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Abstract. One has often to deal with large quantities of data in robotics,
either coming from sensors or from background knowledge. Background
knowledge, with attached semantics, are usually modeled logically, and
sensor data, due to uncertainties concerning their nature, are modeled
probabilistically. In this paper we present a scalable method for spatial
mapping of indoor environments, through the use of a probabilistic on-
tology. Reasoning with this ontology allows segmentation and tagging
of sensor data acquired by a robot during navigation. We report experi-
ments with a real robot to validate our approach, thus moving closer to
the goal of integrating mapping and semantic labeling processes.

1 Introduction

As robots have moved from static indoor environments to dynamic outdoor
applications, displaying complex interaction patterns, the interest in semantic
knowledge in robotics has grown [15]. For instance, semantic knowledge can
o�er substantial help in 3D reconstruction of environments [24] and in trans-
fering knowledge learned from one environment to di�erent ones [25]. Recent
research has actually investigated the acquisition of semantic knowledge directly
from robot sensors [11], moving beyond classic work on (basically) hand-coded
semantic knowledge [3,19].

As stated by Hertzberg and Sa�otti [15], two points must be present in
applications to fully use semantic knowledge in robotics. The �rst point is that
an explicit representation of knowledge must be available to the robot (that is,
an ontology for the domain of interest must be present). The second point is
that symbols used in the representation must be grounded into physical objects
that can be detected by robot sensors. Even though several proposals claim to
be using semantics in robotics when automatically classifying sensor data in
categories, most such proposals do not reason about objects in the domain. One
of the di�culties in reasoning about objects is the presence of uncertainty in
real world robotics. While most languages for encoding semantic knowledge are
based on logic, in robotics one must deal with sensors, actuators and changing
environments; dealing with the unavoidable uncertainties is essential. There is
a growing interest in combining logic and probability [13] in the most di�erent
�elds, with particular robotic applications in semantic mapping [10,20]. In this
paper we bene�t from this literature, focusing on a probabilistic description logic.
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This article shows some improvements regarding a previous ongoing work,
that proposes a combination of traditional methods in robotics to �nd known
objects in images and to register 3D points, while using a probabilistic descrip-
tion logic to match datasets with areas of the environment. We can split sensor
data into smaller clusters, map them separately, and assemble them together to
build a topologic semantic map. This scheme allows us to handle large environ-
ments with distinct parts. We thus move towards the goal of adding high-level
abilities to robotic navigation. We present the basic idea in Section 2, and the
probabilistic ontology in Section 3. Section 4 describes experiments with real
data and Section 5 concludes the paper.

2 Semantic mapping in large environments

Mapping environments requires dealing with huge amounts of data. To produce
scalable solutions to this problem, it is necessary to explore similarities in pat-
terns. For instance, indoor environments consist of rooms and hallways, and
di�erent objects in each one of these areas help in characterizing the location.
An additional di�cult in mapping, particularly 3D mapping, is data associa-
tion; that is, registering sensor readings from two distinct positions. If we can
label data with the location they come from, say ceiling, wall, kitchen, o�ce, the
possible combinations of data association are minimized.

(a) Monitor.

(b) Table.

(c) Pioneer 3-AT.

Fig. 1. Correspondence between template objects and scenes acquired by a mobile
robot.
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There is current interest in annotating observed structures with semantically
meaningful labels such as �building� or �tree� [1]. The classi�cation of data in
such categories simpli�es data association [23] and leads to maps that are use-
ful beyond navigation; for instance, a map can be useful for task planning as
well [12]. Such work is often called semantic mapping.

A quick literature review on the use of semantic knowledge in robotics is
in order. Galindo et al. [12] present an ontology for indoor environments, and
exploit the semantics for task planning. They investigate the deduction of new
information and the use of this information to improve plans. Their spatial hi-
erarchy is combined with a conceptual hierarchy expressed with a description
logic, and both hierarchies are related through anchoring [4]. Another relevant
previous work has been produced by Limketkai et al. [20], who exploit semantics
to construct a map from laser data. They use Relational Markov Networks [31]
to classify lines processed from laser sensor data. Doors and corridors are iden-
ti�ed, and relations are used to improve discrimination. Yet another relevant
work has been produced by Wang and Domingos [33], who apply Markov Logic
networks to the same domain, developing extensions that handle continuous vari-
ables. With regard to sensor data classi�cation, several authors aim at creating
topological maps by clustering data points. For instance, Posner et al. [28] shows
how to classify outdoor scenes, using odometry to provide continuity in classi-
�cation. Zivkovic et al. [34] use omnidirectional images of indoor environments
and propose a method that builds a topological map. Vasudevan et al. [32] use
identi�cation of certain objects (with SIFT [21]) to create a map of objects.

