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Abstract

In this paper, we study algorithms for probabilis-
tic satisfiability (PSAT), an NP-complete problem,
and their empiric complexity distribution. We de-
fine a PSAT normal form, based on which we pro-
pose two logic-based algorithms: a reduction of
normal form PSAT instances to SAT, and a linear-
algebraic algorithm with a logic-based column gen-
eration strategy. We conclude that both algorithms
present a phase transition behaviour and that the lat-
ter has a much better performance. We discuss the
role of logic and the normal form in the detection
of the phase transition.

1 Introduction
Probabilistic satisfiability (PSAT) is an NP-complete problem
that requires the joint application of deductive and probabilis-
tic reasoning. It consists of an assignment of probabilities to
a set of propositional formulas, and its solution consists of a
decision on whether this assignment is consistent. For exam-
ple, consider Problem 1.1, in which the goal is to verify the
truthfulness of the claims.

Problem 1.1 Three friends usually go to a bar, and
every night at least two of them are at their exclu-
sive table. However, each of them claims to go to
the bar “only” 60% of the nights.
Question:Can they be telling the truth? Why?

In this case, the statement of the friends has to be checked
against an established fact, namely the presence of two of
them every night. Another instance of PSAT is the following.

Problem 1.2 Selecting architecture students is no-
toriously hard. Staff at a university analysed stu-
dents that received their final degrees and con-
cluded that:

• at least 75% had good grades in their Math en-
trance test or showed good drawing abilities;

• at most a third had good Math grades or did
not show any drawing abilities.
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Question: Is this consistent with the low expecta-
tion (at most 15%) of students that do well in the
Math entrance tests?

This problem involves imprecise probability judgements,
widening the scope of application areas. In fact, there is a
large number of potential application areas for PSAT, from
machine learning to the modelling of biological processes,
from hardware and software verification to economics and
econometrics. However, there are very few, if any, practical
algorithms available, used in limited applications.

This work aims at studying PSAT algorithms to reveal its
empiric complexity distributionand, in particular, detect the
existence of aphase-transitionbehaviour.

1.1 A Brief History of PSAT
The original formulation of PSAT is attributed to George
Boole[1854]. The problem has since been independently re-
discovered several times (see[Hailperin, 1986; Hansen and
Jaumard, 2000]) until it was presented to the Computer Sci-
ence and Artificial Intelligence community by Nilsson[Nils-
son, 1986] and was shown to be an NP-complete problem,
even for cases where the corresponding classical satisfiability
is known to be in PTIME[Georgakopouloset al., 1988].

The PSAT problem is formulated in terms of a linear al-
gebraic problem of exponential size. The vast majority of
algorithms for PSAT solving in the literature are based on
linear programming techniques, such as column generation,
enhanced by several types of heuristics[Kavvadias and Pa-
padimitriou, 1990; Hansenet al., 1995].

Boole’s original formulation of the PSAT problem did not
consider conditional probabilities, but extensions for them
have been developed[Hailperin, 1986; Hansenet al., 1995;
Hansen and Jaumard, 2000; Walleyet al., 2004]; the lat-
ter two works also works covered extensions of PSAT with
imprecise probabilities. A few tractable fragments of PSAT
were presented[Andersen and Pretolani, 2001]. In this work,
however, we concentrate on PSAT’s original formulation.

With respect to practical implementations, initial attempts
to implement a solution led to the belief that the problem ap-
peared to be very hard[Nilsson, 1993]. There are compu-
tational results reported in[Jaumardet al., 1991] and[Kav-
vadias and Papadimitriou, 1990], solving PSAT problems of
140 variables and 300 sentences. However, to the best of
our knowledge, these implementations were rarely, if ever,



employed to solve practical instances of PSAT problems or
served as a basis to practical applications.

