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Abstract. In this paper, we investigate the Probabilistic Satisfiability
Problem, and its relation with the classical Satisfiability Problem, look-
ing for a possible polynomial-time reduction. For this, we present an
Atomic Normal Form to the probabilistic satisfiability problem and then
we define a Probabilistic Entailment relation, showing its inherent prop-
erties. At the end, we enunciate and refute a conjecture that could lead
to the desired polynomial-time reduction.
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1 Introduction

The study of reasoning under uncertainty is a subject from many fields, and,
in computer science, it has been useful on distributed system analysis and pro-
gram analysis under probabilistic assumptions. In the XIX century, Boole [1]
has already studied the probability assignment to logical sentences, and we see
his influence on de Finetti’s theory of subject probability [3]. In 1965, Hailperin
[5] revisited the problem, giving it a linear programming form. In 1986, Nilsson
[8] formalized the probabilistic satisfiability problem as we know it today: given
logical sentences, and a probability assignment to them, we want to know if this
assignment is consistent. The main analytical and numerical solutions to this
problem, as well its detailed history, can be seen in [6].

The probabilistic satisfiability problem (PSAT) is NP-complete. Thus the
Cook-Levin Theorem [2] tells us that there is a polynomial reduction from PSAT
to classical satisfiability (SAT). Such reduction might be interesting to exploit
the efficiency of SAT solvers. Another reason to study reduction from PSAT to
SAT is the seek for a better understanding on the relation between logic and
probability. The objective of this work is to investigate the relation between
PSAT and SAT, looking for paths that enable the desired reduction.

In Section 2 we formally present the PSAT problem, in Nilsson’s linear pro-
gramming formulation [8]. In Section 3 we introduce the Atomic Normal Form
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for PSAT and in Section 4 a probabilistic entailment relation is suggested. Then
in Section 5 we present a conjecture, under the concepts developed in the pre-
vious sections, on a possible reduction from PSAT to SAT. Such conjecture is
exhaustively refuted by a counterexample.

2 The Problem

The probabilistic satisfiability (PSAT) is a decision problem, where we explore
the consistency of a probability assignment over logical formulas.

Formally, let S = {s1, . . . , sk} be a set with k logical sentences, defined on
a set of n Boolean variables, X = {x1, . . . , xn}, with the usual operators from
the classical propositional logic. A truth assignment (or valuation) v is initially
defined as a function that associates truth values to Boolean variables, formally
v : X → {0, 1}. Then we can extend its domain to the set of formulas S, as usual
in classical logic 1, v : S → {0, 1}.

Let V = {v1, . . . , v2n} be the set of possible truth assignments over X. A
probability distribution over propositional valuations π : V → [0, 1] is a func-
tion that maps every valuation to a value in the real interval [0, 1] such that∑2n

i=1 π(vi) = 1. The probability of a formula s according to π is giving by
pπ(s) =

∑
{π(vj)|vj(s) = 1}.

Let P = {pi|0 ≤ pi ≤ 1, 1 ≤ i ≤ k} be a set of probabilities. We say
that the probability assignment p(si) = pi is consistent if, and only if, there
is a distribution π over V that makes pπ(si) = pi, 1 ≤ i ≤ k. Finally a PSAT
instance, defined by the set S and by p(si) = pi, with 1 ≤ i ≤ k, is satisfiable iff
this probability assignment is consistent.

Now PSAT can be expressed as a linear programming problem, as introduced
in [8]. Let∆ be the PSAT instance made by assigning the probabilities in P to the
k formulas in S, ∆ = {p(si) = pi|1 ≤ i ≤ k}. We define the matrix Ak×2n = [aij ],
such that aij = vj(si), and the matrix pk×1 = [pi]. So ∆ is satisfiable iff there is
a vector π that hold the restrictions:

Aπ = p ; (1)
π ≥ 0 ; (2)∑
π = 1 . (3)

If there is a feasible solution π, then we say that π satisfies ∆, else we say
that ∆ is unsatisfiable. The restrictions (2) and (3) force π to be a probability
distribution. The restriction (3) can be omitted if we add an entire row of 1′s to
the matrix A, ak+1,j = 1, 1 ≤ j ≤ 2n, and if we add an element pk+1,1 = 1 to
the vector p, what will be done from here until the end of this paper.

According to Carathéodory’s Lemma [9], if the linear programming problem
(1-3) has feasible solution, then there is a solution with only k + 1 elements of
1 Let α and β be formulas from classical propositional logic, we have: v(α∧ β) = 1 iff
v(α) = 1 and v(β) = 1; v(α∨β) = 1 iff v(α) = 1 or v(β) = 1; v(¬α) = 1 iff v(α) = 0;
v(α→ β) = 1 iff v(α) = 0 or v(β) = 1; and v(α↔ β) = 1 iff v(α) = v(β).
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π different from zero. As pointed in [4], this result places PSAT in NP, because
we can take a matrix Ak+1,k+1 and a vector πk+1,1 as NP-certificate. Besides
that, any instance from classical satisfiability (SAT), made from a set S with k
sentences, can be reduced to a PSAT instance, in polynomial time, by making
p(si) = pi = 1, 1 ≤ i ≤ k. It follows that PSAT is NP-hard, hence NP-complete.

