1

Probabilistic Satisfiability: Logic-based Algorithms and Phase Transitiort

Keywords: Logic and Probability, Probabilistic Satisfiability, Phase Transition, Normal Form

Abstract

In this paper, we study algorithms for probabilis-
tic satisfiability (PSAT), an NP-complete problem,
and their empiric complexity distribution. We de-
fine a PSAT normal form, based on which we pro-
pose two logic-based algorithms: a reduction of
normal form PSAT instances to SAT, and a linear-
algebraic algorithm with a logic-based column gen-
eration strategy. We conclude that both algorithms
present a phase transition behaviour and that the lat-
ter has a much better performance. We discuss the
role of logic and the normal form in the detection
of the phase transition.

Introduction

Probabilistic satisfiability (PSAT) is an NP-complete piegh
that requires the joint application of deductive and prdlizb
tic reasoning. It consists of an assignment of probabslitie

a set of propositional formulas, and its solution consiéi@ o

Question: Is this consistent with the low expecta-
tion (at most 15%) of students that do well in the
Math entrance tests?

This problem involves imprecise probability judgements,
widening the scope of application areas. In fact, there is a
large number of potential application areas for PSAT, from
machine learning to the modelling of biological processes,
from hardware and software verification to economics and
econometrics. However, there are very few, if any, prattica
algorithms available, used in limited applications.

This work aims at studying PSAT algorithms to reveal its
empiriccomplexity distributiorand, in particular, detect the
existence of phase-transitiobehaviour.

1.1 A Brief History of PSAT

The original formulation of PSAT is attributed to George
Boole[1854. The problem has since been independently re-
discovered several times (sBdailperin, 1986; Hansen and
Jaumard, 2040 until it was presented to the Computer Sci-
ence and Artificial Intelligence community by NilssfiMils-

decision on whether this assignment is consistent. For exan¥0": 198 and was shown to be an NP-complete problem,
ple, consider Problem 1.1, in which the goal is to verify the@Ven for cases where the corresponding classical satlgfiabi
truthfulness of the claims.

Problem 1.1 Three friends usually go to a bar, and
every night at least two of them are at their exclu-
sive table. However, each of them claims to go to
the bar “only” 60% of the nights.

Question:Can they be telling the truth? Why?

is known to be in PTIMEGeorgakopoulost al, 1989.

The PSAT problem is formulated in terms of a linear al-
gebraic problem of exponential size. The vast majority of
algorithms for PSAT solving in the literature are based on
linear programming techniques, such as column generation,
enhanced by several types of heuris{ikavvadias and Pa-
padimitriou, 1990; Hanseet al., 1995.

In this case, the statement of the friends has to be checked Boole’s original formulation of the PSAT problem did not

against an established fact, namely the presence of two
them every night. Another instance of PSAT is the following.

Problem 1.2 Selecting architecture students is no-
toriously hard. Staff at a university analysed stu-
dents that received their final degrees and con-
cluded that:

e atleast 75% had good grades in their Math en-
trance test or showed good drawing abilities;

e at most a third had good Math grades or did
not show any drawing abilities.

2008/03995-5 (LOGPROB).

nsider conditional probabilities, but extensions foenth

ave been developdtHailperin, 1986; Hanseat al., 1995;
Hansen and Jaumard, 2000; Walley al, 2004; the lat-
ter two works also works covered extensions of PSAT with
imprecise probabilities. A few tractable fragments of PSAT
were presentepAndersen and Pretolani, 20001n this work,
however, we concentrate on PSAT’s original formulation.

