
Entailment Multipliers: an Algebraic Characterization of Validity for Classical and

Many-Valued Logics 1

Author(s):
Marcelo Finger

Mauricio S. C. Hernandes

1This work was supported by Fapesp Project LogProb, grant 2008/03995-5, São Paulo, Brazil.



Entailment Multipliers: an Algebraic

Characterization of Validity for Classical and

Many-Valued Logics

Marcelo Finger⋆ and Mauricio S. C. Hernandes⋆⋆

Department of Computer Science
Institute of Mathematics and Statistics

University of Sao Paulo

mfinger@ime.usp.br mauhcs@gmail.com

Abstract. We propose a novel algebraic characterisation of the classical
notion of validity for many-valued logics, called entailment multipliers.
We demonstrate the existence of such multipliers for many-valued logics
in an algebraic presentation of polynomial rings over finite-valued ma-
trices. A set of conditions is present such that, if a logic can express
operators satisfying those conditions, than the existence of entailment
multipliers is guaranteed. Classical logic is a special case of importance
and the existence and computation of entailment multipliers is discussed
at length both over boolean rings and over boolean algebras.

1 Introduction

In this work we study an algebraic characterisation of the notion of logical valid-
ity for many-valued logics, which include classical logic as a special, two-valued
case.

The notions of logical consequence and logical validity have been explored
under several points of view, which include proof-theory and semantic entail-
ment relations, but here the algebraic view is at the centre. We also explore
the relationship between this algebraic view of validity characterisation with
proof-theoretical and semantic approaches.

The current work is a deeper exploration of the initial results obtained in [8],
which explored an algebraic characterisation of validity over boolean rings. The
starting point of that study lies at Carnielli’s result relating polynomial rings
over finite-valued fields with the representation of connectives in many-valued
logics. Here we extend those results to a much wider class of logics, expanding
the scope of this new form of validity characterisation to an infinite number of
many-valued logics. Those results not only cover any logic described by rings of
polynomials over finite fields, but also applies to boolean algebras.

⋆ Partly supported by CNPq grant PQ 301294/2004-6 and FAPESP project
2008/03995-5.

⋆⋆ Partly supported by CNPq.



In this sense, this paper is a “coming home”. For we departed from the usual
algebraic presentation of classical logic in terms of boolean algebras to be able
to present an algebraic characterisation of validity over boolean rings [8]. Now,
when extending those results to many-valued logics, we show that they can be
applied to boolean algebras as well.

Classical validity statements presented in terms of semantic entailment ex-
pressions or proof-theoretical sequents can be expressed as polynomials over
boolean rings or over boolean algebras. In [8] it was shown that a characteris-
tic polynomial could be built for boolean rings inserting variables as multipli-
ers of terms obtained from the algebraic translation of formulas in the validity
statements, and adding all such terms. A statement is classically valid iff the
corresponding polynomial has roots when equated to the unit (the 1-roots).

Here we show how a similar characterisation of validity can be applied to a
large class of many-valued logics whose algebraic presentation satisfy a set of
multiplier matrix conditions. A set of detailed of examples of entailment multi-
pliers for some 3-valued logics is presented.

We then show that, as a particular case, boolean algebras also satisfy the mul-
tiplier matrix conditions, and detail the relationship between boolean algebraic
multipliers and classical inference methods.

1.1 Comparisons with the Literature

As mentioned before, this work constitutes a a deeper exploration of the initial
results obtained in [8]. That method has some common points in the literature
with the use of Hilbert Nullstellensatz for propositional refutations, which was
initially suggested by Lovász [11] and was independently proposed again in [1]
and later developed in a series of works on what has bee termed the algebraic
propositional proof system [12, 4, 2, 3].

In such an approach, formulas are transformed into polynomials over a fixed
algebraically closed field F . Satisfiability of a formula A is mapped as an equation
QA(x̄) = 0, where QA(x̄) is the translation of the formula A as a polynomial over
variables x̄. Extra equations of the form x2

i +xi = 0 are needed to ensure that each
xi ∈ x̄ takes only values 0 or 1. Theorem proving is made by refutation, trying
to show that a set of formulas is unsatisfiable. In such setting, one can apply
Hilbert’s (weak) Nullstellensatz, that states that a set a system of equations
Qi(x̄) = 0 does not have a solution in F iff there are polynomials Pi(x̄) such
that

∑

i Pi(x̄)Qi(x̄) = 1.

The approach developed here has a much wider range of logics, not only clas-
sical logic. Both the approach using boolean rings and boolean algebras employ
translation to polynomials that are essentially distinct from that work. However,
no similarity occurs between our proposed method for many-valued logics and
that approach.



1.2 Organisation of the Paper

After presenting some definitions and notation, Section 2 introduces boolean,
two-valued rings and shows the existence of entailment multipliers for valid
statements. We then generalise this notion for many-valued logics, providing
in Section 3 a general result based on the formulation of special conditions over
polynomial rings for algebraic matrices of many-valued logics. We then note
that boolean algebras satisfy those conditions, and present in Section 4 methods
for computing entailment multipliers over boolean rings which are derived from
classical inference systems.

Notation

We consider formulas built over a countable set of propositional atoms P =
{p0, p1, . . .} and connectives ¬, ∧, ∨ and →. We represent formulas by upper
case Latin letters: A, B, C, etc. We represent sets or multisets of formulas by
upper case Greek letters, such as Γ , ∆, Φ and Ψ . A valuation is a function that
maps each atomic symbol in P in {0, 1}, which is then generalised to formulas
in the usual way; a valuation v is said to satisfy formula A if v(A) = 1. A set of
formulas Γ is satisfiable if there is a v such that for every A ∈ Γ , v(A) = 1.

An entailment statement is an expression of the form Γ |= ∆; such a state-
ment is valid if every valuation that satisfies every A ∈ Γ also satisfies some
B ∈ ∆. The proof-theoretic counterpart of entailment statements are sequents,
which are expressions of the form Γ ⊢ ∆, where Γ is the sequent’s antecedent
and ∆ its consequent. A sequent may be proven using several distinct inference
systems, represented by ⊢I ; such a system is sound and complete with respect
to the semantic entailment iff Γ |= ∆ iff Γ ⊢I ∆.

