postulates: Preliminary results and appli-
cations. In Proceedings of the 10th International Workshop
on Non-Monotonic Reasoning (NMR-04), 171–179.

Gärdenfors, P. 1988. Knowledge in Flux: Modeling the
Dynamics of Epistemic States. Bradford Books, MIT Press,
Cambridge Massachusetts.

Hansson, S. O., and Wassermann, R. 2002. Local change.
Studia Logica 70(1):49–76.

Hansson, S. O. 1999. A Textbook of Belief Dynamics. Ap-
plied Logic Series. Kluwer Academic Publishers.

Khardon, R. 1995. Translating between Horn representa-
tions and their characteristic models. Journal of Artificial
Intelligence Research 3:349–372.

Langlois, M.; Sloan, R.; Szörényi, B.; and Turán, G. 2008.
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