1.2 Phase Transition of NP-complete Problems
Cheesemanet al. [1991] presented the phase-transition phe-
nomenon for NP-complete problems and conjectured that
it is a property of all problems in that class. Gent and
Walsh[1994] studied phase transition for SAT problems pa-
rameterised by the ratem/n, wherem is the number of
clauses in a 3-SAT instance andn is the number of variables,
and showed that the harder instances concentrate around a
point wherem/n = Pt, the phase transition point. When
the ratem/n is small (< 3) almost all instances are satisfi-
able, and when this rate is high (> 6) instances are unsatisfi-
able, and the decision time remains low at both cases. At the
phase transition pointPt, the number of expected satisfiable
instances is 50%, which for 3-SAT isPt ≈ 4.3.

To the best of our knowledge, no phase transition has been
described for PSAT so far.

Very efficient SAT solvers are now available[Moskewicz
et al., 2001; Éen and S̈orensson, 2003], but the SAT phase
transition behaviour remains independent of implementation
and number of atoms. However it relies on presenting the
problem in anormal form, usually in clausal form with a fixed
number of atoms per clause.

Efficient SAT-solvers enabled the solution of other NP-
complete problems by translating them to a SAT instance and
applying the solvers. Cook’s theorem guarantees that there
exists a polynomial-time translation from any NP-complete
problem into SAT. However, no such translation is found in
the literature from PSAT to SAT.

1.3 Goals and Organisation of the Paper
The aim of this work is to study logic-based PSAT algorithms
and their empiric complexity distribution, looking for a PSAT
phase transition behaviour.

For that, we formally present the PSAT problem and de-
velop a logic-based normal form of it in Section 2, based on
which two kinds of algorithms are developed. A (canonical)
reduction of PSAT to SAT is developed in Section 3. And
an efficient SAT-based modification of usual linear program-
ming PSAT algorithms in Section 4. The empiric complexity
distribution on both algorithms is presented and PSAT phase
transition behaviour is detected. We end with a discussion on
what helped the detection of the PSAT phase transition and
its efficiency.

2 The PSAT Problem
A PSAT instanceis a setΣ = {P (αi) ⊲⊳i pi|1 ≤ i ≤ k},
whereα1, . . . , αk are classical propositional formulas de-
fined onn logical variablesP = {x1, . . . , xn}, which are
restricted by probability assignmentsP (αi) ⊲⊳i pi, ⊲⊳i ∈ {=
,≤,≥} and1 ≤ i ≤ k.

There are2n possible propositional valuationsv over the
logical variables,v : P → {0, 1}; each such valuation is ex-
tended, as usual, to all formulas,v : L → {0, 1}. A probabil-
ity distribution over propositional valuationsπ : V → [0, 1],
is a function that maps every valuation to a value in the real

interval [0, 1] such that
∑2n

i=1 π(vi) = 1. The probabil-
ity of a formulaα according to distributionπ is given by
Pπ(α) =

∑

{π(vi)|vi(α) = 1}.
Nilsson[1986]’s formulation of PSAT considers ak × 2n

matrix A = [aij ] such thataij = vj(αi). The probabilis-
tic satisfiability problemis to decide if there is a probability
vectorπ of dimension2n that obeys thePSAT restriction:

Aπ ⊲⊳ p
∑

πi = 1 (1)

π ≥ 0

A PSAT instanceΣ is satisfiableiff its associated PSAT
restriction (1) has a solution. Ifπ is a solution to (1) we say
thatπ satisfiesΣ. The last two conditions of (1) forceπ to
be a probability distribution. Usually the first two conditions
of (1) are joined,A is a (k + 1) × 2n matrix with 1’s at its
first line,p1 = 1 in vectorp(k+1)×1, so⊲⊳1-relation is “=”.

Example 2.1 Consider Problem 1.1, with friends{1, 2, 3}.
Let xi represent that personi is at the bar tonight,i ∈
{1, 2, 3}. As every night at least two friends are at the bar,
no two friends can be absent at the same night, represented
by ¬(¬xi ∧ ¬xj) with 100% certainty fori 6= j:

P (x1 ∨ x2) = P (x1 ∨ x3) = P (x2 ∨ x3) = 1.