Algebraic terms are represented by lower case Latin letters: a, b, c, etc. Al-
gebraic variables are represented by x, y, z, etc. All representations may be sub-
scripted or superscripted.

2 Entailment Multipliers over Boolean Rings

We present here the results of [8]. For that purpose, a ring is considered as an
algebraic structure R = 〈R, ·,+, 0, 1〉 where R is a set, 0, 1 ∈ R and for every
a, b, c ∈ R the following holds:

(r1) (a + b) + c = a + (b + c);
(r2) 0 + a = a + 0 = a;
(r3) there is −a ∈ R such that a + (−a) = (−a) + a = 0;
(r4) a + b = b + a;
(r5) (a · b) · c = a · (b · c);
(r6) a · b = b · a;
(r7) 1 · a = a · 1 = a;
(r8) a · (b + c) = a · b + a · c.



A boolean ring B = 〈B, ·,+, 0, 1〉 is a ring subjected to the conditions, for
every a ∈ B:

(b1) a · a = a;
(b2) a + a = 0

In a boolean ring, the structure · is interpreted as conjunction, + is exclusive-or,
0 is the bottom and 1 is the top. Every element is its own inverse, x+x = 0 and
the power of any variable is at most 1. As 0 is defined by (b2), a boolean ring is
sometimes represented as B = 〈B, ·,+, 1〉. As usual, we write ab for a · b.

For every propositional formula A, let At be its standard translation as a
term of B; similarly, let if a is a term of B, aϕ is its formula translation. The
term and formula translations are defined as follows.

⊤t = 1
⊥t = 0
pti = xi

(¬A)t = At + 1
(A ∧B)t = At ·Bt

(A ∨B)t = (At + 1) · (Bt + 1) + 1
(A → B)t = At · (Bt + 1) + 1

1ϕ = ⊤
0ϕ = ⊥
x
ϕ

i = pi
(a · b)ϕ = aϕ ∧ bϕ

(a+ b)ϕ =







¬aϕ , b = 1
(aϕ ∧ ¬bϕ)∨
(¬aϕ ∧ bϕ) , b 6= 1

It is immediate that a = (aϕ)t and that A ≡ (At)ϕ.

The statement A1, . . . , An |= B1, . . . , Bm is valid iff (
∏n

i=1
At

i)·
(

∏m
j=1

(Bt
i + 1)

)

=

0, so we can move backwards and forwards from the logic to the algebraic set-
tings.

Definition 1 (Characteristic Polynomial). Given an entailment statement
S = A1, . . . , An |= B1, . . . , Bm, its characteristic polynomial over variables
x1, . . . , xn, y1, . . . , ym is CP(S) = x1 · (At

1 + 1) + . . . + xn · (At
n + 1) + y1 ·B

t
1 +

. . . + ym ·Bt
m .

The characteristic polynomial has 1-roots if there are terms a1, . . . , an, b1, . . . , bm
such that

∑n
i=1

ai · (At
i + 1) +

∑m
j=1

bj ·B
t
j = 1. (1-roots)

In this case we say that the terms a1, . . . , an, b1, . . . , bm are entailment multipli-
ers.

Theorem 1 (Entailment Multipliers). A classical entailment statement S
is valid iff its characteristic polynomial CP(S) has 1-roots.

A direct proof of this theorem is presented in [8], but here it can be seen as
a direct consequence of Theorem 2 in Section 3.2.

We use the notation of Labelled Deduction System (LDS) [9] to designate a
formula and its corresponding entailment multiplier as the label:

x1 : A1, . . . , xn : An |= y1 : B1, . . . , ym : Bm



Example 1. Consider the statement A,C → ¬A,B → C |= ¬B,C → D. Its
characteristic (ring) polynomial is:

x1 · (a + 1) + x2 · (ca) + x3 · (b(c + 1)) + y1 · (b + 1) + y2 · (c(d + 1) + 1).

By making x1 = x2 = 1, x3 = a, y1 = a(c+1) and y2 = 0 and applying the rules
of boolean rings, we see that the characteristic polynomial is equal to 1, so by
Theorem 1 the statement is valid and we write

1 : A, 1 : C → ¬A, a : B → C |= a(c + 1) : ¬B, 0 : C → D

Note that 0-labelled formulas play no part in the validity of the statement. Also
note that multipliers are not unique, for the following also represent a possible
set of multipliers for the same validity statement

c(d + 1) : A, (d + 1) : C → ¬A, 0 : B → C |= 0 : ¬B, 1 : C → D

The two different sets of multipliers represent different two different proofs for
the same statement. ⊓⊔

In [8] it was shown several ways to compute boolean-ring entailment multi-
pliers according to several classical proof methods, which we will be presented
for boolean algebras in Section 4.

3 Algebraic Multipliers for Many-valued Logics

We now generalise the notion of algebraic multipliers to a class of many-valued
logics. We first introduce a matrix presentation of multi-valued entailment. In
that setting, the a general notion of entailment multiplier is shown to exist.

In principle, a logic can have any number of connectives and truth values.
So consider initially an algebraic alphabet as a set F of functional symbols in
which every symbol f ∈ F is associated to a non-negative integer n, namely the
symbol’s arity. Let Fn ⊆ F be the set of functional symbols of arity n.

An algebra A of type F is a pair A = 〈A,F〉 where A is a non-empty set1

called the universe of the algebra, and F is a family of operators in A indexed
by the alphabet F such that for each n-ary symbol f ∈ F there corresponds an
n-ary operator fA ∈ F ; the elements of F are called the fundamental operators
in A. Further on, we will also deal with derived operators.

Example 2. We present some well-known algebraic concepts in the light of those
definitions.

(a) A group is a triple 〈G,+, 0〉 where F = F0 ∪ F2, F0 = {0} and F2 = {+}
such that for a, b, c ∈ G:
– (a + b) + c = a + (b + c);

1 We follow the tradition of using the same symbol both for the algebra and for its
universe set.



– 0 + a = a + 0 = a;
– there is a −a ∈ G such that a + (−a) = (−a) + a = 0.