With respect to practical implementations, initial attesp
to implement a solution led to the belief that the problem ap-
peared to be very hariNilsson, 1993. There are compu-
tational results reported iilaumardet al,, 1991 and[Kav-
vadias and Papadimitriou, 199Golving PSAT problems of

“This work was supported by Fapesp Thematic Projectl40 variables and 300 sentences. However, to the best of

our knowledge, these implementations were rarely, if ever,



employed to solve practical instances of PSAT problems omterval [0, 1] such thatzf;1 m(v;) = 1. The probabil-

served as a basis to practical applications. ity of a formula « according to distributionr is given by
. Pr(ar) =3 _{m(vi)|vi(e) = 1}. _
1.2 Phase Transition of NP-complete Problems Nilsson[1984’s formulation of PSAT considers fa x 2"

Cheesemaet al.[1991] presented the phase-transition phe-matrix A = [a;;] such thata;; = v;(a;). The probabilis-
nomenon for NP-complete problems and conjectured thaliC satisfiability problemis to decide if there is a probability
it is a property of all problems in that class. Gent andvectorr of dimensior2™ that obeys th&SAT restriction

Walsh[1994 studied phase transition for SAT problems pa- A
X . T X p
rameterised by the ratev/n, wherem is the number of
clauses in a 3-SAT instance ands the number of variables, Yomo o= 1 (1)
and showed that the harder instances concentrate around a T > 0

point wherem/n = P,, the phase transition point When . : o e .
the ratem/n is small  3) almost all instances are satisfi- A PSAT instance is satisfiableiff its associated PSAT
able, and when this rate is high (6) instances are unsatisfi- 'estriction (1) has a solution. #f is a solution to (1) we say
able, and the decision time remains low at both cases. At thfat7 satisfiess. The last two conditions of (1) force to
phase transition poin®;, the number of expected satisfiable be a probability distribution. Usually the first two conditis

instances is 50%, which for 3-SAT 18 ~ 4.3. qf (1) are joined,A isa(k+ 1) x 2™ matrix V\{ith I's at its
To the best of our knowledge, no phase transition has beeffSt lin€,p1 = 1in vectorp( 1)1, sox<i -relation is =",
described for PSAT so far. Example 2.1 Consider Problem 1.1, with friendd, 2, 3}.

Very efficient SAT solvers are now availat{lMoskewicz Let x; represent that persoin is at the bar tonight,@' c
et al, 2001; Een and Brensson, 2043 but the SAT phase {12 3}. As every night at least two friends are at the bar,

transition behaviour remains independent of implememtati no two friends can be absent at the same night, represented
and number of atoms. However it relies on presenting thebyﬁ(ﬁxi A =) with 100% certainty foi # j:

problem in anormal form usually in clausal form with a fixed
number of atoms per clause. P(z1 V) = P(z1 Vas) = Pz Vas) =1

Efficient SAT-solvers enabl_ed the solution of_ other NP- Furthermore, each claims to be at the bar “only” 60% of the
complete problems by translating them to a SAT instance an me:
ap'plymg the solv'er?.. Cook’s theprem guarantee? that there P(21) = P(ws) = P(s) = 0.6,
exists a polynomial-time translation from any NP-complete A ) S
problem into SAT. However, no such translation is found inand the question is if there exists a probability distribnti

the literature from PSAT to SAT. that simultaneously satisfies these 6 probability assigisne
Consider now Problem 1.2. Lef mean that a student has
1.3 Goals and Organisation of the Paper good grades in the Math entrance test apdnean that that

The aim of this work is to study logic-based PSAT algorithmsStudent showed good drawing abilities. In this case, weiobta

and their empiric complexity distribution, looking for a5 the restrictions:

phase transition behaviour. P(z1Va3) > 075 Pz V-a) <1/3  P(z) <0.15
For that, we formally present the PSAT problem and de-

velop a logic-based normal form of it in Section 2, based on Consider a probability distribution and all the possible

which two kinds of algorithms are developed. A (canonical)valuations as follows.