We propose in this paper an o�ine scheme for semantic mapping. The robot
navigates through the environment, collecting images, laser and odometry data,
and then all data are processed at once. The idea is to identify objects in the
images and to determine the label of the location each image was taken. We then
segment data based on location labels, thus creating a topological map. We run
a SLAM algorithm to the individual locations and create maps of smaller areas
of the environment. For instance, data from an o�ce are used to reconstruct
spatially only the o�ce. Odometry allows us to determine the topology of the
environment and to unify all metric maps into a single one.

Our implementation employed SIFT to obtain features and the logic crALC
to encode semantic knowledge about environments. The �gure also shows the
robot Pioneer 3-AT, mounted with a SICK laser to obtain 3D data and a camera
to recognize objects in images, as used in the experiments. The classi�cation of
objects in images was done with features robustly extracted using the SIFT
algorithm; for that, objects described in the ontology have a SIFT descriptor
previously computed. Figure 1 shows two templates of objects. Not all sensor
data are labeled as some images may contain objects not matched against SIFT
descriptors. But using the principle of continuity, sensor data not labeled between
two or more with identical labels receives the same label.

After objects are identi�ed, the probabilistic description logic ontology in
crALC is used to label sensor data. Inferences are conducted in a Bayesian
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network generated from the crALC model, thus producing probabilities for the
various types of environments.

3 Representing environments in crALC

To reason about objects contained in an environment, we propose in this section
a probabilistic ontology, expressed in a probabilistic description logic. Descrip-
tion logics are largely used to build ontologies, as they usually contain a fragment
of �rst-order logic and can organize concepts into hierarchies [2]. For instance,
an �o�ce� can be described as a set of �chairs�, �tables� and �computers� in some
structured manner. The challenge is that there is usually uncertainty attached
to descriptions of environments in robotics, and there is always uncertainty as-
sociated with sensor data. In practice two instances of the same label are often
distinct; for instance, two parks may have completely di�erent vegetation but
both still need to be labeled as �park�. Standard description logics cannot model
alone these matters. We thus resort to a description logic that allows proba-
bilities to be attached to its formulae. Even though some of these probabilities
can easily be estimated, most of the probabilities cannot, and so we must deal
with imprecision in probability values. An extreme case would be to leave the
probability of a particular relation to be in the interval [0, 1], with no further
constraints.

3.1 Credal ALC

Cozman and Polastro have recently proposed a probabilistic description logic,
called Credal ALC (crALC) [6,7,27], that adopts an interpretation-based seman-
tics and resorts to graph-theoretical tools so as to allow judgements of stochastic
independence to be expressed. This logic was chosen over several other proba-
bilistic description logics in the literature [9,14,17,18,22,5,30] as it is based in
the popular ALC logic and due to its interpretation-based semantics and con-
nection with Bayesian networks (hence leading to relatively e�cient inference
algorithms).

The vocabulary of crALC contains individuals, concepts, and roles. Con-
cepts and roles are combined to form new concepts using a set of constructors

from ALC [29]: conjunction (C u D), disjunction (C t D), negation (¬C), ex-
istential restriction (∃r.C) and value restriction (∀r.C). A concept inclusion is
denoted by C v D and a concept de�nition is denoted by C ≡ D, where C
and D are concepts; we assume in both cases that C is a concept name. We
then say that C directly uses D; the relation uses is the transitive closure of
directly uses. Also, the concept > denotes C t (¬C) for some concept C. As in
ALC, the semantics is given by a domain D, a set of elements, and an inter-
pretation mapping I that assigns an element to an individual, a set of elements
to a concept, and a binary relation to a role. An interpretation mapping must
also comply with constructs of the language; for instance, the interpretation
of concept C u D is I(C) ∩ I(D), while the interpretation of concept ∀r.C is
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{x ∈ D | ∀y : (x, y) ∈ I(r)→ y ∈ I(C)}. Additionally, crALC accepts proba-

bilistic inclusions as follows. A probability inclusion reads

P (C|D) ∈ [α1, α2],

where D is a concept and C is a concept name. The semantics of such a proba-
bilistic inclusion is, informally:

∀x : P (C(x)|D(x)) ∈ [α1, α2], (1)

where it is understood that probabilities are over the set of all interpretation
mappings I for a domain D. If D is the concept > then we write P (C) ∈
[α1, α2]. Probabilistic inclusions are required to only have concept names in their
conditioned concept (that is, inclusions such as P (∀r.C|D) are not allowed). Yet
another type of probabilistic assessement is possible in crALC: for a role r, we
can have P (r) ∈ [β1, β2] to be made for roles, with semantics:

∀x, y : P (r(x, y)) ∈ [β1, β2], (2)

where again the probabilities are over the set of all interpretation mappings for
a given domain.