A group is commutative if it satisfies:
– a + b = b + a.

(b) A (simple) ring is a 4-tuple 〈R,+, ·, 0〉 where F0 = {0} and F2 = {+, ·}
satisfying:
– 〈R,+, 0〉 is a commutative group;
– (a · b) · c = a · (b · c);
– (a · (b + c) = a · b + a · c)e((a + b) · c = a · c + b · c).

A group is commutative if it satisfies:
– a · b = b · a.

The ring has a unit if
– there is 1 ∈ A such that 1 · a = a · 1 = a.

(c) A field is a 5-tuple 〈K,+, ·, 0, 1〉 where F0 = {0, 1} and F2 = {+, ·} such
that:
– 〈K,+, ·, 0〉 is a commutative ring with unit 1;
– 1 6= 0;
– If a 6= 0 then there is a−1 ∈ K such that a · a−1 = 1. ⊓⊔

Here is another well-known algebra that is very useful in the present work.

Example 3. A boolean ring B = 〈B, ·,+, 0, 1〉 is a ring subjected to the condi-
tions, for every a ∈ B:

(b1) a · a = a;
(b2) a + a = 0

Note that in a boolean ring, −a = a. ⊓⊔

The logical notion of formula is represented by that of algebraic terms. Let
X be a non-empty set of variables, X ∩A = ∅. The set of A-terms TermA over
X is the smallest set such that

i. X ∪ F0 ⊂ TermA;
i. if a1, . . . , an ∈ TermA and fA ∈ Fn then fA(a1, . . . , an) ∈ TermA.

A many-valued interpretation is a function τ : TermA → A that associates
each term a to an element of the algebra, aτ , such that

(f(a1, . . . , an))τ = fA(aτ1 , . . . , a
τ
n) a1, . . . , an ∈ TermA, f ∈ Fn.

We drop the algebra index when no confusion arises. The actual notion of a
formula is obtained by replacing the set of variables X with a set of propositional
symbols P, and the translation between terms and formulas is then immediate.

To generalise the notion of classical truth table, we employ the notion of
algebraic matrices. The matrix presentation of an n-ary operator f in an m-
valued algebra contains mn cells, such that the cell corresponding to 〈a1, . . . , an〉
contains the value of f(a1, . . . , an) ∈ A, |A| = m. A matrix M = 〈A,D〉 is a
pair where A is an algebra and D ( A is the set of designated values, which
represent the “true” values in a many-valued setting.

We now present a few examples of matrices. We start with the well know
notion of a boolean ring.



Example 4. A boolean ring is by the following matrix:

A = {0, 1}
F = {·,+,⊤}
D = {1}

· 0 1

0 0 0
1 0 1

+ 0 1

0 0 1
1 1 0

¬

0 1
1 0

Note that these matrices are consistent with the definitions in Section 2. ⊓⊔

And now we present the matrix for the well-known 3-valued logic  L3.

Example 5. The  Lukasiewicz 3-valued logic  L3 can be defined by the following
matrix:

A = {0, 1, 2}
F = {¬,→}
D = {2}

→ 0 1 2

0 2 2 2
1 1 2 2
2 0 1 2

¬

0 2
1 1
2 0

In such a logic, p |= p and |= p → p but p → (p → q) 6|= p → q. ⊓⊔

The important notion here is that of a multi-valued entailment over a matrix
M or a class of matrices M. If Γ and ∆ be sets of A-terms we say that Γ entails
∆ over M, Γ |=M ∆, if for every 〈A,D〉 ∈ M and for every interpretation τ , if
Aτ ∈ D for all A ∈ Γ then Bτ ∈ D for some B ∈ ∆. We also omit the class of
matrices M when it is clear from the context.

In such a many-valued setting, a generalised notion of multiplier can be
obtained if some conditions are respected. For that, first we need to establish a
class of proof polynomials.

3.1 Polynomials

A fundamental concept in this study is that of a polynomial. Given an algebra
A = 〈A,F〉, we define the set A[X] of polynomials induced by A on variables
X = {x1, . . . , xn} as the smallest set such that:

i. X ∪ A ⊂ A[X];
ii. if P1, . . . , Pn ∈ A[X] and f ∈ Fn, then fA(P1, . . . , Pn) ∈ A[X].

Note that the set of A-terms is a subset of the set of polynomial defined
by A. In this sense, it is possible to generalise the notion of a term valuation
τ to the set of all polynomials by fixing, for each variable x ∈ X, xτ ∈ A
and then generalising the notion of valuation for polynomials in the usual way:
(f(a1, . . . , an))τ = f(aτ1 , . . . , a

τ
n).

An m-ary operator g is (explicitly) definable in algebra A if there is a term
a(x1, . . . , xm) on variables x1, . . . , xm in which g does not occur such that, for
every interpretation τ , g(x1, . . . , xm)τ = (a(x1, . . . , xm))τ .

Polynomials are of interest because they enable us to define algebraic op-
erators. In fact, we say that a polynomial P (x1, . . . , xm) defines an operator



f : An → A over A if, when applied to elements of A (ie, to truth values),
the polynomial yields fA’s matrix. For example, consider A = {0, 1, 2} as the
3-valued universe of logic  L3 and · and + as product and sum modulo 3. Then
the polynomial P¬(x) = 2 · x + 2 defines the operator ¬ in  L3 as presented in
example 5. In fact, P¬(0) = 2, P¬(1) = 2 · 1 + 2 = 1 and P¬(2) = 2 · 2 + 2 = 0.

As a further example, consider the boolean connectives {¬,∧, lor,→} and
the representation in a boolean ring 〈+, ·, 1〉:

P¬(x) = x + 1
P∧(x, y) = x + y

P∨(x, y) = x · y + x + y

P→(x, y) = x · y + x + 1

In the study of algebraic properties of finite-valued logics, we are interested
in polynomials induced by finite fields, which are algebraic fields with finitely
many elements; see Example 2(c). There are well-known interesting properties
of finite fields [10]:

– Every finite field has exactly pn elements, where p is a prime number and n

a positive integer.
– For every prime p and positive integer n there is a finite field of size pn

– Two finite fields of same size are isomorphic.