reduction of PSAT to SAT is developed in Section 3. And T 1 Zo 1V To 1V g

an efficient SAT-based modification of usual linear program- 0.20 0 0 0 1

ming PSAT algorithms in Section 4. The empiric complexity 0.05 1 0 1 1

distribution on both algorithms is presented and PSAT phase 0.70 0 1 1 0

transition behaviour is detected. We end with a discussion o 0.05 1 1 1 1

what helped the detection of the PSAT phase transition and ~ 1:00  0.100.75 0.80 0.30

its efficiency. which jointly satisfies the assignments above, so Probl@m 1.
is satisfiable. We are going to study algorithms to compute

2 The PSAT Problem one such probability distribution if one exists. O

A PSAT instancés a set® = {P(«;) i pi|l < i <k}, An important result ofGeorgakopoulost al, 1989 guar-

where aq, ..., ap are classical propositional formulas de- antees that a solvable PSAT instance has a “small” witness.

fined onn logical variablesP = {x1,...,,}, which are

Fact 2.2 If a PSAT instanc& = {P(w;) = p;|1 <i < k}
has a solution, then there afe+ 1 columns of4 such that
the system ;. 1)x (k+1)T™ = P(r+1)x1has a solutionr > 0.

restricted by probability assignmen®&«;) >i; p;, <; € {=
,<,>}andl <i<k.

There are2™ possible propositional valuationsover the
logical variablesp : P — {0, 1}; each such valuation is ex-  The solution given by Fact 2.2 serves as an NP-certificate
tended, as usual, to all formulas; £ — {0,1}. A probabil-  for this instance, so PSAT is in NP. Furthermorepeasposi-
ity distribution over propositional valuations : V' — [0, 1], tional satisfiability(SAT) is a subproblem obtained when all
is a function that maps every valuation to a value in the reap; = 1, PSAT is NP-hard. So PSAT is NP-complete.



It follows from the Cook-Levin TheoreffCook, 1971that 3 Reduction of PSAT to SAT
there must be a polynomial time reduction from PSAT to SAT.
However, finding an efficient such reduction is neither obvi-
ous nor easy at all. In the following, we study some logical
properties of PSAT instances to study ways in which this kin
of reduction can be performed. is guaranteed.

_First, some notation. Iflis anm xn matrix, A’ represents = yye present a reduction that inputs a normal form PSAT
its j-th column, and ib is an/n-dimensional columnd[j :=  instance(I', ) and outputs a SAT formula that encodes
b] represents the matrix obtained by substitutirfgr A’; if | emma 2.5. Givep extracted from¥, we search for a matrix
A'is square matrix|A| is A’s determinant. IfAisa{0,1}- A1)« (x+1) Whose columns arE-consistent and a proba-
matrix, where each line corresponds to a variable, than eadhility distribution = > 0 such thatdr = p. We assume that

A (canonical) reductioris a polynomial time translation of

an instance of PSAT into an instance of SAT, such that the
SAT instance is satisfiable iff the SAT instance is. As both
SAT and SAT are NP-complete, the existence of a reduction

AJ can be seen as valuation. the elements gf andr are represented by a fixed point num-
ber in binary positional system with precision bits, where
2.1 A PSAT Normal Form each bit is a boolean variable, the higher the bit's index the

higher its significance. As;;,!!,p'? € {0,1}, each such
element is represented by a boolean variable. This is repre-
sented by the following schema.

We say that a PSAT instanée= {P(«;) >; pi|l <@ <}
is in (atomic) normal fornif it can be partitioned in two sets,
(', ¥), wherel' = {P(;) = 1|1 < i < m}and¥ =
{P(y;) = pily;isanatom] < i < k}, with0 < p; < 1, 1... 1 (Op - -mh) (1.0...0)
wherel = m + k. The partitionl is the SAT part of the nor- a1 a1 g1 " (0.pt_---ph)
mal form, usually represented only as a set of propositional . ) : : =
formulas andV is theatomic probability assignmepart. o - it P
By adding a small number of extra variables, any PSAT Lok1 - -akrsrd [ (0m, 7 - m ™) (O.ps, -+ p1)
instance can be brought to normal form.