Every ontology is assumed acyclic; that is, a concept does not use itself. If
we write down an ontology as a directed graph where each node is a concept or
role, and arcs go from concepts that are directly used to concepts that directly
use them, we obtain that this graph must be acyclic. We refer to such a graph
as an ontology graph. For instance, consider concepts A, B, C and the role r,
and suppose P (A) = 0.7, B v A, P (B|A) = 0.4, P (r) = 0.5 and C ≡ A u ∃r.B.
In Figure 2.a we have the ontology graph.

Under some additional restrictions (unique-names assumption, known and �-
nite domain), any ontology expressed in crALC can be grounded into a Bayesian
network, possibly with attached probability intervals [6,7,27]. That is, ground-
ing an ontology with a �nite and known domain leads to a credal network [8]. In
Figure 2.b we have the grounded network for the ontology described in the pre-
vious paragraph, for a domain with only 2 individuals. Note that each concept
is instantiated with each one of the individuals, while each role is instantiated
with each pair of individuals.

A change from previous uses of crALC, is that we implement types in the
language so that it is possible to instanciate only some parts of the graph to do
inference.

3.2 An ontology for the domain of spatial mapping

We now present a probabilistic ontology suitable for dealing with robotic map-
ping. We take as base an ontology proposed in [26] and add more topological
knowledge between the identi�ed ambients. We start with two primitive concepts
Object and Environment. As crALC requires that a priori probabilities must be
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A(x)

r.B (x)E
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(a) Ontology graph.

r.B (1)E
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r.B (2)E

A(2)

C(2)

r(2,1)

B(1)

r(1,2)

B(2)

r(2,2)

(b) Grounded ontology.

Fig. 2. A small ontology and its grounding for a domain with 2 individuals.

speci�ed for primitive concepts; as there is no prior information on objects, we
assign relatively large probability intervals as follows:

P (Object) ∈ [0.2, 0.8] , P (Environment) ∈ [0.2, 0.8] .

We introduce two roles, one to express that an environment contains an object,
and the other to express that two objects are near. We leave the probabilities
for these roles rather free, using the same intervals:

P (contains) ∈ [0.2, 0.8] , P (near) ∈ [0.2, 0.8] .

Along with Objects and Environments we introduce the concept Connector that
will be used to describe elements such as doors and hallway junctions and the role
accesses that tell us which environment can be accessed from each Connector.
Again, we use the same intervals.

P (Connector) ∈ [0.2, 0.8] , P (accesses) ∈ [0.2, 0.8] .

We then propose the following object hierarchy, using constructs in crALC:

InteriorObject v Object,

ExteriorObject v Object,

OfficeObject v Object,

Table v InteriorObject,

Chair v InteriorObject,

Cabinet v InteriorObject u OfficeObject,

Monitor v InteriorObject u OfficeObject,

Printer v InteriorObject u OfficeObject,

Sign v ExteriorObject,
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Extinguisher v ExteriorObject,

Switchbox v ExteriorObject,

Board v Object,

Door v Object u Connector,

Junction v Connector.

As B v A implies P (B|¬A) = 0 but implies nothing about P (B|A), in several
cases we would have P (B|A) ∈ [0, 1]. We then adopt P (B|A) ∈ [0.2, 0.8].

Composite objects can now be described:

Desk ≡ Table u ∃near.Chair, Entrance ≡ Door u ∃near.Sign.

Finally, the whole environment can be described as:

Room ≡ Environment

u ∃contains.Door

u ∃contains.Table

u ∃contains.Chair

u ¬∃contains.ExteriorObjects

Office ≡ Room

u ∃contains.Desk

u ∃contains.Cabinet

u ∃contains.Monitor

Classroom ≡ Room

u ∃contains.Board

u ¬∃contains.OfficeObjects

Hallway ≡ Environment

∃contains.Entrance

u ∃contains.Extinguisher

u ∃contains.Switchbox

u ¬∃contains.InteriorObjects

.

The network generated by grounding this ontology is relatively dense and
contains probability intervals. Inference is nontrivial from a computational point
of view. In our experiments we resort to approximate algorithms based on Loopy
Propagation [7,16].

4 Experiments

We provide results of an experiment consisting of a robot navigating through
three di�erent areas of an indoor environment: a laboratory, a professor's room,
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Table 1. Identi�ed environments for 6 datapoints.

