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a b s t r a c t

This paper presents concentration inequalities and laws of large numbers under weak
assumptions of irrelevance that are expressed using lower and upper expectations. The
results build upon De Cooman and Miranda’s recent inequalities and laws of large num-
bers. The proofs indicate connections between the theory of martingales and concepts of
epistemic and regular irrelevance.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we assume that a decision maker represents her uncertainty about a situation of interest through a set of
expectation functionals. As each expectation functional induces a probability measure, our decision maker operates with a
set of probability measures K instead of a single probability measure. There may be more than a single measure in K either
because there are disagreements about the situation of interest, or because the decision maker is verifying the robustness of
her assessments against perturbations, or because the decision maker has neither time nor resources to eliminate distribu-
tions from K. Perhaps the decision maker even wishes to abstract tedious details of the situation by not specifying point
probabilities for some events. In any case, for each variable X we have its lower and upper expectations, respectively

E½X� ¼: inf E½X�; E½X�¼: sup E½X�;
where inf and sup are taken with respect to the set of expectation functionals. Similarly, for any event A, we have its lower
and upper probabilities, respectively

PðAÞ¼: inf PðAÞ; PðAÞ¼: sup PðAÞ;
where P(A) is equal to the expectation of IA, the indicator function of A.

The goal of this paper is to present concentration inequalities and laws of large numbers under weak assumptions of
‘‘irrelevance” that are appropriate for such a decision maker. To illustrate the kind of result we seek, consider that De Cooman
and Miranda [4, Def. 1] have recently identified an assumption of irrelevance based on lower and upper expectations, called
forward factorization, that leads to laws of large numbers such as:

for any � > 0; lim
n!1

P
Pn

i¼1E½Xi�
n

� � 6
Pn

i¼1Xi

n
6

Pn
i¼1E½Xi�

n
þ �

 !
¼ 1:

Note that weaker assumptions (basic model is a set of expectation functionals) lead to weaker conclusions (average stays
within interval). Inequalities and laws presented later are similar to these previous seminal results.
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Section 2 presents some basic concepts. Section 3 considers several assumptions of irrelevance for sets of variables. Sec-
tion 4 presents results for bounded variables. Regarding bounded variables the contribution here, when compared to De Coo-
man and Miranda’s work, lies in offering tighter inequalities and alternative proof techniques that are closely related to
established methods in standard probability theory (in particular, close to the Hoeffding and the Azuma inequalities). Sec-
tion 5 offers more significant contributions as we lift the assumption of boundedness for variables, and use martingale theory
to prove laws of large numbers under countable additivity. Section 6 explains the validity of results in Section 4 for full con-
ditional measures and for Walley’s theory of lower previsions. Section 7 comments on the significance of results.

2. Sets of expectations and probabilities, conditioning and irrelevance

Throughout the paper, we assume that an expectation functional E maps variables into real numbers, and satisfies:

(1) if a 6 X 6 b then a 6 E[X] 6 b;
(2) E[X + Y] = E[X] + E[Y];

where X, Y are variables and a, b are real numbers (inequalities are understood pointwise). From such an expectation func-
tional E, a finitely additive probability measure P is induced by P(A) ¼: E[IA] for any event A with indicator function IA (an event
is a subset of the possibility space X). We sometimes denote the indicator function of event A simply by A. A finitely additive
probability measure defined on the field of all subsets of X completely characterizes an expectation functional on bounded
functions and vice versa [31, Thm. 3.2.2]. An important property of expectation functionals is that if a sequence of bounded
variables X1,X2, . . . is such that limj?1sup|Xj � X| = 0 for some variable X, then [31, Sec. 2.6.1(l)]

lim
j!1

E½Xj� ¼ E½X�: ð1Þ

A set of probability measures induced by a set of expectation functionals is called a credal set [22]. We do not assume that
a credal set must be convex, nor closed, nor connected; an axiomatization of such general credal sets from preferences has
been proposed by Seidenfeld et al. [28]. Given a credal set K, lower and upper expectations can be written, respectively, as
E[X] ¼: infP2KEP[X] and E½X�¼: supP2K EP½X�. Lower and upper probabilities are similarly written as P(A) ¼: infP2KP(A) and
PðAÞ ¼: supP2K PðAÞ.

2.1. Countable additivity

Countable additivity is an assumption of continuity; for expectation functionals it reads [34, Sec. 2.2]: if X1,X2, . . . increase
monotonically to a limit X, then E[X] = limiE[Xi]. For a probability measure, countable additivity means: if A1 � A2 � � � � is a
countable sequence of events such that \iAi = ;, then limn?1P(An) = 0. For a credal set, countable additivity means that given
a countable sequence of events

A1 � A2 � � � � such that \iAi ¼ ;; then lim
n!1

PðAnÞ ¼ 0 ð2Þ

(hence, limn?1P(An) = 0 for every probability measure in the credal set; that is, every probability measure in the credal set
satisfies countable additivity).

Countable additivity is assumed in the remainder of this section and in Sections 3–5. Whenever countable additivity is
assumed, we assume that variables are measurable and all measures in the credal set of interest are specified using the same
r-field (so that supPEP[X |Y] is measurable). Countable additivity is not assumed in Section 6.

2.2. Conditioning

The conditional expectation for variable X given a nonempty event A, denoted by E[X |A], is constrained by
E[X |A]P(A) = E[XA]. The ‘‘standard” approach to conditioning is to define E[X |A] as E[XA]/P(A) when P(A) > 0, and to leave
E[X |A] undefined when P(A) = 0. If we have two random variables X and Y, the standard (Kolmogorovian) approach to con-
ditioning takes E[X |Y] to be a random variable that solves the following equation for every B in the r-algebra generated by Y
[24, Sec. B.1.2]:

E½BðX � E½XjY�Þ� ¼ 0: ð3Þ

The Radon–Nikodym theorem guarantees, given the assumption of countable additivity in the standard theory, existence of
E[X |Y], unique up to probability zero changes. Moreover, the following disintegrability result holds: E[X] = E[E[X |Y]].

To motivate some of the definitions proposed in the next section, consider the definition of conditional upper expecta-
tions when we have a set K of expectation functionals. It might seem reasonable to define conditional upper expectations
as follows:
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½XjA� ¼: sup
E2K

E½XjA� if PðAÞ > 0 ð4Þ

½XjA� undefined if PðAÞ ¼ 0;

and likewise for conditional lower expectations; that is, Eø[X |A] is equal to infE[X |A] if P(A) > 0 and undefined otherwise. This
sort of conditioning appears in theories that ignore events of lower probability zero, such as Giron and Rios’ theory [15]; later
we indicate that this definition does not seem to lead to interesting laws of large numbers. A possibly more sensible idea,
that we indicate through the superscript >, is to discard those distributions for which P(A) = 0 [32,33]:

½XjA� ¼: sup
E2K:PðAÞ>0

E½XjA� if PðAÞ > 0; ð5Þ

½XjA� undefined if PðAÞ ¼ 0;

and likewise for conditional lower expectations; that is, E>[X |A] is equal to infE2K:P(A)>0E[X |A] if PðAÞ > 0 and undefined other-
wise. We refer to this strategy as regular conditioning, inspired by Walley [31, Ap. J], who uses the term regular extension for a
similar idea. Appendix A further comments on regular conditioning.