Furthermore, each claims to be at the bar “only” 60% of the
time:

P (x1) = P (x2) = P (x3) = 0.6,

and the question is if there exists a probability distribution
that simultaneously satisfies these 6 probability assignments.

Consider now Problem 1.2. Letx1 mean that a student has
good grades in the Math entrance test andx2 mean that that
student showed good drawing abilities. In this case, we obtain
the restrictionsΣ:

P (x1 ∨ x2) ≥ 0.75 P (x1 ∨ ¬x2) ≤ 1/3 P (x1) ≤ 0.15

Consider a probability distributionπ and all the possible
valuations as follows.

π x1 x2 x1 ∨ x2 x1 ∨ ¬x2

0.20 0 0 0 1
0.05 1 0 1 1
0.70 0 1 1 0
0.05 1 1 1 1
1.00 0.10 0.75 0.80 0.30

which jointly satisfies the assignments above, so Problem 1.2
is satisfiable. We are going to study algorithms to compute
one such probability distribution if one exists. �

An important result of[Georgakopouloset al., 1988] guar-
antees that a solvable PSAT instance has a “small” witness.

Fact 2.2 If a PSAT instanceΣ = {P (αi) = pi|1 ≤ i ≤ k}
has a solution, then there arek + 1 columns ofA such that
the systemA(k+1)×(k+1)π = p(k+1)×1has a solutionπ ≥ 0.

The solution given by Fact 2.2 serves as an NP-certificate
for this instance, so PSAT is in NP. Furthermore, asproposi-
tional satisfiability(SAT) is a subproblem obtained when all
pi = 1, PSAT is NP-hard. So PSAT is NP-complete.



It follows from the Cook-Levin Theorem[Cook, 1971] that
there must be a polynomial time reduction from PSAT to SAT.
However, finding an efficient such reduction is neither obvi-
ous nor easy at all. In the following, we study some logical
properties of PSAT instances to study ways in which this kind
of reduction can be performed.

First, some notation. IfA is anm×n matrix,Aj represents
its j-th column, and ifb is anm-dimensional column,A[j :=
b] represents the matrix obtained by substitutingb for Aj ; if
A is square matrix,|A| is A’s determinant. IfA is a{0, 1}-
matrix, where each line corresponds to a variable, than each
Aj can be seen as valuation.

2.1 A PSAT Normal Form

We say that a PSAT instanceΣ = {P (αi) ⊲⊳i pi|1 ≤ i ≤ l}
is in (atomic) normal formif it can be partitioned in two sets,
〈Γ,Ψ〉, whereΓ = {P (αi) = 1|1 ≤ i ≤ m} andΨ =
{P (yi) = pi|yi is an atom,1 ≤ i ≤ k}, with 0 < pi < 1,
wherel = m+ k. The partitionΓ is the SAT part of the nor-
mal form, usually represented only as a set of propositional
formulas andΨ is theatomic probability assignmentpart.

By adding a small number of extra variables, any PSAT
instance can be brought to normal form.

Theorem 2.3 (Normal Form) For every PSAT instanceΣ
there exists an atomic normal form instance〈Γ,Ψ〉 such that
Σ is a satisfiable iff〈Γ,Ψ〉 is; the atomic instance can be built
fromΣ in polynomial time. �

Example 2.4 The presentation of Problem 1.1 in Exam-
ple 2.1 is already in normal form, withΓ = {x1 ∨ x2, x1 ∨
x3, x2 ∨ x3} andΨ = {P (x1) = P (x2) = P (x3) = 0.6}.
This indicates that the normal form is a “natural” form in
many cases, such as when one wants to confront a theoryΓ
with the evidenceΨ.