As finite fields of the same cardinality are all isomorphic, they can be brought
to a “normal form”, as follows. For n ∈ N and z ∈ Z, let z̄k denote:

z̄k = {x ∈ Z|x− z is divisible by k}.

In this case 1̄2 = {. . . ,−1, 1, 3, 5, 7, . . .}, 0̄2 = {. . . ,−2, 0, 2, 4, . . .}, and 1̄3 =
4̄3 = 7̄3 = 103 = {. . . ,−2, 1, 4, 7, 10, . . .}. It is clear that k̄k = 0̄k, (k + 1)k = 1̄k,

etc. Let Zk = {0̄k, 1̄k, . . . , (k − 1)k} and define the following operations on Zk:

1. āk +k b̄k = (a + b)k;

2. āk ·k b̄k = (a · b)k.

The algebra Zk = 〈Zk, 0k, 1k,+k, ·k〉 is a commutative ring with unit, and
every finite field is isomorphic to some Zpn for some prime p and integer n > 0
with k = pn.

In the study of many-valued logic, Carnielli [5] proved an important repre-
sentation theorem relating finite field with many-valued logics.

Proposition 1 ([5]). Let A be a non-empty finite set of truth values, and let
f : Am → A be an m-ary operation on A. Then f can be represented by a
polynomial over Zpn [x1, . . . , xm] for any p prime and integer n such that pn ≥
|A|.

This means that every connective in a finite valued logic with m truth values
can be represented as a polynomial in Zpn , for pn ≥ m. The particular case when
m = p1 is also important, as most finite-valued logics of interest are found in
that case, in which we have that mx = 0 and xm = x.



Example 6. Let us continue the example on  Lukasiewicz 3-valued logic  L3 to
illustrate the result of Proposition 1. In this case, we have that |A| = 3, p = 3
and n = 1, such that the matrix of example 5 can be represented by the following
polynomials (recall that the truth values are {0, 1, 2} and the only designated
value is 2):

– Operator ¬ is represented in Z3[x, y] by

P¬(x) = 2x + 2;

– Operator → is represented in Z3[x, y] by

P→(x, y) = 2x · (y + 1) · (x · y + y + 1) + 2.

In this way, the valid formula x → x is represented by the polynomial
Px→x(x) = 2x(x + 1)(x2 + x + 1) + 2 = (2x2 + 2x)(x2 + x + 1) + 2 = 2(x4 +
2x3 + 2x2 +x) + 2. As in Z3[X] we have that x3 = x and 3x = 0, we can further
simplify Px→x(x) = 2(x2 + 2x+ 2x2 +x) + 2 = 2(3x2 + 3x) + 2 = 3 ·0 + 2 = 2, so
x → x is represented by a polynomial that is equal to the constant designated
truth value 2.

In fact, it follows from the Proposition above that every valid formula in  L3

is represented by a polynomial identical to 2. ⊓⊔

We are now in a position to state and prove the main result for algebraic
multipliers in multiplicative logics

3.2 Algebraic Multipliers for Many-valued Logics

Given a matrix M = 〈〈A,F〉,D〉, suppose A is bi-partitioned in D (designated
values) and N (non-designated values).

We say that M is a multiplier matrix if it is possible to define operators
¬ ∈ F1 and +, · ∈ F2 satisfying the following restrictions, for d, d1, d2 ∈ D,
n, n1, n2 ∈ N and a, b, c ∈ A:

(mm1) ¬d ∈ N ;
(mm2) a · n ∈ N ;
(mm3) n · a ∈ N ;
(mm4) d1 · d2 ∈ D;
(mm5) a + (b + c) = (a + b) + c;
(mm6) a + b = b + a;
(mm7) n1 + n2 ∈ N ;
(mm8) d + n ∈ D.

Note that the conditions force · to be neither associative nor commutative. We
note some immediate consequences of the conditions above which will be used
in the proof of Theorem 1.

– if a1 + . . . + an ∈ D then some ai ∈ D, by (mm5), (mm6), (mm7) and
(mm8);



– if a1 + . . . + an + b1 + . . . + bm ∈ D and all bj ∈ N then a1 + . . . + an ∈ D,
by (mm5), (mm6), (mm7) and (mm8);

– a · b ∈ D iff a, b ∈ D, by (mm2), (mm3) and (mm4);

It is clear that Boolean Rings are multiplier matrices, satisfying all conditions
(mm1)–(mm8). An example of 3-valued logic that immediately satisfies condi-
tions (mm1)–(mm8) is ǫ3 that will be described in Example 7. A more complex
situation when we consider the 3-valued logic  L3, which will be discussed as well.

We now generalise the notion of a characteristic polynomial.

Definition 2 (Many-valued Characteristic Polynomial). Given an entail-
ment statement S = a1, . . . , an |= b1, . . . , bm over a many-valued multiplier
matrix M = 〈〈A,F〉,D〉 satisfying (mm1 − −mm9) above, its characteristic
polynomial over variables x1, . . . , xn, y1, . . . , ym is

CPS(x1, . . . , xn, y1, . . . , ym) = x1 · (¬a1) + . . .+xn · (¬an) + y1 · b1 + . . .+ ym · bm

.
The characteristic polynomial has D-roots if there are terms p1, . . . , pn, q1, . . . , qm

such that for any valuation τ

pτ1 · (¬aτ1) + . . . + pτn · (¬aτn) + qτ1 · bτ1 + . . . + qτm · bτm ∈ D.

The terms p1, . . . , pn, q1, . . . , qm are entailment multipliers.

Theorem 2 (Many-valued Entailment Multipliers). An entailment state-
ment S = a1, . . . , an |= b1, . . . , bm over a many-valued multiplier matrix M =
〈〈A,F〉,D〉 is valid iff its characteristic polynomial CPS(X) has D-roots.