2.3. Irrelevance

Suppose we have a set of probability measures and two variables X and Y. Walley defines epistemic irrelevance of Y to X to
mean that

E½f ðXÞjY � ¼ E½f ðXÞ�

for all bounded functions f of X (Section 6 further comments on Walley’s theory). One might take epistemic irrelevance as a
relaxed version of stochastic independence, perhaps suitable for robustness analysis, or as the appropriate definition of irrel-
evance in the presence of disagreeing, incomplete or imprecise assessments of probability. Note that epistemic irrelevance is
much weaker than requiring that each expectation functional satisfies standard stochastic independence of X and Y.

Because Walley’s concept requires a theory of conditioning that departs from the standard one (Section 6), we present
here a modified concept of irrelevance that employs the intuition behind regular conditioning. Assume countable additivity
and suppose all measures of interest are specified using the same r-field; further assume that for each expectation functional
E, the conditional expectation E[� |Y] is a random variable obtained through the standard approach to conditioning.

In rough terms, our approach is to associate with each probability measure P in the credal set an event NP such that
P(NP) = 0, and to require that for all functions f of X,

E½f ðXÞ� 6 EP½f ðXÞjY ¼ y� 6 E½f ðXÞ� for all y R NP: ð6Þ

We start with some preliminary definitions. Given a credal set K, an exclusion set N is a set containing an event NP for each
probability measure P in K, such that P(NP) = 0. Define the random variable ½XjY � as follows:

½XjY ¼ y� ¼:
sup

P:yRNP

EP½XjY ¼ y� when fP : y R NPg– ;;

0 otherwise:

8<
:

Define also E>N½XjY ¼ y�;¼: � ½�XjY ¼ y�; that is:

E>N½XjY ¼ y� ¼:
inf

P:yRNP

EP ½XjY ¼ y� when fP : y R NPg – ;;

0 otherwise:

(

Write

½XjY� ffi a

to indicate that ½XjY ¼ y� ¼ a for those y such that {P :y R NP} – ;. Likewise, write

½XjY�/a and E>N½XjY �’a

to indicate inequalities that hold for y such that {P :y R NP} – ;. Finally:

Definition 1. Regular irrelevance of Y to X obtains when

½f ðXÞjY � ffi E½f ðXÞ� ð7Þ

for every function f of X and for some exclusion set N.
Under countable additivity and standard conditioning (expression (3)), regular irrelevance of Y to X implies

½f ðXÞjAðYÞ� ¼ E½f ðXÞ� ð8Þ

F.G. Cozman / International Journal of Approximate Reasoning 51 (2010) 1069–1084 1071
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for any function f of X and for any event A(Y) defined by variable Y such that PðAðYÞÞ > 0. Throughout the paper the expres-
sion ‘‘event A(Y) defined by variable Y” means that A has an indicator function that is a zero/one function of Y.

3. Irrelevance assumptions and factorizations

We now introduce the main irrelevance assumptions for sets of random variables. To simplify the notation, a set of vari-
ables {X1, . . . ,Xn} is denoted by X1:n. Later we refer to infinitely long sequences of variables X1,X2, . . .; all concepts of irrele-
vance apply to an infinite sequence if they apply to every subsequence X1:n.

3.1. Forward regular irrelevance and weak forward regular irrelevance

Our starting point is De Cooman and Miranda’s assumption of forward irrelevance [4,5] for random variables X1:n:

� for each i 2 [2,n], for any function f of Xi,

E½f ðXiÞjX1:i�1� ¼ E½f ðXiÞ�:

We adapt their assumption to the definition of regular irrelevance, and define forward regular irrelevance as follows:

� for each i 2 [2,n], there is an exclusion set N such that for any function f of Xi,

½f ðXiÞjX1:i�1� ffi E½f ðXiÞ�: ð9Þ

A weaker condition, that we refer to as weak forward regular irrelevance, follows the intuition behind expression (6):

� for each i 2 [2,n], there is an exclusion set N such that

½XijX1:i�1�/E½Xi� and E>N½XijX1:i�1�’E½Xi�: ð10Þ

Another variant of forward irrelevance, now based on the intuition behind expression (4), is:

� for each i 2 [2,n], for any function f of Xi,

E½f ðXiÞjX1:i�1 ¼ x1:i�1� ¼ E½f ðXiÞ� whenever PðX1:i�1 ¼ x1:i�1Þ > 0: ð11Þ

This latter condition is really too weak to produce any sensible law of large numbers, as the following example demon-
strates.1 For this reason, we do not deal with condition (11) further in this paper.

Example 1. Consider binary variables X1,X2, . . . (values 0 and 1). Define events A0 ¼
: \iP1{Xi = 0} and A1 ¼

: \iP1{Xi = 1}.
Consider a convex and closed set K of joint distributions built as the convex hull of three distributions P1, P2 and P3, as
follows.

Distribution P1 simply assigns probability one to A1. Distribution P2 assigns probability d to A0 and probability 1 � d to A1,
for some d 2 (0,1). Distribution P3 is the product of identical marginals: for any integer n > 0; P3ðX1 ¼ x1; . . . ;

Xn ¼ xnÞ ¼
Qn

i¼1P3ðXi ¼ xiÞ, where P3(Xi = 1) = 1 � d.
For the convex hull of P1, P2 and P3, expression (11) is satisfied. This conclusion is reached by analyzing each distribution

in turn. Note that lower and upper expectations for any function of a binary variable X are linearly related to lower and upper
probabilities of the event {X = 1}; consequently, in this example it is enough to consider upper and lower probabilities.

For distribution P1, P1(Xi = 1) = 1 and for any i > 1 we have P1(Xi = 1|A(X1:i�1)) = 1 whenever P(A(X1:i�1)) > 0. Note that for
any event A(X1:i�1): if A1 2 A, then P1(A) = 1; if A1 R A, then P1(A) = 0. For distribution P2, P2(Xi = 1) = 1 � d for any i > 0.
Additionally, for any event A(X1:i�1) we have P2(Xi = 1|A(X1:i�1)) either equal to 1 � d or 1 whenever P(A) > 0: if A1 R A, then
P(A) = 0 (due to P1); so suppose A1 2 A, and note that if A0 2 A, then P2(Xi = 1|A) = 1 � d, and if A0 R A, then P2(Xi = 1|A) = 1. For
distribution P3, we have P3(Xi = 1) = 1 � d and for any i > 1 we have P3(Xi = 1|A(X1:i�1)) = 1 � d for any nonempty event
A(X1:i�1). Hence we have P(Xi = 1) = P(Xi = 1|A(X1:i�1)) = 1 � d and PðXi ¼ 1Þ ¼ PðXi ¼ 1jAðX1:i�1ÞÞ ¼ 1 whenever
P(A(X1:i�1)) > 0.