For the formulation of Problem 1.2, we start by rewriting
the problem in the formP (α) ≤ p as

Σ = {P (¬(x1 ∨ x2)) ≤ 0.25, P (x1 ∨ ¬x2) ≤
1

3
, P (x1) ≤ 0.15}

Add three new variables,y1, y2, y3 and make

Γ = { ¬(x1 ∨ x2) → y1, (x1 ∨ ¬x2) → y2, x1 → y3 }
≡ { x1 ∨ x2 ∨ y1,¬x1 ∨ y2, x2 ∨ y2, x1 → y3 }

andΨ = {P (y1) = 0.25, P (y2) =
1
3 , P (y3) = 0.15}. �

The normal form allows us to see a PSAT instance〈Γ,Ψ〉
as an interaction between a probability problemΨ and a SAT
instanceΓ. Solutions to the instance can be seen as solutions
toΨ constrained by the SAT instanceΓ.

This is formalised as follows. A valuationv over
y1, . . . , yk is Γ-consistentif there is an extension ofv over
y1, . . . , yk, x1, . . . , xn such thatv(Γ) = 1.

Lemma 2.5 A normal form instance〈Γ,Ψ〉 is satisfiable iff
there is a(k + 1) × (k + 1)-matrix AΨ, such that all of its
columns areΓ-consistent andAΨπ = p has a solutionπ ≥ 0.

Lemma 2.5 is the basis for the PSAT solving algorithms
that we present next.

3 Reduction of PSAT to SAT
A (canonical) reductionis a polynomial time translation of
an instance of PSAT into an instance of SAT, such that the
PSAT instance is satisfiable iff the SAT instance is. As both
PSAT and SAT are NP-complete, the existence of a reduction
is guaranteed.

We present a reduction that inputs a normal form PSAT
instance〈Γ,Ψ〉 and outputs a SAT formula that encodes
Lemma 2.5. Givenp extracted fromΨ, we search for a matrix
A(k+1)×(k+1) whose columns areΓ-consistent and a proba-
bility distribution π ≥ 0 such thatAπ = p. We assume that
the elements ofp andπ are represented by a fixed point num-
ber in binary positional system with precisionbπ bits, where
each bit is a boolean variable, the higher the bit’s index the
higher its significance. Asaij , π

i1
j1
, pi2j2 ∈ {0, 1}, each such

element is represented by a boolean variable. This is repre-
sented by the following schema.









1 · · · 1
a1,1· · ·a1,k+1
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〈1.0 . . . 0〉
〈0.p1bπ · · · p11〉

...
〈0.pkbπ · · · pk1〉











3.1 Determining the Precision
The hard part of this encoding is to find a large enough pre-
cisionbπ that guarantees the correctness and polynomial size
of the encoding, assuming a fixed number of bits in the input.

To guarantee a polynomial time reduction, the number of
bits bπ in which the components of vectorπ are encoded has
to be bounded by a polynomial on the size of input of the
PSAT instance. By Cramer’s rule,πj = |A[j:=p]|

|A| so we esti-
mate the maximum precisionbπ as twice the number of bits
of the maximum possible determinant of a0, 1-matrixA. For
that, we use a result due to J. Hadamard who solved the Max-
imum Determinant Problem; see[Garling, 2007].

Fact 3.1 (Hadamard, 1893) Let A = [aij ]n×n, aij ∈

{0, 1}. Then|A| ≤
(n+ 1)(n+1)/2

2n
. �

Thusbπ = 2
(⌈

k+2
2 log(k + 2)

⌉

− (k + 1)
)

= O(k log k),
and the reduction is polynomial-time. This bound presup-
poses rational arithmetic; correctness is kept in the presence
of truncation errors due to the convexity of the solution space.

3.2 The SAT Instance
Multiplication of aij · πj is encoded as a simple conjunction
of each bit-variable ofπj with the variable representingaij .
Sums will be directly encoded as bitwise sums for each po-
sition, which demands a carry-bit and a result-bit for each
position. Equality is encoded as bitwise equivalence. Due to
space reasons we do not detail the reduction formulas here.

We only point that the number of variables in the clausal
SAT instance isO(k3 log k) and that the number of clauses is
alsoO(k3 log k).