Proof. Let n and d be elements of N and D, respectively.
(⇒) Suppose that a1, . . . , an |= b1, . . . , bm is valid. Fix a valuation τ such

that aτk ∈ D for 1 ≤ k ≤ n. Then by the multiplier matrix conditions, we have
that

CPS(X) ∈ D =⇒ x1 · (¬a1) + . . . + xn · (¬an) + y1 · b1 + . . . + ym · bm ∈ D
=⇒ y1 · b1 + . . . + ym · bm ∈ D.

Due to validity, there exits a br with bτr ∈ D. If we take yr ∈ D and yj ∈ N for
j 6= r, 1 ≤ j ≤ m, then we have that

CPS(X) ∈ D =⇒ y1 · b1 + . . . + ym · bm ∈ D
=⇒ yr · br ∈ D.

and the latter is a true statement by (mm4), so CPS ∈ D.
(⇐) Now suppose there are entailment multipliers p1, . . . , pn, q1, . . . , qm such

that
pτ1 · (¬aτ1) + . . . + pτn · (¬aτn) + qτ1 · bτ1 + . . . + qτm · bτm ∈ D

for every valuation τ . Suppose also that aτi ∈ D for 1 ≤ i ≤ n. Then clearly
qτ1 · bτ1 + . . . + qτm · bτm ∈ D. By the multiplier matrix conditions, it must be



the case that for every τ there exists pτj · bτj ∈ D, 1 ≤ j ≤ m, which again
by those conditions imply that bτj ∈ D. Among bτ1 , . . . , b

τ
m which bτj ∈ D may

depend on τ , but the fact that there always exists one such bj guarantees that
S = a1, . . . , an |= b1, . . . , bm is valid.

As the conditions of multiplier matrices apply to boolean rings, it follows that
for classical logic, when translated to boolean rings, any valid logical entailment
has an associated set of entailment multipliers. Thus Theorem 1 is an instance
of Theorem 2.

Let us now examine a 3-valued logic that is also a multiplier matrix.

Example 7. Consider a 3-valued logic with truth values {0, ǫ, 1} in which ǫ is
a truth value “just above 0”, with connectives {·,+,¬}, and call it ǫ3-logic.
Consider its matrix:

A = {0, ǫ, 1}
F = {·,+,¬}
D = {1}

+ 0 ǫ 1

0 0 ǫ 1
ǫ ǫ ǫ 1
1 1 1 ǫ

· 0 ǫ 1

0 0 0 0
ǫ 0 ǫ ǫ

1 0 ǫ 1

¬

0 1
ǫ 1
1 0

Clearly this is a multiplier matrix, for which by Theorem 2 a sequent is valid iff
there are entailment multipliers. Note that ǫ |= ǫ as for x = 1 and y = 0 we have
that x ·¬ǫ+y · ǫ = 1, but 1 6|= ǫ as the equation x ·¬1+y · ǫ = 1 has no roots. ⊓⊔

Note that the conditions for multiplier matrices do not impose · to be either
associative nor commutative. In fact, had we defined a small variant of logic ǫ3
with a non-commutative multiplication given by

· 0 ǫ 1

0 0 0 0
ǫ 0 ǫ ǫ

1 0 0 1

this would still be a multiplier matrix for which the theorem applies. In the
following we analyse interesting cases of entailment multipliers.

3.3 Entailment Multipliers and  Lukasiewicz 3-valued Logic

In the case of  Lukasiewicz 3-valued logic  L3 with , we cannot apply immediately
Theorem 2, for there is no immediately available multiplication and sum. In
this case there are two options, namely either try to define negation, sum and
multiplication operators satisfying multiplier matrix conditions (mm1)–(mm8)
using the existing operators or extend the algebra’s type so as to include such
operators. As it We start by the latter, as it is straightforward.

In fact, Proposition 1 allows us to consistently extend a k-valued matrix, for
k = pn as above, with the addition of operators +k and ·k. In fact, as the original
operators can be expressed in terms of a polynomial employing constants and



+k and ·k, the addition of such operators will not add any inconsistencies. In
that case, the extended  L3-matrix will contains operators {¬,→, ·,+} where the
latter two operator satisfy:

· 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

The extended  L3-matrix satisfy all conditions (mm1)–(mm8), so entailment mul-
tipliers do exist for  L3-valid logical entailment. Even if the  L3-valid has no oc-
currence of the operators + and ·, those operators can occur in the multipliers.

Example 8. Consider the  L3-valid entailment statements:

– |= a → a. Its characteristic polynomial is CP (x) = x · 2, so with x = 1,
CP (x) = 2 ∈ D.

– a |= a. Its characteristic polynomial is CP (x, y) = x · (2a+ 2) + y · a, so with
x = y = 1 one obtains CP (x, y) = 3a + 2 = 2 ∈ D.

– a |= b → a. Its characteristic polynomial is CP (x, y) = x·(¬a)+y ·(a → b) =
x·(2a+2)+y·(2b(a+1)(ab+a+1)+2), then with multipliers x = 2b(ab+a+1)
and y = 1 one obtains CP (x, y) = 6b(a + 1)(ab + a + 1) + 2 = 2 ∈ D.

Note that in this last case the multipliers contain operators + and · but not the
valid entailment. ⊓⊔

Now let us go back to the case where no new operators are added. Is it
possible to apply Theorem 2? We will see that the answer is positive, by defining
 L3-operators in terms of {¬,→} only.