Theorem 2.3 (Normal Form) For every PSAT instancE& 3.1 Determining the Precision
there exists an atomic normal form instan@g ¥) such that
¥ is a satisfiable iff[", ¥) is; the atomic instance can be built
from X in polynomial time. O

The hard part of this encoding is to find a large enough pre-
cisionb, that guarantees the correctness and polynomial size
of the encoding, assuming a fixed number of bits in the input.
Example 2.4 The presentation of Problem 1.1 in Exam- To guarantee a polynomial time reduction, the number of
ple 2.1 is already in normal form, with = {z; V 25,2, vV bitsb, in which the components of vectarare encoded has
x3,79 V 23} andW¥ = {P(z;) = P(x3) = P(x3) = 0.6}.  to be bounded by a polynomial on the size of input of the
This indicates that the normal form is a “natural” form in PSAT instance. By Cramer’s rule; = % SO we esti-
many cases, such as when one wants to confront a tfieory mate the maximum precisidn, as twice the number of bits
with the evidenceb. __of the maximum possible determinant of a -matrix A. For
" For tgf for_mlthI]atlfonrg Proi)lem 1.2, we start by rewriting that, we use a result due to J. Hadamard who solved the Max-
e problem in the fornP(a) < p as imum Determinant Problem; s¢6arling, 2007.

S ={P(=(z1V22)) <025 P21V ~x2) < 3, P(21) <015} Fact 3.1 (Hadamard, 1893) Let A = [a;;]nxn, ai; €
n+1)/2

Add three new variablegy , y-, y3 and make {0,1}. Then|A| < (n + 1)t +0/ 0
) . = 2” .

Tr Z{ _‘(1’1 \/IQ)‘)y17 (xl\/—'zg)%yg, xr1 — Y3 }

— k+2 _ —
={ m1VaeVy, 21 VY2, T2 VY2, 21 Y3 } Thusby =2 (|57 log(k +2)] - (k +1)) = OlklogF)

and the reduction is polynomial-time. This bound presup-
andV = (P — 095 P — 1 P(ya) = 0.15). [  Poses rational arithmetic; correctness is kept in the prese
{PQv) Plye) = 5. Plys) } of truncation errors due to the convexity of the solutioncgpa
The normal form allows us to see a PSAT instaficel)
as an interaction between a probability problérand a SAT 3.2 The SAT Instance
instancel’. Solutions to the instance can be seen as SO'“t'O”Fé'Iultiplication of ay; - 7; is encoded as a simple conjunction

to ¥ constrained by the SAT instante _ of each bit-variable ofr; with the variable representing.
This is formalised as follows. A valuatiom over  syms will be directly encoded as bitwise sums for each po-

Y1,---,yk is I-consistentf there is an extension of over  sjtion, which demands a carry-bit and a result-bit for each

Y15 Yk T, - Ty SUCh that (IT) = 1. position. Equality is encoded as bitwise equivalence. Due t

space reasons we do not detail the reduction formulas here.
We only point that the number of variables in the clausal
SAT instance i€)(k? log k) and that the number of clauses is
alsoO(k®log k).
Lemma 2.5 is the basis for the PSAT solving algorithms This implies that reduction makes PSAT solving al&ss
that we present next. efficientthan SAT solving, both iP = NP orif P # N P!

Lemma 2.5 A normal form instancél’, ¥) is satisfiable iff
there is a(k + 1) x (k + 1)-matrix Ag, such that all of its
columns ard'-consistent andiy 7 = p has a solutionr > 0.
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Figure 1: PSAT Phase Transition, for= 40 andk = 4. Figure 2: Complexity distribution, implementation of (2)