This implies that reduction makes PSAT solving a lotless
efficientthan SAT solving, both ifP = NP or if P 6= NP !



Figure 1: PSAT Phase Transition, forn = 40 andk = 4.

3.3 Results: A PSAT Phase Transition
A translation of PSAT instances into SAT was implemented
in C++, which invoked the zchaff SAT solver[Moskewiczet
al., 2001]. We generate uniformly distributed random PSAT
instances in normal form withk probability assignments,n
variablesy1, . . . , yk, xk+1, . . . , xn andm 3-SAT clauses. To
restrict complexity, we fixed|Ψ| = k = 4 which leads to
bπ = 2(⌈(6 log 6)/2⌉ − 5) = 6. We also fixedn = 40 and
increased the ratem/n in steps of0.2. For each value of
m, we generated 100 instances of PSAT, and computed the
percentage of satisfiable instances (%SAT) and the average
time of computation in seconds. We then obtained the graphic
illustrated in Figure 1.

Figure 1 clearly illustrates a phase transition behaviour,
with the transition point around 4. We know that whenk = 0,
PSAT becomes SAT, with phase transition point around 4.3.
As k is increased, it is expected that the rate of satisfiable for-
mulas decreases for a givenm/n, so the phase transition point
is supposed to dislocate to the left, as observed. With more
experiments, we could increasek and expect the phase tran-
sition point to move even further to the left. However, due
to the high complexity of the translation, experiments with
k = 6 were almost impractical around the transition point.
This is why we turn to other algorithms for PSAT solving.

4 A Logic-Algebraic PSAT Solver
Traditional algebraic PSAT solvers extend an exponentially
large linear program withm+ k + 1 new variables (sincem
clauses inΓ have probability 1) of the form

minimize〈objective function of the formc′π〉
subject toAπ = p andπ ≥ 0

(2)

which is solved iteratively by the simplex algorithm; at each
iteration stepi, Fact 2.2 allows for storingA(i) with m+k+1
columns and acolumn generationmethod is employed in
which anauxiliary problemgenerates a column that replaces
some column inA(i) and decreases the objective function.
Vector c selects only the new variables inπ, so c′π = 0
iff the PSAT problem is satisfiable. Figure 2 presents the
results of an implementation of this method forexactly the
same instancesof Figure 1, showing no phase transition and
much greater decision times, mainly explained by each for-
mulaα ∈ Γ having to be dealt with a restrictionP (α) = 1.

We propose the following logic-based modifications of that
method that inputs a normal form PSAT instance, with

Figure 2: Complexity distribution, implementation of (2)

(a) a much smaller basisA(i) of orderk+ 1, by Lemma 2.5;

(b) a different initial feasible solution at step 0;

(c) a new objective function;

(d) a new SAT-based auxiliary problem.

We now detail (b), (c) and (d) and present our algorithm.
We first establish some terminology. A matrixA that satisfy
conditions (3) is afeasible solutionfor Ψ.
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1
p1
...
pk









ai,j ∈ {0, 1}, A is non-singular, πj ≥ 0

(3)

We will further assume that the input probabilitiesp1, . . . , pk
in (3) are in decreasing order. By Lemma 2.5,〈Γ,Ψ〉 has a
solution iff there is a partial solutionA satisfying (3) such that
if πj > 0 thena1,j , . . . , ak,j areΓ-consistent valuations for
1 ≤ i ≤ k, 1 ≤ j ≤ k + 1. We usually abuse terminology
callingAj aΓ-consistent column.

4.1 Initial and Further Feasible Solutions
Given 〈Γ,Ψ〉, consider〈∅,Ψ〉 obtained by ignoringΓ. As
the elements ofp are in decreasing order, consider the{0, 1}-
matrix I∗ = [ai,j ]1≤i,j≤k+1 whereai,j = 1 iff i ≤ j, that is,
I∗ is all 1’s in and above the diagonal, 0’s elsewhere. Asp is
in decreasing order,I∗ satisfies〈∅,Ψ〉 and is called arelaxed
solutionfor 〈Γ,Ψ〉. Clearly,I∗ is a feasible forΨ.