Datapoints

Location 1 5 7 10 13 17

Observations

Objects

3 chairs 2 chairs 3 doors 2 doors 2 chairs 2 chairs
1 table 1 table 2 signs 2 signs 2 table 1 table

1 monitor 2 monitor 1 extinguisher 1 extinguisher 1 monitors 1 monitor
1 cabinet 1 cabinet 1 switchboard 1 switchboard 1 cabinet 2 cabinets
1 door 1 door 1 board 1 door 1 door

Inference result

P(O�ce)
[0.000, [0.000, [0.000, [0.000, [0.000, [0.000,
0.502] 0.602] 0.001] 0.001] 0.554] 0.554]

P(Classroom)
[0.000, [0.000, [0.000, [0.000, [0.000, [0.000,
0.450] 0.532] 0.060] 0.060] 0.385] 0.385]

P(Hallway)
[0.000, [0.000, [0.000, [0.000, [0.000, [0.000,
0.020] 0.020] 0.767] 0.767] 0.020] 0.020]

Area 1 2 3

and a hallway connecting both. In this experiment, we gathered images and 3D
points with a laser sensor, with the pose of each data gathering location given
by odometry and a gyroscope. We picked sequentially 18 points to gather data
from the laser and gather images.

Each point was then classi�ed accordingly to the identi�ed objects; the result
of inferences for 6 of the points can be seen in Table 1. Whenever two consecutive
points have di�erent labels, the data are split into a new area. In this case,
we found 3 distinct areas. Table 1 shows the inference values for 2 points for
each area. Note that in the ontology the possible environments were not set as
mutually exclusive; hence the probabilities are for individual objects and are not
required to add to one across objects.

Note that the good result of the inferences are directly related to the use of
probability intervals. In [26] exact probabilities where used instead of intervals.
When choosing this probabilities, if probabilities such as 0.5 or higher where
picked, the results get extremely binary, e.g. if a table where identi�ed, the
probability for hallway drops to zero. This is undesirable since the robot may be
subjected to misidenti�ed objects, or even identify an unrelated object through
a door or window. On the other hand, if smaller probabilities where to be chosen,
inferences would result in insigni�cant values, i.e. all the environments proba-
bilities would be inferred as low in [0.00, 0.15]. And using the open intervals to
specify the ontology gives much signi�cant results once mean that we really does
not know if an object is relevant to the environment. All environment start with
a probability in [0.0, 1.0] and for each identi�ed object, the upper limit of the
interval drops slightly for the undesired environment.

With the sensor data set segmented in three di�erent areas, it was possible
to map each identi�ed area alone, using only the pertinent sub-set of data to
map the 3 areas. To produce the 3D maps, we used 6D SLAM software, available
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(a) Jun's lab. (b) Hallway.

(c) Cozman's room.

Fig. 3. An example of a 3d metric map of area 1.

from http://openslam.org [23]. Figure 3 shows the top-view of the 3D map from
the mapped areas. Figure 3(a) is a top-view of the laboratory, Figure 3(b) is a
top-view of the hallway and Figure 3(c) is a top-view of the professor's room.
Figure 4 shows a tridimensional view of the environment mapped.

Fig. 4. Three-dimensional view

In Table 2, we see that mapping the di�erent areas separatelly is faster (even if
we process one after the other) than processing all the data to produce one single
map. But the approach is even more interesting if we calculate the di�erent areas
in parallel, in which the time consumed is the time of the area that consumes
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the most, in this case, Cozman's room. The di�erence in time is due to the
calculation of registration between all the sensor readings. With less readings,
lesser combinations and faster processing. Experiments were executed in a Intel
Core 2 Quad (2.4 GHz / 2.39 GHz).

Table 2. Time comparisons

Mapped areas time (ms)

Cozman's room 52,186

Hallway 31,670

Jun's lab 7,267

Complete 114,703

5 Conclusion and Future Work

We have proposed a set of techniques that incorporate semantic knowledge into
robotic mapping; the techniques are geared towards mapping large domains.
The idea is to make the mapping process scalable by breaking it into small
units that receive semantic labels speci�ed using a probabilistic description logic.
This objective has been achieved, as we have been able to automatically split
data in convenient smaller and tagged sets, each one being mapped by itself.
Semantic knowledge can have a signi�cant impact in robotics, and we hope
to have o�ered a viable path for substantial future development. Improvement
from a previous version of this work includes a clearer ontology to the problem of
robotic mapping, inference considering imprecise probabilities, implementation
of types in the probabilistic logic language to instantiate smaller graphs for
inference, and experiments in a larger environment to really demonstrating the
bene�cts of the approach.

Further work with probabilistic description logic should deal directly with
data coming from sensors; that is, the classi�cation should consider more primi-
tive objects as lines from laser or patches of images. We plan to investigate how
to learn relations between concepts to extend the ontology as the robot executes
its tasks. Future applications will use more deeply the potential of semantic
knowledge and the power of probabilistic logic languages.
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