The weak law of larger numbers fails because, for any � 2 (0,1 � d),

lim
n!1

P
Pn

i¼1E½Xi�
n

� � <
Pn

i¼1Xi

n
<

Pn
i¼1E½Xi�

n
þ �

 !
¼ 1� P2ðA0Þ ¼ 1� d:

This follows from the fact that, for any integer n > 0; P1
Pn

i¼1Xi=n ¼ 1
� �

¼ 1,

1 Example 1 of a previous publication [2] claims to convey the same message, but that example is flawed in that expression (11) does not hold.
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8� > 0 : P2 ð1� dÞ � � <
Xn

i¼1

Xi=n < 1þ �
 !

¼ 1� P2ðA0Þ ¼ 1� d;

8� > 0 : lim
n!1

P3 ð1� dÞ � � <
Xn

i¼1

Xi=n < ð1� dÞ þ �
 !

¼ 1:

3.2. Forward factorization

De Cooman and Miranda have introduced a condition called forward factorization for variables X1:n that leads to interest-
ing laws of large numbers [4, Def. 1]. Forward factorization requires:

� for each i 2 [2,n], for any bounded function f of Xi and any non-negative bounded function g of X1:i�1,

E½gðX1:i�1Þðf ðXiÞ � E½f ðXiÞ�Þ�P 0: ð12Þ

The second part of the next proposition conveys a possibly more intuitive characterization of forward factorization:

Proposition 1. Forward factorization for variables X1:n is equivalent both to

� for each i 2 [2,n], for any bounded function f of Xi and any event A defined by variables X1:i�1,

E½AðX1:i�1Þðf ðXiÞ � E½f ðXiÞ�Þ�P 0;

and to

� for each i 2 [2,n], for any bounded function f of Xi and any event A defined by variables X1:i�1,

½f ðXiÞjAðX1:i�1Þ� 6 E½f ðXiÞ� whenever PðAðX1:i�1ÞÞ > 0:

The proof of this proposition is in Appendix B. The proof only assumes finite additivity. Note that under countable addi-
tivity and standard conditioning (expression (3)), forward regular irrelevance implies forward factorization.

Forward factorization implies a valuable inequality that is used in Section 4:

Proposition 2. For bounded and nonnegative functions fi, forward factorization of X1:n implies

E
Yn

i¼1

fiðXiÞ
" #

6

Yn

i¼1

E½fiðXiÞ�: ð13Þ

The proof of this proposition is presented in Appendix C.

4. Bounded variables

Take variables X1, . . . ,Xn such that supXi � infXi 6 bi for bi <1. The following inequalities, proved under several assump-
tions in theorems to be presented, are counterparts of Hoeffding inequality [8,17]:

P
Xn

i¼1

ðXi � E½Xi�ÞP �

 !
6 e�2�2=cn ; ð14Þ

P
Xn

i¼1

ðXi � E½Xi�Þ 6 ��
 !

6 e�2�2=cn : ð15Þ

These concentration inequalitites are similar to, but slightly tighter than, inequalities by De Cooman and Miranda [4, Remark 2]. Note
that results in this section are proved under the assumption of countable additivity and definitions of conditioning and irrelevance
presented earlier, while De Cooman and Miranda adopt Walley’s theory; the matter is discussed in more detail in Section 6.

The next theorem assumes a factorization that is implied by forward regular irrelevance (or by forward factorization); its
proof, presented in Appendix D, is remarkably similar to usual proofs of the Hoeffding inequality [8].

Theorem 1. Suppose bounded variables X1, . . . ,Xn satisfy expression (13) for bounded and nonnegative functions fi. If
cn ¼

: Pn
i¼1b2

i > 0, then expressions (14) and (15) hold.

Theorem 1 leads to simple proofs of laws of large numbers stated by De Cooman and Miranda [4]. The proof of the fol-
lowing theorem is presented in Appendix E. The third expression in the theorem corresponds to a finitary version of the usual
strong law of large numbers [9]; because countable additivity is assumed, limits can be taken if desired (as in the last two
expressions of Theorem 4).
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In the next theorem and later we use

ln ¼: ð1=nÞ
Xn

i¼1

E½Xi�; ln ¼: ð1=nÞ
Xn

i¼1

E½Xi�:

Theorem 2. If bounded variables X1,X2, . . . are such that X1, . . . ,Xn satisfy expressions (14) and (15) for any n > 1, then for any
� > 0,

8n P 1 : P ln � � <
Pn

i¼1Xi

n
< ln þ �

� �
P 1� 2e�2n�2=ðmaxib

2
i Þ;

lim
n!1

P ln � � <
Pn

i¼1Xi

n
< ln þ �

� �
¼ 1;

9N : 8N0 : P 8n 2 ½N;N þ N0� : ln � � <
Pn

i¼1Xi

n
< ln þ �

� �
> 1� 2�;

where n, N and N0 denote positive integers.

Corollary 1. Suppose bounded variables X1,X2, . . . satisfy forward regular irrelevance or forward factorization. Then, for any � > 0,
the three expressions in Theorem 2 hold.

We move to weak forward regular irrelevance and obtain an analog of the Azuma inequality [1,7]. It is interesting to note
that the proof of the following theorem, presented in Appendix F, is remarkably similar to the usual proof of the original Azu-
ma inequality [1]. In Section 6, we comment on the similarities between the next two theorems and results by De Cooman
and Miranda [4, Sec.4.1].

Theorem 3. Suppose bounded variables X1, . . . ,Xn satisfy weak forward regular irrelevance. If cn ¼
: Pn

i¼1b2
i > 0, then expressions

(14) and (15) hold.

We now present laws of large numbers under weak forward regular irrelevance, that follow directly from Theorems 2 and
3. De Cooman and Miranda prove a similar pair of laws by resorting to their theory of forward irrelevant natural extensions [4,
Sec. 4.1]; again, recall that their results do not assume countable additivity, as discussed in Section 6.

Corollary 2. Suppose bounded variables X1,X2, . . . satisfy weak forward regular irrelevance. Then, for any � > 0, the three
expressions in Theorem 2 hold.

5. Laws of large numbers without boundedness

We now consider variables without bounds in their ranges under the assumption of weak forward regular irrelevance; the
resulting laws of large numbers are the main contribution of the paper. In this section, we again assume that countable addi-
tivity holds (expression (2); that is, countable additivity of each element P of the credal set). We also assume, again, that
standard (Kolmogorovian) conditioning is adopted. Thus our setup is close to the standard one; we only depart from the Kol-
mogorovian tradition in explicitly letting a set of expectation functionals to be permissible given a set of assessments.

The proof employs a sequence of variables {Yn} defined as follows, for a fixed P:

Yn ¼:
Xn

i¼1

Xi � EP½XijX1:i�1�:

The key observation is that {Yn} is a martingale with respect to P. The properties of this martingale are explored in the proof of
the next theorem, presented in Appendix G.