Example 4.1 The relaxed solution to normal form of Prob-
lem 1.2 in Example 2.4 is such that all columns areΓ-
consistent, this decides positively Problem 1.2 by Lemma 2.5.







1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1






·







0.67
0.08
0.10
0.15






=







1
0.33
0.25
0.15







y2

y1

y3 �

The relaxed solution is the initial feasible solution of our
method. Further feasible solutions are obtained by generat-
ing new{0, 1}-columns and substituting them into a feasible
solution, as shown by the following.

Lemma 4.2 Let A be a feasible solution satisfying (3) and
let b = [1 b1 · · · bk]

′ be a{0, 1}-column. Then there always
exists a columnj such thatA[j := b] is a feasible solution.�



Lemma 4.2 is a well-known fact that comes from the piv-
oting in the simplex algorithm. Its proof actually gives us an
algorithm to compute a new feasible solution from a previous
one, so letmerge(A, b) be a function that computes it.

Our method moves through feasible solutions, at each step
generating a columnb that decreases the value of the objective
function.

4.2 The Objective Function
In a feasible solutionA such thatAπ = p and π ≥
0, some columns may not beΓ-consistent. LetJ =
{j|Aj is Γ-inconsistent andπj > 0}; J is the set of col-
umn indexes inA corresponding toΓ-inconsistent columns
with non-null associated probability; clearly|J | ≤ k + 1. If
J = ∅, we callA a (total) solution.

By Lemma 2.5, a positive decision for the PSAT instance
〈Γ,Ψ〉 is reached iffJ = ∅. Thus, a candidate objective
function is simply|J |. Lemma 4.2 guarantees that if we only
generateΓ-consistent columns,|J | never increases. However,
it is not guaranteed that, if a solution exists, we can find a
path in which|J | decreases at every steps. If this were true,
we would have a solution in at mostk + 1 steps, which is
unfortunately not the case.

A second candidate objective function is the sum of prob-
abilities ofΓ-inconsistent columns,f =

∑

j∈J πj . Note that
f and|J | become0 at the same time, which occurs iff a pos-
itive decision is reached. The simplex algorithm with appro-
priate column generation ensures that, if there is a solution,
it can be obtained with finitely (but possibly exponentially)
many steps of non-increasingf -values. We propose a com-
bined objective function〈|J |, f〉 ordered lexicographically.
In minimising this combined objective function, we first try
to minimise the number ofΓ-inconsistent columns; if this is
not possible, then minimisef , keepingJ constant. We thus
have the following program

min 〈|J |, f〉
subject to Aπ = p, π ≥ 0, f =

∑

j∈J πj and
J = {j|Aj is Γ-inconsistent,πj > 0}

(4)

So the PSAT instance〈Γ,Ψ〉 associated to program (4) is sat-
isfiable iff the objective function is minimal at〈0, 0〉.

Assume there is a functionGenerateColumn(A, p,Γ),
presented at Section 4.3, that generates aΓ-consistent col-
umn that decreases the objective function, if one exists; oth-
erwise it returns an illegal column of the form[−1 · · · ]. Al-
gorithm 4.1 presents a method that decides a PSAT instance
by solving problem (4).

Algorithm 4.1 starts with a relaxed solution for〈Γ,Ψ〉
(line 2), and via column generation (line 4) generate another
feasible solution (line 6), decreasing the objective function,
until either the search fails (line 5) or a solution is found;the
latter only occurs with the termination of the loop in lines 3–
8, when the objective function reaches〈0, 0〉.