3.3 Results: A PSAT Phase Transition (@) amuch smaller basié;) of orderk + 1, by Lemma 2.5;

A translation of PSAT instances into SAT was implemented(b) a different initial feasible solution at step 0;
in C++, which invoked the zchaff SAT solvéMoskewiczet
al., 2001. We generate uniformly distributed random PSAT
instances in normal form witk probability assignments; (d) a new SAT-based auxiliary problem.
variablesys, ..., yk, Tx+1,- . -, T, andm 3-SAT clauses. To
restrict complexity, we fixedq¥| = k£ = 4 which leads to
br = 2([(6log6)/2] — 5) = 6. We also fixedh = 40 and
increased the rate:/n in steps of0.2. For each value of

(c) a new obijective function;

We now detail (b), (c) and (d) and present our algorithm.
We first establish some terminology. A matrixthat satisfy
conditions (3) is deasible solutiorfor ¥.

m, we generated 100 instances of PSAT, and computed the 1 .- 1 ) 1

percentage of satisfiable instances (%SAT) and the average ar1 e Ayt o P

time of computation in seconds. We then obtained the graphic . ) . : . = .

illustrated in Figure 1. : - : : : 3
Figure 1 clearly illustrates a phase transition behaviour, g1 0 Okk+1 Th+1 Pk

with the transition point around 4. We know that whiee: 0, ) )

PSAT becomes SAT, with phase transition point around 4.3. a;,; € {0,1},  Alsnon-singular, m; >0
As kisincreased, it is e>§pected that the rate of sa_t|.sf|ablg forwe will further assume that the input probabilities . . . , ps
_mulas decreases_foraglveryn, sothe phase transition point ;- (3) are in decreasing order. By Lemma 2(B, ¥ has a
is supposed to dislocate to the left, as observed. With morg,; ion iff there is a partial solutiod satisfying (3) such that
experiments, we could increaseand expect the phase tran- . > 0 thena, - . - arel-consistent valuations for
sition point to move even further to the left. However, due1 <JZ. < k1< 12]; '];J’Jr"l” We usually abuse terminology
to the high complexity of the translation, experiments Withcal_”ngjélj éF—Eo]ns_istent ccl)lumn

k = 6 were almost impractical around the transition point. '

This is why we turn to other algorithms for PSAT solving. 4.1 Initial and Further Feasible Solutions

4 A Logic-Algebraic PSAT Solver Given (I, ¥), consider(@, ¥) obtained by ignoring". As
iy . . the elements g are in decreasing order, consider {itel}-
Traditional algebraic PSAT solvers extend an exponegtiall 4¢rix 7+ —

. . . - = [ai j]1<ij<k+1 Whereq; ; = 1iff ¢ < j, thatis,
large linear program withm + k + 1 new variables (since: 7+ is all 1's in and above the diagonal, 0's elsewhere pAs
clauses il have probability 1) of the form

in decreasing ordel," satisfieg@, ¥) and is called aelaxed
minimize (objective function of the fornd ) @ solutionfor (I', ¥). Clearly,I* is a feasible for.

subject toAr = p andm > 0 Example 4.1 The relaxed solution to normal form of Prob-

which is solved iteratively by the simplex algorithm; ateac lem 1.2 in Example 2.4 is such that all columns are

iteration steq, Fact 2.2 allows for storing ;) with m+k+1 consistent, this decides positively Problem 1.2 by LemrBa 2.
1

columns and aolumn generatiormethod is employed in (1) } } } g-g; 053
which anauxiliary problemgenerates a column that replaces 0 0 1 1 010 | =1 025 Zf
some column in4 ;) and decreases the objective function. 0 0 0 1 0.15 0.15 vs O

Vector ¢ selects only the new variables in socdr = 0

results of an imfple_zmentatioa of this me:}hod iractly the q ing new{0, 1}-columns and substituting them into a feasible
same instancesf Figure 1, showing no phase transition and g tion as shown by the following.

much greater decision times, mainly explained by each for-

mulac € T having to be dealt with a restrictiaR(«) = 1. Lemma 4.2 Let A be a feasible solution satisfying (3) and
We propose the following logic-based modifications of thatletb = [1 b; --- bx])’ be a{0, 1}-column. Then there always

method that inputs a normal form PSAT instance, with exists a colump such thatd[j := b] is a feasible solutiori]