Recall the original definition of the  L3 matrix as

A = {0, 1, 2}
F = {¬,→}
D = {2}

→ 0 1 2

0 2 2 2
1 1 2 2
2 0 1 2

¬

0 2
1 1
2 0

Now consider the following definitions

−a = a → 1
a⊙ b = −(a → −b)
a× b = ¬ − (a⊙ b)
a∆b = −(¬A⊙ ¬b)
a⊕ b = ((−a) × b)∆(a× (−b))

which generate the following matrices for operators ⊙,⊕ and −

⊙ 0 1 2

0 1 1 1
1 1 1 1
2 1 1 2

⊕ 0 1 2

0 1 1 2
1 1 1 2
2 2 2 1

−

0 2
1 2
2 1



Clearly, those operators satisfy the multiplier matrix conditions (mm1)–(mm8).
So we can apply Theorem 2 in for valid  L3-entailment. As for the associated
polynomials, in terms of ring operations ·,+ and ¬:

¬a = 2 · a + 2
a → b = 2 · a · (b + 1) · (a · b + b + 1) + 2

and the polynomials for the newly defined operators are:

−a = a2 + 2a + 2
a⊙ b = a2b2 + 2a2b + 2ab2 + ab + 1
a⊕ b = a2b2 + 2a2b + 2ab2 + ab + 2a2 + 2b2 + a + b + 1

So we can express the characteristic polynomials of valid entailment statements
in terms of those equalities.

Example 9. Consider the  L3-valid entailment statement a |= a, which according
to the connectives above has as characteristic polynomial

(x⊙−a) ⊕(y ⊙ a) =
(x2(2a2 + a + 2) + x(a2 + 2a + 1) + 1) ⊕ (y2(a2 + 2a) + y(2a2 + a) + 1)

In this case, if we make x = 2 and y = 2 we obtain

(a2 + 2a + 2) ⊕ (2a2 + a + 1) = 2 ∈ D.

Thus we have presented entailment multipliers for  L3 without extending it with
more expressive operators. ⊓⊔

This example leaves an open question: is it possible to determine if a given
set of fundamental operators can define a set of operators satisfying multiplier
matrix conditions (mm1)–(mm8)?

4 Entailment Multipliers for Boolean Algebras

The study of entailment multipliers was motivated by Carnielli’s result on the
expressivity of many-valued logics over many-valued rings. In case of two-valued
logics, that lead us to focus on classical boolean rings as the object of the study.
So entailment multipliers were proven to exist for boolean rings.

It remains the question on whether entailment multipliers exist for boolean
rings. But one only has to note that boolean algebras satisfy all the multiplier
matrix conditions (mm1)–(mm8). In fact, if we consider a classical boolean al-
gebra 〈A,∧,∨,¬, 0, 1〉 and consider, as usual, ∧ as multiplication and ∨ as sum,
it is immediate that Theorem 2 can be applied to boolean algebras.

In fact, given a classical statement A1, . . . , An |= B1, . . . , Bm, its associated
characteristic polynomial over boolean algebras is

CP(x1, . . . , xn, y1, . . . , ym) = x1∧(¬At
1)∨. . .∨xn∧(¬At

n)∨y1∧B
t
1∨. . .∨ym∧Bt

m.

The following result comes directly from the observation that {∧,∨,¬} satisfy
the multiplier matrix restrictions, D = {1} and N = {0}.



Corollary 1. A classical entailment statement is valid iff there are terms for
which its characteristic polynomial over boolean algebras is equal to 1.

In the following, we consider · = ∧ and + = ∨. We reexamine Example 1
under a boolean algebra setting.

Example 10. Consider the valid statement A,C → ¬A,B → C |= ¬B,C → D.
Its characteristic polynomial over boolean algebras is

x1 · (¬a) + x2 · (ca) + x3 · (b¬c) + y1 · (¬b) + y2 · (¬c + d).

By making x1 = x2 = 1, x3 = a, y1 = a(¬c) and y2 = 0, the characteristic
polynomial becomes equal to 1. Note that this corresponds to exactly the same
multipliers as those for boolean rings in Example 1. However, due to the boolean
algebra equivalence 1 + x = 1, unlike boolean rings, the 0-multipliers could be
a changed for absolutely any term, thus obtaining as multipliers, for instance,
x3 = a, y1 = a(¬c) and y2 = abc. ⊓⊔

Each inference system may provide at least one method of computing entail-
ment multipliers, as each sound inference method consists of a set of transfor-
mations that preserve the validity, thus obtaining a new set of multipliers from
previous ones. Therefore, at each transformation step one can compute new mul-
tipliers from previous ones. In analogy to what was done in [8] for boolean rings,
we now investigate how such transformation operates over boolean algebras for
two proof methods: resolution and Gentzen Sequent Calculus.

4.1 Resolution

Propositional resolution is a refutation method in which one shows the incon-
sistency of a set of formulas in clausal form by deriving ⊥ from it. The main
inference step is the resolution rule

A ∨ pi ¬pi ∨B

A ∨B

This inference step can be simulated as an algebraic operation. Consider the
characteristic polynomial for the resolvents, and make y(¬Bt) the multiplier of
the resolvent A ∨ pi and y(¬At) the resolvent of pi ∨B, thus obtaining:

y(¬Bt)(¬At)pi + y(¬At)(¬Bt)(¬pi) = y(¬Bt)(¬At)

which shows how y becomes the multiplier of the resolved formula A ∨ B when
it is used as a subsequent resolvent.

If we look at this resolution step from bottom to the top, we see that the term
corresponding to the bottom formula is multiplied by pi on the resolvent where
¬pi occurs, and the term corresponding to the bottom formula is multiplied by
¬pi on the resolvent where pi occurs. This gives us the basic rule for constructing
algebraic multipliers via resolution.



Example 11. To show by resolution that ¬s ∨ q,¬p ∨ q, p ∨ s |= q, we have to
show that the set of formulas {¬s ∨ q,¬p ∨ q, p ∨ s,¬q}, is inconsistent. This
can be shown by a labelled resolution graph in Figure 1, in which each edge is
labelled with the term corresponding to the negation of the resolved literal.

¬s ∨ q ¬q ¬p ∨ q p ∨ s

¬s ¬p

s

⊥

q + 1 q q q + 1

p + 1

s

p

s + 1

Fig. 1. Edge-labelled resolution graph

The term corresponding to a path going from a top formula to ⊥ is the
product of all labels. The multiplier of a top formula is the sum of all path
terms. In this way, we compute the multipliers for each formula:

(¬q)s : ¬s ∨ q, qs + qp(¬s) : ¬q,
(¬q)p(¬s) : ¬p ∨ q, (¬p)(¬s) : p ∨ s

The multipliers a of a : A can be simplified by deleting from it the factors
occurring in ¬At, so we end up with

1 : ¬s ∨ q, s + p(¬s) : ¬q,
(¬s) : ¬p ∨ q, 1 : p ∨ s

Finally, we note that the verification of the 1-sum is isomorphic to the reso-
lution graph, as shown in Figure 2.