Theorem 4. Suppose variables X1,X2, . . . satisfy weak forward regular irrelevance. Suppose further that E[Xi] and E½Xi� are finite
quantities such that2 E½Xi� � E½Xi� 6 d, and the variance of any Xi with respect to any element P of the credal set is no larger than a
finite quantity r2. Then, for any � > 0,

8n P 1 : P ln � � <
Pn

i¼1Xi

n
< ln þ �

� �
P 1� r2 þ d2

�2n
;

9N : 8N0 : P 8n 2 ½N;N þ N0� : ln � � <
Pn

i¼1Xi

n
< ln þ �

� �
> 1� 2�;

2 As noted in Appendix G, it is possible to remove the need for d; we thank a reviewer for providing sharper inequalities that do not require d.
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where n, N and N0 denote positive integers. Consequently,

8� > 0 : lim
n!1

P ln � � <
Pn

i¼1Xi

n
< ln þ �

� �
¼ 1;

P lim sup
n!1

Pn
i¼1Xi

n
� ln

� �
> 0

� �
¼ 0;

P lim inf
n!1

Pn
i¼1Xi

n
� ln

� �
< 0

� �
¼ 0:

One final question is whether it is possible to remove the condition that variances must be finite in this theorem. Even in
the standard theory one finds that laws of large numbers fail if restrictions on variances are simply removed [14]. Typically
when restrictions on variances are removed one requires variables to be identically distributed [13,23]. In our setting the
most natural requirement would be to ask all credal sets containing marginal distributions to be identical. This is the situ-
ation where, as Epstein and Schneider aptly call, variables are independent and indistinguishably distributed [12, Eq. 2.2]. Alas,
the following example shows that this assumption of indistinguishability fails to substitute for restrictions on variances.

Example 2. Assume countable additivity. Consider integer-valued random variables X1,X2, . . . that satisfy forward
factorization. The only available assessment is E½Xi� ¼ E½Xi� ¼ 0 for every Xi (all marginal credal sets are identical). Now
consider a joint distribution P that satisfies all assessments and irrelevances: P is the product measure of Pi defined as:
Pi(Xi = �i) = Pi(Xi = i) = 1/(2i), Pi(Xi = 0) = 1 � 1/i. As shown by Geller [14, Example 1] this joint distribution leads to failure of
the weak law of large numbers. Consequently, the lower probability of

Pn
i¼1Xi

�� ���n 6 � does not go to 1 as n grows without
bound.

Note that if one does assume that each joint distribution in the credal set has identical marginals, then further results can
be proved by combining Theorem 4 with truncation techniques [23, Sec. 4.7]. That is, by assuming forward regular irrele-
vance (not weak forward regular irrelevance), one can consider the sequence of truncated variables XiIjXi j6i. Countable addi-
tivity then allows one to discard the contribution, for each joint distribution, of the variables XiIjXi j>i (becauseP1

i¼1PðXi–XiIjXi j>iÞ 6
P1

i¼1PðjX1j > iÞ 6 E½jX1j� <1 for every joint distribution, and then the Borel–Cantelli lemma guarantees
that the differences are negligible). Consequently, the behavior of the original sequence can be investigated, possibly using
Theorem 4, by studying the truncated sequence fXiIjXi j6ig. The extent to which such techniques can lead to conceptually
interesting results is yet to be understood, given that the assumption of identical marginals for each joint distribution seems
to clash in spirit with regular irrelevance and the factorization conditions studied in this paper.

Finding a condition that is both stronger than indistinguishability and more intuitive than assuming identical marginals
for every joint distribution, and that still leads to laws of large numbers, is an open problem.

6. A comment on Walley’s theory of lower previsions

The work by De Cooman and Miranda on laws of large numbers adopts Walley’s theory of lower previsions [4], and
focuses on bounded variables. We now comment on the extent to which results in Section 4 apply to Walley’s theory; to
do so, we first review basic facts about full conditional measures.

The theory of full conditional measures, whose most vocal advocate was de Finetti [6], offers an alternative to the stan-
dard (Kolmogorovian) theory. The idea is to take the conditional expectation E[X |A] as a primitive that is well defined even if
the event A has zero probability. Four axioms are imposed on conditional expectations: for any nonempty event A,

(1) if a 6 X(x) 6 b for all x 2 A, then a 6 E[X |A] 6 b;
(2) E[X + Y |A] = E[X |A] + E[Y |A];
(3) E[IA |A] = 1;
(4) E[IAX |B] = E[X |A]E[IA |B] whenever A # B.

If a function E[� | �] satisfies these axioms, we call it a full conditional expectation. We can then define a set-function
P(B |A) ¼: E[IB |A] for any event B and any nonempty event A. Such P is usually called a full conditional measure [10,20], and
it satisfies, for every nonempty event C:

(1) P(C |C) = 1;
(2) P(A |C) P 0 for all A;
(3) P(A [ B |C) = P(A |C) + P(B |C) for all disjoint A and B;
(4) P(A \ B |C) = P(A |B \ C)P(B |C) for all A and B such that B \ C – ;.

If we are dealing with full conditional expectations, then, given two variables X and Y, the expectation E[X |Y = y] is well
defined for every y such that {Y = y} is nonempty. Given a set K of full conditional expectations, we can define lower and
upper conditional expectations respectively as E[X |Y = y] ¼: infE2KE[X |Y = Y] and E½XjY ¼ y� ¼: supE2K E½XjY ¼ y� for every y,
without concern on whether P(Y = y) = 0 or not. Note that Radon–Nikodym derivatives do not always satisfy the axioms
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for full conditional measures when the conditioning event has probability zero [26,27]; hence there are substantial differ-
ences between full conditional measures and standard (Kolmogorovian-style) probability measures.

For a single expectation functional, disintegrability holds with respect to Y when E[X] = E[E[X |Y]] for any X. Disintegrability
may fail for a single finitely additive probability measure over an infinite space [6,10]; that is, there is a finitely additive prob-
ability measure P such that EP[X] > EP[EP[X |Y]]. There are theories that do not adopt countable additivity but still obtain dis-
integrability. The theories of coherent behavior by Heath and Sudderth [16] and by Lane and Sudderth [21] axiomatize the
strategic measures of Dubins and Savage [11], and prescribe probability measures that disintegrate appropriately along pre-
defined partitions. It would be sufficient for our purposes to have sets of such strategic measures disintegrating over suitable
partitions (note that despite the drawbacks of strategic measures [18], they do admit non-trivial laws of large numbers [19]).

For an upper expectation, define disintegrability with respect to Y to mean

E½X� 6 E½E½XjY�� for any X: ð16Þ

Disintegrability without further qualification means disintegrability with respect to any Y. Walley’s theory deals with full
conditional measures but adds a condition of conglomerability that implies disintegrability of upper expectations [31,
Sec. 6.3.5(5)].

We now return to the main purpose of this section; that is, we analyze the validity of results in Section 4 within Walley’s
theory of lower previsions.