Lemma 4.2 is a well-known fact that comes from the piv- Algorithm 4.1 Logic-algebraic PSAT solver

oting in the simplex algorithm. Its proof actually gives us a Input: A normal form PSAT instancel’, ¥).
algorithm to compute a new feasible solution from a previouspytput: Total solutionA; or “No”, if unsatisfiable.
one, so letmerge(A, b) be a function that computes it. Lo _ N )
Our method moves through feasible solutions, at each ste L i'_ ,sirﬁeegeicgﬁég{nl]é&éﬁﬁP(ly}) _>.pZ €
generating a columithat decreases the value of the objective & (0 R )b )/

function. 3: while (|Js|, f(s)) # (0,0) do
o _ 4: b = GenerateColumn (A, p,T');
4.2 The_ Object|v_e Function 5. return “No” if bgs) < 0; /* instance is unsat */
In @ featle soutond son Ve T 26 e w00
’ y : " 7: increments; compute(|J |, fis));

{j]A7 isT-inconsistent and; > 0}; J is the set of col-
umn indexes inA corresponding td'-inconsistent columns
with non-null associated probability; clearly| < k& + 1. If
J = &, we call A a(total) solution

By Lemma 2.5, a positive decision for the PSAT instance . -
(T, 0) is reached iff/ = @. Thus, a candidate objective whereay, ..., a, c € Q; (5) can be seen as a propositional

e o : formula LR, in the sense that a valuatien: z; — {0,1}
function is simply|.J7|. Lemma 4.2 guarantees that if we only . = " " i ’
generatd-consistent columns,/| never increases. However, satisfiesL R iff v makes (5) a true condition. Such a formula

it is not guaranteed that, if a solution exists, we can find Lk can be obtained from R in time O (k) [Warners, 199B

path in which| J| decreases at every steplf this were true, nglpose},f. .n74q E kfl ar;—:- ”;ef';.”cpn?sfgm CO'“'.“?S Otf
we would have a solution in at most+ 1 steps, which is 'caSIDi€ Solutiont. FIrst, we try o eliminaté a-inconsisten

unfortunately not the case column A7 associated ta; > 0. By linear algebraic manip-

A second candidate objective function is the sum of prob-ulation, anew columa = [1y, . .. yk_}/ to substituted’ must
abilities of -inconsistent columng, = 3 ; 7; . Note that satisfy the set of linear inequalities:
f and|.J| become) at the same time, which occurs iff a pos- (LR;;) (A.—lm_Ai—lﬂj)[l vy >0, 1<i<k+1
itive decision is reached. The simplex algorithm with appro !
priate column generation ensures that, if there is a salutio A substitutiond for A7 is obtained by a valuation that sat-
it can be obtained with finitely (but possibly exponentiglly isfies the formule®; = T' A /\f?jll ALg, . Clearly, if©, is
many steps of non-increasinfgvalues. We propose a com-  satisfiable A[j := b] is I-consistent and decreases.
bined objective functior(|J|, f) ordered lexicographically.  gyppose everp; is unsatisfiablel < j < ¢, and let
In minimising this combined objective function, we firsttry ¢ _'s4 7. A columnb = [1 y; ...’ that substitutes
to minimise the number df-inconsistent columns; if this is  * g=177
not possible, then minimisg, keepingJ constant. We thus

8: end while
9: return A(S); /* PSAT instance is satisfiable */

someA’ and enforces a non-increasifig similarly satisfies

have the following program (LRy) ?:1 Aj—1 Tyt -yl >0
min (J1, ) o N _ _
subjectto Ar =p,m>0,f=>._,m; and 4 A substitutionb for A7 is obtained by a valuation that sat-
J = {j|A7 is F-inconsijseténtzrj > 0} isfies the formula®; = T' A Apg,. If ©; is satisfiable,

Alj := b isT'-consistent and,. never increases.