(¬q)s + qs+ qp(¬s) + (¬q)p(¬s) + (¬p)(¬s)

s p(¬s)

¬s

1

Fig. 2. Reduction of 1-sum isomorphic to resolution graph in Figure 1



Each transformation step is an application of ab + a(¬b) = a. In this sense,
we can say that resolution is simulated by algebraic methods. This may not
remain true if we apply boolean algebraic equivalences to the multipliers, e.g.,
s + p(¬s) = s + p. ⊓⊔

Formally, define an edge-labelled resolution graph as a resolution graph in
which edges are labelled with a term (¬p)t, where p is the reduced literal. This
is the input for Algorithm 4.1 computing entailment multipliers.

Algorithm 4.1 Resolution-based computation of entailment multipliers

Input : an edge-labelled resolution graph G.
Output : entailment multipliers for the top nodes of G.

Let A1, . . . , An be the top nodes of G, an inconsistent set of formulas.
for each path P from a top node to ⊥ do

term(P ) =
∏

{l|l is a label in P}
end for

for i = 1 to n do

ai =
∑

{term(P )|P starts at Ai}
delete from ai factors occurring in (¬At

i)
end for

return the set {ai : Ai|1 ≤ i ≤ n}

Theorem 3. Algorithm 4.1 computes a set of multipliers such that the verifica-
tion of the 1-sum as a set of applications of ab+ a(¬b) = a is isomorphic to the
input edge-labelled resolution graph. ⊓⊔

We note that this procedure is totally analogous to that used to compute
multipliers in a boolean ring in [8]. However, this observation does not remain
valid for the method for computing multipliers based on the sequent calculus.

4.2 Sequent Calculus

We focus on a presentation of the sequent calculus that promotes the use of
non-analytic cuts, called a cut-based sequent calculus [7]. In a cut-based sequent
calculus, the cut rule is not eliminable, and is in fact the only branching rule.
This version of the sequent calculus is closely related to KE tableau [6], which
is a decision procedure for full propositional classical logic.

In this presentation formulas are labelled with entailment multiplier, and in
a sequent Γ ⊢ ∆, the antecedent Γ and the consequent ∆ are multisets of term
labelled formulas of the form a : A; if Γ = a1 : A1, . . . , an : An, by b : Γ we
mean b · a1 : A1, . . . , b · an : An.

The sequent calculus is presented by means of connective rules and structural
rules ; the 1-sum is kept invariant in all of them. Figure 3 presents the connective
rules for cut-based sequent propositional inferences and the structural rules are



Γ, a : A, b : B ⊢ ∆

Γ, a+ b : A ∧B ⊢ ∆
(∧ ⊢)

Γ ⊢ ∆, a : A

Γ, aAt : B ⊢ ∆, a : A ∧B
(⊢ ∧1)

Γ ⊢ ∆, a : A

Γ, aAt : B ⊢ ∆, a : B ∧A
(⊢ ∧2)

Γ ⊢ ∆, a : A, b : B

Γ ⊢ ∆, a+ b : A ∨B
(⊢ ∨)

Γ, a : A ⊢ ∆

Γ, a : A ∨B ⊢ ∆, a(¬At) : B
(∨ ⊢1)

Γ, a : A ⊢ ∆

Γ, a : B ∨A ⊢ ∆, a(¬At) : B
(∨ ⊢2)

Γ, a : A ⊢ ∆, b : B

Γ ⊢ ∆, a+ b : A → B
(⊢→)

Γ, b : B ⊢ ∆

Γ, b : A → B, b(¬Bt) : A ⊢ ∆
(→⊢1)

Γ ⊢ a : A,∆

Γ, a : A → B ⊢ ∆, aAt : B
(→⊢2)

Γ ⊢ ∆, a : A

Γ, a : ¬A ⊢ ∆
(¬ ⊢)

Γ, a : A ⊢ ∆

Γ ⊢ ∆, a : ¬A
(⊢ ¬)

Fig. 3. Connective rules propagating multipliers from premiss to conclusion

presented in Figure 4. If labels are omitted from Figures 3 and 4, one obtains
the cut-based rules of [7].

Note that in the cut rule all multipliers in the sequent are changed; in all
other rules, only the multipliers of main formulas are affected. There is no need to
define structural rules for commutativity and associativity as both antecedents
and consequents are multisets. Repeated formulas in a multiset are dealt with by
the right and left contraction rules. The weakening structural rule (also called
monotonicity) is taken care of by the presence of Γ and ∆ in the Axiom rule; Γ
and ∆ may be empty, or they may contain formulas which are 0-labelled. The
Axiom rule has no premiss and produces a 1-label to the relevant formulas.

0 : Γ, 1 : A ⊢ 1 : A, 0 : ∆
(Axiom)

Γ1 ⊢ ∆1, a1 : A a2 : A,Γ2 ⊢ ∆2

¬At : Γ1, A
t : Γ2 ⊢ ¬At : ∆1, A

t : ∆2

(Cut)

Γ, a1 : A, a2 : A ⊢ ∆

Γ, (a1 + a2) : A ⊢ ∆
(Contract ⊢)

Γ ⊢ ∆, a1 : A, a2 : A

Γ ⊢ ∆, (a1 + a2) : A
(⊢ Contract)

Fig. 4. Structural rules propagating multipliers



A sequent proof tree is a tree whose leaves are instantiations of Axiom, and
whose internal nodes are sequents obtained by the application of some connective
or structural rule. A sequent S is provable if there is a sequent proof tree with
S at its root.