Propositions 1 and 2 hold for sets of full conditional measures (without any assumption of countable additivity). Hence
Theorems 1 and 2 hold for such sets (and in Walley’s theory). Note that Theorem 2 presents finitary versions of the laws of
large numbers that are appropriate when countable additivity is not assumed; if countable additivity is assumed, then limits
can be taken as in Theorem 4. Thus the main results in De Cooman and Miranda’s work are recovered, with different proofs.

Also, we have that forward irrelevance leads to forward factorization and then to the laws of large numbers in Theorem 2
(this is proved by De Cooman and Miranda using a different strategy). To see this, note that using Walley’s definition of epi-
stemic irrelevance we have: if Y is epistemically irrelevant to X, then

E½f ðXÞjAðYÞ� 6 E½E½f ðXÞjY ;AðYÞ�jAðYÞ� ¼ E½E½f ðXÞjY�jAðYÞ� ¼ E½E½f ðXÞ�jAðYÞ� ¼ E½f ðXÞ�

for any function f of X and any event A(Y) defined by Y such that PðAðYÞÞ > 0.3 Thus forward irrelevance implies forward fac-
torization, using Proposition 1, and this leads to the laws of large numbers.

Theorem 3 is more delicate as the use of elementwise disintegrability in the proof is not really meaningful in Walley’s the-
ory. However we can derive the result by assuming only disintegrability of upper expectations and the following condition,
that adapts weak forward regular irrelevance to Walley’s theory:

� for each i 2 [2,n],

E½XijX1:i�1� 6 E½Xi� and E½XijX1:i�1�P E½Xi�: ð17Þ

The proof of the following theorem is given in Appendix H.

Theorem 5. Suppose bounded variables X1, . . . ,Xn satisfy the condition given by expression (17). Assume disintegrability of upper
expectations with respect to X1:i�1 for i 2 {2, . . . ,n}. If cn ¼

: Pn
i¼1b2

i > 0, then expressions (14) and (15) hold.
Using Theorems 2 and 5:

Corollary 3. Suppose bounded variables X1,X2, . . . satisfy the condition given by expression (17). Assume disintegrability of upper
expectations with respect to X1:n for n > 1. Then, for any � > 0, the three expressions in Theorem 2 hold.

7. Discussion

The concentration inequalities and laws of large numbers proved in this paper assume rather weak conditions of irrele-
vance. When compared to usual laws of large numbers, both premises and consequences are weaker: expectations are not
assumed precisely known, and convergence is interval-valued.

Inequalities (14) and (15), and related theorems, slightly sharpen results in De Cooman and Miranda’s seminal work [4].
The proofs of these inequalities, as presented in this paper, are rather close to well-known methods in standard probability
theory. It should be noted that De Cooman and Miranda already comment on the similarity between their inequalities and
Hoeffding’s. Note also that De Cooman and Miranda’s results generalize several previous efforts, such as by Epstein and
Schneider, where credal sets are convex and closed and satisfy a condition of supermodularity [12, Sec. 4].

Theorem 4 is possibly the most valuable contribution of this paper. The strategy of the proof is to translate weak assump-
tions of irrelevance into facts regarding martingales, and to adapt results for martingales to this setting. This strategy keeps

3 This derivation is not valid for general sets of full conditional measures, but it is valid for Walley’s theory. Thanks to Matthias Troffaes for useful discussion
about this point.
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the proof close to well-known results in probability theory. The connection between lower and upper expectations and the
theory of martingales seems rather natural [3,29], but the relationship between epistemic/regular irrelevance and martin-
gales does not appear to have been explored in depth so far. We note that the basic constraint defining martingales (that
is, E[Yn |X1:n�1] = Yn�1) is preserved by convex combination of distributions; therefore, the study of martingales seems appro-
priate when one deals with convex sets of probability distributions – certainly it seems less contorted than the analysis
through stochastic independence, as stochastic independence is not preserved by convex combination.

There are some open questions that call for study. First, it would be valuable to determine whether countable additivity
(or at least disintegrability assumptions) are really needed in Theorems 3 and 4. Another question is whether the condition
on variances in Theorem 4 can be replaced by some weaker condition; this prompts the question of whether there is some
interesting notion of ‘‘identically distributed” variables in the present setting.
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Appendix A. Regular conditioning

Using an earlier proposal by Walley himself [30, Sec. 7], we can define regular conditioning without any reference to indi-
vidual probability measures:

½XjA� ¼: infða : E½AðX � aÞ� 6 0Þ if PðAÞ > 0; ð18Þ
½XjA� undefined if PðAÞ ¼ 0;

Lemma 1. If PðAÞ > 0,

½XjA� ¼ sup
E2K:PðAÞ>0

E½XjA� ¼ infða : E½AðX � aÞ� 6 0Þ:

Proof. We have:

infða : E½AðX � aÞ� 6 0Þ ¼ inf a : sup
E2K
ðE½AX� � aE½A�Þ 6 0

� �

¼ inf a : sup
E2K:PðAÞ>0

ðE½AX� � aE½A�Þ 6 0

 !
¼ inf a : sup

E2K:PðAÞ>0
E½XjA� 6 a

 !
¼ sup

E2K:PðAÞ>0
E½XjA�: �

Appendix B. Proof of Proposition 1

We divide the proof in two steps.

Lemma 2. Forward factorization for variables X1:n is equivalent to: for each i 2 [2,n], for any bounded function f of Xi and any
event A defined by variables X1:i�1,

E½AðX1:i�1Þðf ðXiÞ � E½f ðXiÞ�Þ�P 0: ð19Þ

Proof. If condition (12) holds, then by selecting g(X1:i�1) = A(X1:i�1) we obtain expression (19). Now assume conversely that
expression (19) holds. For a fixed i, define Y = g(X1:i�1) and construct a sequence of simple functions indexed by j P 1:

YP
j ¼
: X2jþ1

k¼1

MY

2j
kAj;k;

where, for k 2 {0,1,2, . . . ,2j + 1}, Aj,k is the indicator function of
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x :
MY

2j
ðk� 1Þ 6 YðxÞ < MY

2j
k

� 	
:

For any P of interest, expression (19) implies

EP ½YP
j ðf ðXiÞ � E½f ðXiÞ�Þ�P 0;

because YP
j is a weighted sum of indicator functions, where weights are all non-negative. As j grows, the simple functions YP

j

converge uniformly to Y. Uniform convergence of fYP
j g and boundedness of f imply uniform convergence of

YP
j ðf ðXiÞ � E½f ðXiÞ�Þ to Y(f(Xi) � E[f(Xi)]). Consequently, using expression (1),

lim
j!1

EP½YP
j ðf ðXiÞ � E½f ðXiÞ�Þ� ¼ EP½Yðf ðXiÞ � E½f ðXiÞ�Þ�;

and then EP[Y(f(Xi) � E[f(Xi)])] P 0 for every P of interest, as desired. h

Lemma 3. Forward factorization for variables X1:n is equivalent to: for each i 2 [2,n], for any bounded function f of Xi and any
event A defined by variables X1:i�1,