4.3 SAT-Based Column Generation
A Γ-satisfiable columnb that never increases the value of the
objective function is obtained by solving at mostk + 1 SAT
problems as follows. Considerx1, . . . , xk over{0, 1} and

a1 · x1 + · · · ak · xk op c op ∈ {<,≤, >,≥,=, 6=} (5)

Algorithm 4.1 Logic-algebraic PSAT solver

Input: A normal form PSAT instance〈Γ,Ψ〉.
Output: Total solutionA; or “No”, if unsatisfiable.
1: p := sortDecrescent({1} ∪ {pi|P (yi) = pi ∈ Ψ};
2: A(0) := I∗; s := 0; compute〈|J(s)|, f(s)〉;
3: while 〈|J(s)|, f(s)〉 6= 〈0, 0〉 do
4: b(s) = GenerateColumn(A(s), p,Γ);

5: return “No” if b
(s)
1 < 0; /* instance is unsat */

6: A(s+1)=merge(A(s), b
(s));

7: increments; compute〈|J(s)|, f(s)〉;
8: end while
9: return A(s); /* PSAT instance is satisfiable */

wherea1, . . . , ak, c ∈ Q; (5) can be seen as a propositional
formulaLR, in the sense that a valuationv : xi 7→ {0, 1}
satisfiesLR iff v makes (5) a true condition. Such a formula
∆LR can be obtained fromLR in timeO(k) [Warners, 1998].

Suppose1, . . . , q ≤ k+1 are theΓ-inconsistent columns of
feasible solutionA. First, we try to eliminate aΓ-inconsistent
columnAj associated toπj > 0. By linear algebraic manip-
ulation, a new columnb = [1 y1 . . . yk]

′ to substituteAj must
satisfy the set of linear inequalities:

(LRij) (A−1
j πi−A−1

i πj)[1 y1 . . . yk]
′ ≥ 0, 1 ≤ i ≤ k+1

A substitutionb for Aj is obtained by a valuation that sat-
isfies the formulaΘj = Γ ∧

∧k+1
i=1 ∆LRij

. Clearly, if Θj is
satisfiable,A[j := b] is Γ-consistent and decreases|J |.

Suppose everyΘj is unsatisfiable,1 ≤ j ≤ q, and let
fπ =

∑q
j=1 πj . A columnb = [1 y1 . . . yk]

′ that substitutes
someAj and enforces a non-increasingfπ similarly satisfies

(LRf )
∑q

j=1 A
−1
j · [1 y1 · · · yk]

′ ≥ 0

A substitutionb for Aj is obtained by a valuation that sat-
isfies the formulaΘf = Γ ∧ ∆LRf

. If Θf is satisfiable,
A[j := b] is Γ-consistent andfπ never increases.

The algorithm that computesGenerateColumn(A, p,Γ)
faster in practice is as follows. First, sendΘf (y1, . . . , yk)
to a SAT-solver. If it is unsatisfiable, return invalid column
[−1 0 . . . 0]′; in this way we have an early failure. Otherwise
there is avf , vf (Θf ) = 1. If bf = [1 vf (y1) . . . vf (yk)]

′

substitutes someΓ-inconsistent column, returnbf , which
decreases|J | and maybef as well. Otherwise storebf .
For eachΓ-inconsistentAj submitΘj(y1, . . . , yk) to a SAT-
solver; if it is satisfiable with valuationv, return b =
[1 v(y1) . . . v(yk)]

′, decreasing|J |. If all Θj are unsatisfi-
able, returnbf , sof does not increase. As the SAT solver is
deterministic and generates answers in a fixed order, termina-
tion of the whole process is guaranteed.