Example 12. As an example, consider the proof, of A → B,C → A ⊢ C → B:

1 : B ⊢ 1 : B
(→⊢)

1 : A → B,¬b : A ⊢ 1 : B
(→⊢)

1 : A → B,¬b : C → A, (¬b)(¬a) : C ⊢ 1 : B
(⊢→)

1 : A → B,¬b : C → A ⊢ 1 : C → B

The entailment multipliers are computed simultaneously with the deduc-
tion. Note that at the last step, the multiplier of C → B was simplified from
(¬b)(¬a) + 1 to 1. ⊓⊔

It is worth noting that at each deduction step in example 12 the 1-sum holds.
This is called 1-sum-invariant propagation.

Lemma 1 (1-sum-invariant propagation). For every sequent rule in Fig-
ures 3 and 4, if the 1-sum holds for the premises it also holds for the conclusion.

Proof. We first note that the (Axiom) rule has no premiss. In its conclusion we
have 1 · (¬At) + 1 ·A = 1, so (Axiom) keeps the 1-sum.

We show propagation of the 1-sum for one connective and one structural rule.
Consider rule (⊢ ∧1), and let C correspond to the sum of members of Γ and D

to that of ∆. Assuming the 1-sum holds for the rules antecedent, we have:

C + D + aAt = 1. (1)

But we also have that
aAt(¬Bt) + aAtBt = aAt, (2)

such that, by substituting (2) into (1) we obtain

C + D + aAt(¬Bt) + aAtBt = 1 (3)

which corresponds to the conclusion of (⊢ ∧1).
Now consider the cut rule. The left and right sequents in the premiss corre-

spond to, respectively,

C1 + D1 + a1A
t = 1 [×(¬At)] (4)

C2 + D2 + a2(¬At) = 1 [×At] (5)

such that, by multiplying (4) by (¬At) and (5) by At and adding both equations
we obtain:

(¬At)C1 + (¬At)D1 + AtC2 + AtD2 = (¬At) + At = 1 (6)

which corresponds to the conclusion of the cut rule, as desired. The other cases
are analogous and are omitted.



Theorem 4. The labelled sequent rules in Figures 3 and 4 correctly compute a
set of entailment multipliers.

Proof. By induction on the length of the proof. The basic case is one application
of (Axiom). The induction cases are dealt by Lemma 1.

The labelled rules of Figures 3 and 4 are not the only possible ones, and many
other 1-sum-invariant ways to propagate entailment multipliers are possible.

Comparing the entailment multipliers presented here for boolean algebras
with those presented for boolean rings in [8], we can say that the multipliers for
boolean algebras are always smaller than or equal. In fact, the multipliers for
all structural rules and those for rules (⊢ ∧), (∨ ⊢) and (→⊢) are exactly the
same, and the multipliers for rules (∧vdash), (⊢ ∨) and (⊢→) are smaller than
those for boolean rings. Furthermore, as example 12 illustrated, the multipliers
for boolean algebras presented here can be simplified in some cases, which makes
those multipliers even smaller.

5 Conclusion

Entailment multipliers are a characterisation of validity for many valued propo-
sitional logics. Classical logic is a special case of interest, for which the presence
of entailment multipliers was shown both for boolean rings and boolean alge-
bras. Entailment multipliers can be applied as a proof invariants over inference
systems, which allows for the computation of multipliers in parallel with a proof-
construction.

The existence of entailment multipliers for modal logics via boolean algebras
with operators can be developed in total analogy to the exposition made for
boolean rings with operators in [8].

Future work on the interactions of algebraic and proof-theoretical methods
aims at investigating the use of entailment multipliers to the computation of
non-analytic cuts that allow for the computation of short proofs.

We also plan to investigate entailment multipliers for first-order logic and
non-classical logics.

References

[1] P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi. The relative
complexity of NP search problems. In Proceedings of the 27th ACM Symposium

on Theory of Computing, pages 303–314, 1995.

[2] P. Beame, R. Impagliazzo, J. Kraj’icek, T. Pitassi, and P. Pudl’ak. Lower bounds
on hilbert’s nullstellensatz and propositional proofs. In Proceedings of the London

Mathematical Society, volume 73, pages 1–26, 1996.

[3] S. Buss, Russell Impagliazzo, Jan Krajicek, Pavel Pudlak, Alexander A. Razborov,
and Jiri Sgall. Proof complexity in algebraic systems and bounded depth frege
systems with modular counting. Computational Complexity, 6(3):256–298, 1997.



[4] Sam Buss and Toniann Pitassi. Good degree bounds on Nullstellensatz refutations
of the induction principle. In Proceedings from the 11th IEEE Conference on

Computational Complexity, pages 233–242, 1996.
[5] Walter Carnielli. Polynomial ring calculus for many-valued logics. In Proceedings

of 35th International Symposium on Multiple-Valued Logic, pages 20–25, Calgary,
Canad, 2005. IEEE Computer Society.

[6] Marcello D’Agostino and Marco Mondadori. The taming of the cut. Classical
refutations with analytic cut. Journal of Logic and Computation, 4:285–319, 1994.

[7] Marcelo Finger and Dov Gabbay. Cut and pay. Journal of Logic, Language and

Information, 15(3):195–218, October 2006.
[8] Marcelo Finger and Mauricio S. C. Hernandes. Entailment multipliers: An alge-

braic characterization of validity for classical and modal logics. In Anuj Dawar
and Ruy J. G. B. de Queiroz, editors, WoLLIC, volume 6188 of Lecture Notes in

Computer Science, pages 1–18. Springer, 2010.
[9] Dov Gabbay. Labelled Deductive Systems, volume 1. Oxford University Press,

1996.
[10] Nathan Jacobson. Basic Algebra I. Dover Publications, New York, 2009.
[11] Lászl’o Lovász. Bounding the independence number of a graph. Annals of Discrete

Mathematics, 16:213–223, 1982.
[12] T. Pitassi. Algebraic propositional proof systems. In N. Immerman and P. Ko-

laitis, editors, Descriptive Complexity and Finite Models, volume 31 of DIMACS

Series in Discrete Mathematics and Theoretical Computer Science, pages 214–244.
DIMACS, 1996.