The algorithm that compute&enerateColumn(A,p,T’)
faster in practice is as follows. First, se®(yi,...,yx)
to a SAT-solver. If it is unsatisfiable, return invalid colom
—10 ... 0]';inthis way we have an early failure. Otherwise
there is avy, Uf(@f) =1 Ifby = [1 Uf(yl) .. .Uf(yk)]/
substitutes somé-inconsistent column, returh;, which
decreasesJ| and maybef as well. Otherwise storé;.

So the PSAT instanc@’, ¥) associated to program (4) is sat-
isfiable iff the objective function is minimal &6, 0).

Assume there is a functiomzenerateColumn(A,p,T'),
presented at Section 4.3, that generatdsansistent col-
umn that decreases the objective function, if one exists; ot
erwise it returns an illegal column of the forfm1 ---]. Al-
gorithm 4.1 presents a method that decides a PSAT instan

by solving problem (4). E ; : - .
: . . or eacll'-inconsistentd? submit©; (y1, . .., yx) to a SAT-
Algorithm 4.1 starts with a relaxed solution f¢f’, ¥) solver; if it is satisfiable with valuatiorv, returnb =

(line 2), and via column generation (line 4) generate arrothe[1 o(y1) ... v(y)]', decreasingJ|. If all ©, are unsatisfi-

feasible solution (line 6), decreasing the objective funct able, returrby, so f does not increase. As the SAT solver is

Ilgt]ttgrecljtslercfggusrg?/\r/ﬁu {altlestglrrr]]ﬁn?t%rnao??#en%%ISiLOILith:[;i 3 deterministic and generates answers in a fixed order, tarmin
y P tion of the whole process is guaranteed.

8, when the objective function reach@s0).

. Example 4.3 Apply Algorithm 4.1 to the presentation of

4.3 SAT-Based Column Generation Problem 1.2 in Example 2.4. At step 0, the relaxed solution
A I'-satisfiable columi that never increases the value of the . 04 L

objective function is obtained by solving at mdst- 1 SAT 1 0 0.6 "

problems as follows. Considet, ...,z over{0,1} and } 1 ' { 006 1 - [ 8.2 ] 2

. . Y3

a1 x4 rap-xE op ¢ op €{<, <, >, >, =,#} (5)

—
O ==



is such that the two columns on the left dténconsistent. [Cheesemast al, 1997 P. Cheeseman, R. Kanefsky, and
Column generation tries to substitute the column 1, generat W. M. Taylor. Where the really hard problems are. In
ing the inequalities-y; +y2 > 0,2 —y3 < 0,3y1 +2y3 < 12th 1JCA| pages 331-337, 1991.

3,31 < 0 which, when translated to logic and input to a SAT [cook 197 Stephen A. Cook. The complexity of theorem-
solver jointly with I" produces the valuatioy, = 0,y = proving procedures. 18rd ACM Symposium on Theory of

1,y3 = 1. At step 1, we substitute column 1 by0 1 1}/, Computing (STOG)pages 151-158. ACM, 1971.
(1) i } } 83 016 [Eén and $rensson, 2043N. Eén and N. 8rensson. An ex-
10 1 10110 | =] os tensible SAT-solver. 'SAT 2003volume 2919 oLNCS
1 0 0 1 0.2 0.6 pages 502-518. Springer, 2003.