Example 4.3 Apply Algorithm 4.1 to the presentation of
Problem 1.2 in Example 2.4. At step 0, the relaxed solution







1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1






·
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0
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is such that the two columns on the left areΓ-inconsistent.
Column generation tries to substitute the column 1, generat-
ing the inequalities−y1 + y2 ≥ 0, y2 − y3 ≤ 0, 3y1 + 2y3 ≤
3, y1 ≤ 0 which, when translated to logic and input to a SAT
solver jointly with Γ produces the valuationy1 = 0, y2 =
1, y3 = 1. At step 1, we substitute column 1 by[1 0 1 1]′,
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Now only column 2 isΓ-inconsistent;Θf produced by col-
umn generation is unsatisfiableΘf and so is the problem.
That is, the drunks are lying. �

4.4 Results: Another PSAT Phase Transition
We implemented Algorithm 4.1 in C++, also employing
the zchaff SAT solver, thus obtaining a much faster PSAT
solver. We generated uniformly distributed normalised ran-
dom PSAT instances in normal form withk probability as-
signments,n variablesy1, . . . , yk, xk+1, . . . , xn and m 3-
SAT clauses. We obtained the graphic illustrated in Figure 3
by fixing k = 12, n = 150, m/n increases in steps of0.1 and
200 PSAT instances for each value ofm.

Again, Figure 3 displays an unequivocal phase transition
behaviour. As predicted, with a largerk the phase transition
point has moved to the left atPt ≈ 3.9. The phase transition
behaviour can be credited to the use of PSAT normal form
and to the fact that, unlike in program (2), onlyΓ-consistent
columns were generated in a small basis of sizek+1. The in-
crease in efficiency is mainly due to the small basis, and also
to the use of an efficient SAT solver to and to the smaller size
of formulas submitted to the SAT solver than in the reduction
algorithm.

By generating large instances over the “flat zones” of Fig-
ure 3, we were able to obtain a satisfiable instance with
n = 400,m = 400, k = 50 and decision time 0.76s; and
an unsatisfiable instance withn = 200,m = 800, k = 100
and decision time 29.4s. This gives an idea of the capabilities
of the method.

5 Conclusion
We have shown that a combination of logic and algebraic
techniques can be very fruitful to the study of algorithms of
PSAT solvers. The logic part appear to be crucial to reveal a
phase transition behaviour in this case.

Further work involves the exploration of efficient PSAT
fragments using the algorithm and techniques developed here,
and the study of PSAT-based methods and applications that
employ the algorithms presented here.

References
[Andersen and Pretolani, 2001] K.A. Andersen and D. Pre-

tolani. Easy cases of probabilistic satisfiability.AMAI,
33(1):69–91, 2001.

[Boole, 1854] G. Boole. An Investigation on the Laws
of Thought. Macmillan, London, 1854. Available at
http://www.gutenberg.org/etext/15114.

[Cheesemanet al., 1991] P. Cheeseman, R. Kanefsky, and
W. M. Taylor. Where the really hard problems are. In
12th IJCAI, pages 331–337, 1991.

[Cook, 1971] Stephen A. Cook. The complexity of theorem-
proving procedures. In3rd ACM Symposium on Theory of
Computing (STOC), pages 151–158. ACM, 1971.

[Eén and S̈orensson, 2003] N. Eén and N. S̈orensson. An ex-
tensible SAT-solver. InSAT 2003, volume 2919 ofLNCS,
pages 502–518. Springer, 2003.

[Garling, 2007] D. J. H. Garling. Inequalities: A Journey
into Linear Analysis. Cambridge University Press, 2007.

[Gent and Walsh, 1994] I. P. Gent and T. Walsh. The sat
phase transition. In11th European Conference on Arti-
ficial Intelligence, pages 105–109, 1994.

[Georgakopouloset al., 1988] G. Georgakopoulos, D. Kav-
vadias, and C. H. Papadimitriou. Probabilistic satisfiabil-
ity. J. of Complexity, 4(1):1–11, 1988.

[Hailperin, 1986] T. Hailperin. Boole’s Logic and Probabil-
ity. North-Holland, second edition, 1986.

[Hansen and Jaumard, 2000] P. Hansen and B. Jaumard.
Probabilistic satisfiability. InHandbook of Defeasible
Reasoning and Uncertainty Management Systems, vol.5.
Springer, 2000.

[Hansenet al., 1995] P. Hansen, B. Jaumard, G.-B. Nguetsé,
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Figure 3: PSAT Phase Transition for Algorithm 4.1