½f ðXiÞjAðX1:i�1Þ� 6 E½f ðXiÞ� whenever PðAðX1:i�1ÞÞ > 0:

Proof. Denote f(Xi) by X and A(X1:i�1) by A. Using Lemma 2 and expression (18), it is enough to show that E½AðX � E½X�Þ� 6 0 is
equivalent to infða : E½AðX � aÞ� 6 0Þ 6 E½X� whenever PðAÞ > 0. Clearly if E½AðX � E½X�Þ� 6 0 then infða : E½A
ðX � aÞ� 6 0Þ 6 E½X� (just take a ¼ E½X�). And because E½AðX � aÞ� is decreasing in a, infða : E½AðX � aÞ� 6 0Þ 6 E½X� implies
E½AðX � E½X�Þ� 6 0. h

Appendix C. Proof of Proposition 2

Proof. For any X, Y, we have E½X� � E½Y� 6 E½X � Y� because

E½X� ¼ E½X � Y þ Y� 6 E½X � Y � þ E½Y �:

Define f i ¼:
Qi

j¼1fjðXjÞ; then:

E½f n� � E½f n�1E½fnðXnÞ�� 6 E½f n � f n�1E½fnðXnÞ��
¼ E½f n�1ðfnðXnÞ � E½fnðXnÞ�Þ�
¼ �E½f n�1ð�fnðXnÞ � E½�fnðXnÞ�Þ�
6 0 ðusing expression ð12ÞÞ:

Hence E½f n� 6 E½f n�1E½fnðXnÞ��, and because fn(Xn) P 0 (thus E½fnðXnÞ�P 0), we have E½f n� 6 E½f n�1�E½fnðXnÞ�. We obtain the de-
sired result by iterating this reasoning. h

Appendix D. Proof of Theorem 1

Proof. If X P 0, then I{XP�} 6 X/� for any � > 0; using the fact that if X 6 Y then E½X� 6 E½Y �, we obtain PðX P �Þ 6 E½X�=� (a
Markov inequality). Consequently, for s > 0, any variable X satisfies

PðX P �Þ ¼ PðesX P es�Þ 6 e�s�E½expðsXÞ�:

Using this inequality and Proposition 2:

P
Xn

i¼1

ðXi � E½Xi�ÞP �

 !
6 e�s�E exp

Xn

i¼1

sðXi � E½Xi�Þ
 !" #

6 e�s�
Yn

i¼1

E½expðsðXi � E½Xi�ÞÞ�:

We now use the variant of Hoeffding’s result given by expression (23): If variable X satisfies a 6 X 6 b and E½X� 6 0, then
E½expðsXÞ� 6 expðs2ðb� aÞ2=8Þ for any s > 0. Hence E½expðsðXi � E½Xi�ÞÞ� 6 expðs2b2

i =8Þ and

P
Xn

i¼1

ðXi � E½Xi�ÞP �

 !
6 e�s�es2cn=8

6 e�2�2=cn ;
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where the last inequality is obtained by taking s = 4�/cn. This proves the first inequality in the theorem; the second inequality
is proved by considering the upper probability P

Pn
i¼1ðð�XiÞ � E½�Xi�ÞP �

� �
and noting that E½Xi� ¼ �E½�Xi�. h

Appendix E. Proof of Theorem 2

Proof. Define b2 ¼: maxib
2
i . Noting that PðAÞ ¼ 1� PðAcÞ for any event A, using subadditivity of upper probability, and then

expressions (14) and (15):

P ln � � <
Pn

i¼1Xi

n
< ln þ �

� �
¼ 1� P

Xn

i¼1

Xi � nln P n�

( )
[

Xn

i¼1

Xi � nln 6 n�

( ) !

P 1� P
Xn

i¼1

Xi � nln P n�

 !
� P

Xn

i¼1

Xi � nln 6 n�

 !
P 1� e

�2n�2

b2 � e
�2n�2

b2

¼ 1� 2e
�2n�2

b2 :

By taking the limit as n grows without bound, we obtain that the lower probability goes to one. Now consider the strong law
of large numbers. For any � > 0, N > 0 and N0 > 0,

P 9n 2 ½N;N þ N0� :
Pn

i¼1Xi

n
P ln þ �

� �
6

XNþN0

n¼N

P
Pn

i¼1Xi

n
P ln þ �

� �
6

XNþN0

n¼N

e�2n�2=b2 ¼ ðe�2N�2=b2 Þ
XN0
n¼0

e�2n�2=b2

¼ ðe�2N�2=b2 Þ1� e�2ðN0þ1Þ�2=b2

1� e�2�2=b2 <
e�2N�2=b2

1� e�2�2=b2 :

Consequently,

P 9n 2 ½N;N þ N0� :
Pn

i¼1Xi

n
P ln þ �

� �
< �;

provided that N is a positive integer such that N > �ðb2=ð2�2ÞÞ ln �ð1� e�2�2=b2 Þ. An analogous argument leads to

P 9n 2 ½N;N þ N0� :
Pn

i¼1Xi

n
6 ln � �

� �
< �:

By superadditivity of upper probability: for any � > 0, there is N such that for any N0,

P 8n 2 ½N;N þ N0� : ln � � <
Pn

i¼1Xi

n
< ln þ �

� �
> 1� 2�;

as desired. h

Appendix F. Proof of Theorem 3

Proof. Using both Markov’s inequality (as in the proof of Theorem 1) and elementwise disintegrability, for any s > 0,

P
Xn

i¼1

ðXi � E½Xi�ÞP �

 !
6 e�s�E exp

Xn

i¼1

sðXi � E½Xi�Þ
 !" #

¼ e�s� sup
P

EP EP exp
Xn

i¼1

sðXi � E½Xi�Þ
 !�����X1:n�1

" #" #

¼ e�s� sup
P

EP exp
Xn�1

i¼1

sðXi � E½Xi�Þ
 !

hPðX1:n�1Þ
" #

;

where hPðX1:n�1Þ ¼ EP½expðsðXn � E½Xn�ÞÞjX1:n�1�. Due to weak forward regular irrelevance:

EP ½XnjX1:n�1� 6 E½XnjX1:n�1� 6 E½Xn�;

whenever the event defined by X1:n�1 has nonzero probability with respect to P. For these events we now apply expression
(23); other events have probability zero and do not matter when the outer expectation is calculated. So, for events of
interest,

EP ½Xn � E½Xn�jX1:n�1� 6 0:
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We apply expression (23) to P in conditional form (that is: if variable X satisfies a 6 X 6 b and EP[X |A] 6 0, then
EP[exp(sX) |A] 6 exp(s2(b � a)2/8) for any s > 0). Then:

hPðX1:n�1Þ ¼ EP½expðsðXn � E½Xn�ÞÞjX1:n�1� 6 expðs2b2
n=8Þ: ð20Þ

Given this inequality,

P
Xn

i¼1

ðXi � E½Xi�ÞP �

 !
6 e�s� sup

P
EP exp

Xn�1

i¼1

sðXi � E½Xi�Þ
 !