Now only column 2 is[-inconsistent© ; produced by col- [Garling, 2007 D. J. H. Garling. Inequalities: A Journey

umn generation is unsatisfiabt&; and so is the problem. into Linear Analysis Cambridge University Press, 2007.
Thatis, the drunks are lying. U [Gentand Walsh, 1994I. P. Gent and T. Walsh. The sat
4.4 Results: Another PSAT Phase Transition phase transition. Iilth European Conference on Arti-

We impl ted Aldorithm 4.1 in C | ovi ficial Intelligence pages 105-109, 1994.

e implemented Algorithm 4.1 in C++, also employing

the zchaff SAT solver, thus obtaining a much faster PSA‘I'[GeO(rjgakOpoglgetHal#98%. G.;[ _Georgakgpt())_?lcnts, D't.Kf"."Vk').l
solver. We generated uniformly distributed normalised ran }{a i]as,facr; v Zpla-imﬂloféssro abiiistic satistrabl
dom PSAT instances in normal form withprobability as- ity. J. of Complexity4(1):1-11, '
signments,n variablesy, ..., yx, Txr1,..., 2, andm 3-  [Hailperin, 1986 T. Hailperin. Boole’s Logic and Probabil-

SAT clauses. We obtained the graphic illustrated in Figure 3 ity. North-Holland, second edition, 1986.

by fixing k = 12, n = 150, m/n increases in steps 6fl and  [Hansen and Jaumard, 2Q0B. Hansen and B. Jaumard.
200 PSAT instances for each valuerof Probabilistic satisfiability. InHandbook of Defeasible

Again, Figure 3 displays an unequivocal phase transition Reasoning and Uncertainty Management Systems,.vol.5
behaviour. As predicted, with a largkrthe phase transition Springer, 2000.

point has moved to the left & ~ 3.9. The phase transition i
behaviour can be credited to the use of PSAT normal fornjHanseretal, 199§ P. Hansen, B. Jaumard, G.-B. Ngusts
and M. P. Ara@o. Models and algorithms for probabilistic

and to the fact that, unlike in program (2), orilyconsistent A .

columns were generated in agmgll bas(is)of srilileycél. The in- and bayesian logic. IRRCAI, pages 1862-1868, 1995.

crease in efficiency is mainly due to the small basis, and alsbJaumarcet al, 1991 B. Jaumard, P. Hansen, and M.P.

to the use of an efficient SAT solver to and to the smaller size Aragdo. Column generation methods for probabilistic

of formulas submitted to the SAT solver than in the reduction logic. INFORMS J. on Computin@®(2):135-148, 1991.

algorithm. _ . [Kavvadias and Papadimitriou, 1990. Kavvadias and
By generating large instances over the “flat zones” of Fig- Papadimitriou. A linear programming approach to

ure 3, we were able to obtain a s_at_isfial_:)le instance with reasoning about probabilitieAMAI, 1:189-205, 1990.
n = 400, m = 400,k = 50 and decision time 0.76s; and . ) i
an unsatisfiable instance with— 200, m — 800,k = 100 [Moskewiczet al, 2001 M. W. Moskewicz, C. F. Madigan,

and decision time 29.4s. This gives an idea of the capasiliti Y- Zhao, L. Zhang, and S. Malik. Chaff: Engineering an

of the method. Efficient SAT Solver. In38th Design Automation Confer-
ence pages 530-535, 2001.
5 Conclusion [Nilsson, 1988 Nils Nilsson. Probabilistic logic.Artificial

L ) . Intelligence 28(1):71-87, 1986.

We have shown that a combination of logic and algebralc[ ) : _ o i .
techniques can be very fruitful to the study of algorithms of Nilsson, 1993 Nils Nilsson. Probabilistic logic revisited.
PSAT solvers. The logic part appear to be crucial to reveal a Artificial Intelligence 59(1-2):39-42, 1993.
phase transition behaviour in this case. [Walley et al, 2004 P. Walley, R. Pelessoni, and P. Vicig.

Further work involves the exploration of efficient PSAT  Direct algorithms for checking consistency and making in-
fragments using the algorithm and techniques developed her ferences from conditional probability assessmentsof
and the study of PSAT-based methods and applications that Statistical Planning and Inferenc#26(1):119-151, 2004.

employ the algorithms presented here. [Warners, 199B J. P. Warners. A linear-time transformation
of linear inequalities into conjunctive normal forninf.
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Figure 3: PSAT Phase Transition for Algorithm 4.1