es2b2
n=8

" #
6 e�s�es2b2

n=8 sup
P

EP exp
Xn�1

i¼1

sðXi � E½Xi�Þ
 !" #

:

These inequalities can be iterated to produce:

P
Xn

i¼1

ðXi � E½Xi�ÞP �

 !
6 e�s� exp s2

Xn

i¼1

b2
i =8

 !
¼ e�s�es2cn=8:

Finally, by selecting s = 4�/cn,

P
Xn

i¼1

ðXi � E½Xi�ÞP �

 !
6 e�2�2=cn :

The second inequality in the theorem is proved by noting that weak forward factorization of X1, . . . ,Xn implies weak forward
factorization of �X1, . . . ,�Xn (as E½Xi� ¼ �E½�Xi�), and by focusing on P

Pn
i¼1ðð�XiÞ � E½�Xi�ÞP �

� �
. h

Appendix G. Proof of Theorem 4

As noted before the statement of Theorem 4, we use the sequence {Yn} defined as

Yn ¼:
Xn

i¼1

Xi � EP½XijX1:i�1�:

This sequence is a function of all variables X1:n such that

EP ½YnjX1:n�1� ¼
Xn�1

i¼1

Xi � EP½XijX1:i�1�
 !

þ EP½Xn � EP ½XnjX1:n�1�jX1:n�1� ¼ Yn�1 þ EP ½XnjX1:n�1� � EP ½XnjX1:n�1� ¼ Yn�1;

so, {Yn} is a martingale with respect to P.
We now manipulate a number of standard conditional expectations, where the conditioning events that have positive

probability with respect to P are the ones that matter. We have:

EP ½ðYn � Yn�1Þ2jX1:n�1� ¼ EP ½Y2
njX1:n�1� � 2EP½Yn�1YnjX1:n�1� þ Y2

n�1 ¼ EP½Y2
njX1:n�1� � 2Yn�1EP½YnjX1:n�1� þ Y2

n�1

¼ EP ½Y2
njX1:n�1� � 2Yn�1Yn�1 þ Y2

n�1 ¼ EP½Y2
njX1:n�1� � Y2

n�1:

And by taking expectations on both sides we obtain the following martingale property (note the use of elementwise
disintegrability):

EP ½Y2
n� ¼ EP½ðYn � Yn�1Þ2� þ EP½Y2

n�1�: ð21Þ

Elementwise disintegrability also leads to

EP ½Yn� ¼
Xn

i¼1

EP½Xi� � EP½EP½XijX1:i�1�� ¼
Xn

i¼1

EP½Xi� � EP ½Xi� ¼ 0:

Proof. We start with expression (21) for a fixed P. Because Yn � Yn�1 = Xn � EP[Xn |X1:n�1],

EP ½Y2
n� ¼ EP½ðXn � EP½XnjX1:n�1�Þ2� þ EP½Y2

n�1�:

Iterating the last expression, and denoting EP[Xi] � EP[Xi |X1:i�1] by Di:

EP ½Y2
n� ¼

Xn

i¼1

EP½ðXi � EP½XijX1:i�1�Þ2� ¼
Xn

i¼1

EP ½ððXi � EP½Xi�Þ þ ðEP½Xi� � EP ½XijX1:i�1�ÞÞ2�

¼
Xn

i¼1

EP½ðXi � EP½Xi�Þ2� þ 2DiEP½Xi � EP ½Xi�� þ D2
i ¼

Xn

i¼1

EP½ðXi � EP½Xi�Þ2� þ D2
i 6

Xn

i¼1

r2 þ d2 ¼ nðr2 þ d2Þ; ð22Þ
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using weak forward regular irrelevance to conclude that D2
i 6 d2.4

After these preliminaries on the sequence {Yn}, note that for any � > 0,

P ln � � <
Pn

i¼1Xi

n
< ln þ �

� �
¼ P

Xn

i¼1

E½Xi� � �n <
Xn

i¼1

Xi <
Xn

i¼1

E½Xi� þ �n
 !

P P
Xn

i¼1

EP½XijX1:i�1� � �n <
Xn

i¼1

Xi <
Xn

i¼1

EP½XijX1:i�1� þ �n
 !

;

using weak forward regular irrelevance. The last expression is equal to

P �� <
Pn

i¼1Xi � EP½XijX1:i�1�
n

< �
� �

¼ PðjYn=nj < �Þ:

By Chebyshev’s inequality and expression (22),

PðjYn=nj < �Þ ¼ 1� PðjYn=njP �ÞP 1� EP ½Y2
n�

�2n2
P 1� r2 þ d2

�2n
:

By combining these inequalities for any P of interest, the first inequality in the theorem is proved. By taking the limit as n
grows without bound, we obtain

lim
n!1

P ln � � <
Pn

i¼1Xi

n
< ln þ �

� �
¼ 1:

The proof of the strong law of large numbers uses the same strategy, but replaces the appeal to Chebyshev’s inequality by
an appeal to the Kolmogorov–Hajek–Renyi inequality (expression (24)), as in the proof of the strong law of large numbers by
Whittle [34, Thm. 14.2.3]. So, for a fixed P and for any � > 0, we proceed as previously to obtain:

P 8n 2 ½N;N þ N0� : ln � � <
Pn

i¼1Xi

n
< ln þ �

� �
P P 8n 2 ½N;N þ N0� : �� < Yn

n
< �

� �
¼ Pð8n 2 ½N;N þ N0� : jYn=nj < �Þ:

As f0;YN;YNþ1; . . . ;YNþN0 g forms a martingale, we use the Kolmogorov–Hajek–Renyi inequality (expression (24)) to produce:

Pð8n 2 ½N;N þ N0� : jYn=nj < �ÞP 1� EP ½Y2
N�

�2N2 �
XNþN0

i¼Nþ1

EPðYi � Yi�1Þ2

�2i2 :

Hence:

Pð8n 2 ½N;N þ N0� : jYn=nj < �ÞP 1�
PN

i¼1EP ½ðXi � EP ½XijX1:i�1�Þ2�
�2N2 �

XNþN0

i¼Nþ1

EP ½ðXi � EP ½XijX1:i�1�Þ2�
�2i2

P 1� r2 þ d2

�2N
�
XNþN0

i¼Nþ1

r2 þ d2

�2i2 ðusing expression ð22ÞÞ

P 1� r2 þ d2

�2N
�
X1

i¼Nþ1

r2 þ d2

�2i2

P 1� r2 þ d2

�2

1
N
þ
Z 1

N
1=i2 di

� �
¼ 1� r2 þ d2

�2

1
N
þ 1

N

� �

¼ 1� 2
r2 þ d2

�2N
:

Consequently, for integer N > (r2 + d2)/�3, we obtain the desired inequality

P 8n 2 ½N;N þ N0� : ln � � <
Pn

i¼1Xi

n
< ln þ �

� �
> 1� 2�:

Using the Kolmogorov–Hajek–Renyi without an upper bound on n,

P 8n P N :

Pn
i¼1Xi

n
< ln þ �

� �
P P 8n P N : ln � � 6

Pn
i¼1Xi

n
6 ln þ �

� �
> 1� 2�:

4 A reviewer generously suggested a derivation that shows EP ½Y2
n � 6 nr2, thus obtaining a sharper inequality and removing the need for d. The strategy is to

recall that the set of square-integrable functions is an Hilbert space; hence EP[� |X1:n] is the orthogonal projection onto the set of square-integrable X1:n-
measurable functions. Consequently, from the properties of Hilbert spaces, EP[(X � EP[X | X1 : n])2] 6 EP[(X � EP[X])2] and then
EP ½Y2

n � ¼
Pn

i¼1EP ½ðX � EP ½XjX1:n�Þ2� 6
Pn

i¼1EP ½ðX � EP ½X�Þ2� 6 nr2.
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Consequently,

P 9n P N :

Pn
i¼1Xi

n
P ln þ �

� �
< 2�:

This is almost exactly the inequality obtained by De Cooman and Miranda [4, Thm. 7] for bounded variables. We now copy
their reasoning [4, A.8] to obtain probabilities over lim sup and lim inf. Event K ¼ x : lim supnð1=nÞ

Pn
i¼1ðXi � E½Xi�Þ > 0


 �
is

equal to \mP1\NP1[nPNKm,n, where

Km;n ¼ x : ð1=nÞ
Xn

i¼1

ðXiðxÞ � E½Xi�ÞP 1=m

( )
:

Using countable additivity, P(K) = infmP1infNP1P([nPNKm,n) for every P. And using the previous inequality, for every m there
is some N* P 1 such that

inf
mP1

inf
NP1

Pð[nPNKm;nÞ 6 inf
mP1

Pð[nPN�Km;nÞ 6 inf
mP1

2=m ¼ 0;

consequently, P(K) = 0 for any P of interest, as desired.
The last expression in the theorem is proved from

P 8n P N :

Pn
i¼1Xi

n
> ln � �

� �
> 1� 2�;

by a similar argument. h

Appendix H. Proof of Theorem 5

Proof. Using both Markov’s inequality (as in the proof of Theorem 1) and disintegrability, for any s > 0 we get

P
Xn

i¼1

ðXi � E½Xi�ÞP �

 !
6 e�s�E exp

Xn

i¼1

sðXi � E½Xi�Þ
 !" #

6 e�s�E E exp
Xn

i¼1

sðXi � E½Xi�Þ
 !

jX1:n�1

" #" #

¼ e�s�E exp
Xn�1

i¼1

sðXi � E½Xi�Þ
 !

hðX1:n�1Þ
" #

;

where hðX1:n�1Þ ¼ E½expðsðXn � E½Xn�ÞÞjX1:n�1�. Due to condition (17),

E½XnjX1:n�1� 6 E½Xn�; thus E½Xn � E½Xn�jX1:n�1� 6 0:

We now apply expression (23) (if variable X satisfies a 6 X 6 b and E½X� 6 0, then E½expðsXÞ� 6 expðs2ðb� aÞ2=8Þ for any s > 0),
conditional on X1:n�1:

hðX1:n�1Þ ¼ E½expðsðXn � E½Xn�ÞÞjX1:n�1� 6 expðs2b2
n=8Þ:

We have reached an analog of expression (20), and the proof of the theorem can be produced by copying the steps after that
expression. h

Appendix I. Two auxiliary inequalities

The following inequality is a simple extension of a basic result by Hoeffding [8,17]: If variable X satisfies a 6 X 6 b and
E½X� 6 0, then for any s > 0,

E½expðsXÞ� 6 expðs2ðb� aÞ2=8Þ: ð23Þ

Proof. First, the inequality is clearly valid if a = b or if b < 0. From now on, suppose b P 0 P a. By convexity of the
exponential function,

expðsxÞ 6 x� a
b� a

esb þ b� x
b� a

esa for x 2 ½a; b�:

Given monotonicity of upper expectations,
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E½expðsXÞ� 6 E
X � a
b� a

esb þ b� X
b� a

esa

� 
:

Because (esb � esa)(b � a) > 0, and using E½X� 6 0,

E½expðsXÞ� 6 b
b� a

esa � a
b� a

esb þ esb � esa

b� a
E½X� 6 b

b� a
esa � a

b� a
esb:

Now if a = 0, then E½expðsXÞ� 6 1 6 expðs2b2
=8Þ and the theorem is valid. Thus suppose b P 0 > a. By rearranging terms, we

obtain:

E½expðsXÞ� 6 expð/ðsðb� aÞÞÞ;

for /(u) = �pu + log(1 � p + peu) with p = �a/(b � a) (note that p 2 (0,1]). Given that /(0) = /0(0) = 0 and /00(u) 6 1/4 for u > 0
(as the maximum of /00(u) is 1/4, attained at eu = (1 � p)/p), we can use Taylor’s theorem as follows. For some v 2 (0,u), /
(u) = /(0) + u/0(0) + (u2/2)/00(v) 6 (u2/8) and consequently /(s(b � a)) 6 s2(b � a)2/8. By putting together these inequalities,
we obtain expression (23). h

We now review the Kolmogorov–Hajek–Renyi inequality, almost exactly as proved by Whittle [34, Thm. 14.2.2]; this is
presented just to indicate the role of elementwise disintegrability in the derivation. Let {Xi} be a martingale with X0 = 0, and
let {�i} be a sequence 0 < �1 6 �2 6 � � �; the inequality is

Pð8j 2 ½1;n� : jXjj < �jÞP 1�
Xn

i¼1

E½ðXi � Xi�1Þ2�
�2

i

: ð24Þ

Proof. Define �0 ¼
: �1 and An ¼

: {"j 2 [0,n] : |Xj| < �j}. Using ni = Xi � Xi�1, and denoting the indicator function of some events
by the events themselves,

PðAnÞ ¼ EP½An� ¼ EP½An�1IfjXn j<�ng�
P EP ½An�1ð1� X2

n=�
2
nÞ� ðas IfjXj<�g P 1� X2=�2Þ

¼ EP½An�1ð1� ðX2
n�1 þ n2

nÞ=�2
nÞ�

ðby the martingale property; expression ð21ÞÞ
P EP ½An�2ð1� X2

n�1=�
2
n�1Þ� � EP ½n2

n=�
2
n�

ðas �n�1 6 �n and IfjXj<�gð1� X2=�2ÞP ð1� X2=�2ÞÞ:

Iteration of the last inequality yields the result. Note that disintegrability for each P was used when applying the martingale
property. h

It should be noted that the inequality proved by Whittle is slightly different: P 8j 2 ½1;n� : jXjj 6 �j
� �

P
1�

Pn
i¼1E½ðXi � Xi�1Þ2�=�2

i (under the same conditions). The proof only changes by replacing indicator functions (I{|X|<�} by
I{|X|6�}).
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