3 The Atomic Normal Form

Let S = {s1, . . . , sk} be a set of sentences from classical propositional logic, over
the set X = {x1, . . . , xn} of Boolean variables. We say that a PSAT instance,
∆ = {p(si) = pi|1 ≤ i ≤ k}, 0 ≤ pi ≤ 1, is in the Atomic Normal Form if it
can be partitioned in two sets, (Γ, Ψ), where Γ = {p(si) = 1|1 ≤ i ≤ m} and
Ψ = {p(yi) = pi|yi is an atom and 1 ≤ i ≤ l}, with 0 ≤ pi ≤ 1, where k = m+ l.
The partition Γ is the SAT part of the atomic normal form, usually represented
as a set of formulas, and the partition Ψ is the atomic probability assignment
part. The following Theorem shows how any PSAT instance can be brought to
the atomic normal form, by adding a linear number of new variables.

Theorem 1 (Atomic Normal Form). Let ∆ = {p(si) = pi|1 ≤ i ≤ k} be a
PSAT instance. Then a PSAT instance (Γ, Ψ) in the atomic normal form can be
built, in polynomial time on k, such that ∆ is satisfiable iff (Γ, Ψ) is satisfiable.

Proof. To build a PSAT instance (Γ, Ψ) in the atomic normal form, from the
instance ∆ = {p(si) = pi, 1 ≤ i ≤ k}, we first add k new variables, y1, . . . , yk.
Then we make Γ = {p(yi ↔ si) = 1|1 ≤ i ≤ k} and Ψ = {p(yi) = pi|1 ≤ i ≤ k}.
Clearly, this can be done in polynomial time on k.

Suppose there is a probability distribution π over the truth assignments
v : {x1, . . . , xn} ∪ {y1, . . . , yk} → {0, 1} that satisfies (Γ, Ψ). Because π satisfies
(Γ, Ψ), we have pπ(yi) = pi, 1 ≤ i ≤ k. By the construction of Γ and the laws
of probability, pπ(yi) = pπ(si), thus pπ(si) = pi, 1 ≤ i ≤ k. Over the truth
assignments v′ : {x1, . . . , xn} → {0, 1}, we define a probability distribution π’:

π′(v′) =
∑
{π(v)|v(xi) = v′(xi), 1 ≤ i ≤ n} .

Hence π′ is a probability distribution over {x1, . . . , xn} that satisfies pπ′(si) = pi,
1 ≤ i ≤ k, and consequently π′ satisfies ∆.

Now suppose there is a probability distribution π′ over the truth assignments
v′ : {x1, . . . , xn} → {0, 1} that satisfies ∆. Because π′ satisfies ∆, pπ′(si) = pi,
1 ≤ i ≤ k. We define a probability distribution π over the truth assignments
v : {x1, . . . , xn} ∪ {y1, . . . , yk} → {0, 1}:

π(v) =
{
π′(v′) , if v(xi) = v′(xi) and v(yj) = v(sj), 1 ≤ i ≤ n and 1 ≤ j ≤ k

0 , other cases .

Clearly, we have pπ(si) = pπ′(si) and pπ(yi) = pπ(si), 1 ≤ i ≤ k. It follows that
pπ(yi) = pπ′(si) = pi, 1 ≤ i ≤ k, and then π satisfies Ψ . For all v, such that
π(v) 6= 0, we have v(yi) = v(si), 1 ≤ i ≤ k, thus pπ(yi ↔ si) = 1, 1 ≤ i ≤ k, and
π satisfies Γ . Finally, π satisfies (Γ, Ψ). ut
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The atomic normal form allows us to see a PSAT instance (Γ, Ψ) as an inter-
action between a probability assignment (Ψ) and a SAT instance (Γ ). Solutions
to (Γ, Ψ) can be seen as solutions to Ψ constrained by the SAT instance Γ .

4 A Probabilistic Entailment Relation

Let Ψ be an atomic probability assignment and let α be a formula. We say that
Ψ probabilistically entails α, denoted by Ψ |≈α, iff the PSAT instance in the
atomic normal form ({¬α}, Ψ) is (probabilistically) unsatisfiable. In other words,
if ({¬α}, Ψ) is unsatisfiable, then p(¬α) = 1 and p(α) = 0 are not consistent
with Ψ ; and because the probabilities are non-negative, Ψ |≈α implies p(α) > 0,
for any probability distribution that satisfies Ψ .

We denote by Ψ
|≈

the set of all formulas α such that Ψ |≈α. The following
Theorem shows, by this set, the role probabilistic entailment plays in PSAT
study.

Theorem 2. Let Σ = (Γ, Ψ) be a PSAT instance in the atomic normal form.
Σ is satisfiable iff for each α ∈ Ψ |≈ , Γ ∪ {α} is classically satisfiable.

Proof. Suppose there is an α ∈ Ψ |≈ , but Γ ∪{α} is classically unsatisfiable, then
Γ � ¬α. From α ∈ Ψ |≈ , we obtain that ({¬α}, Ψ) is probabilistically unsatisfiable,
and thus (Γ, Ψ) is also probabilistically unsatisfiable.

Conversely, suppose (Γ, Ψ) is probabilistically unsatisfiable. Let γ be the con-
junction of all formulas in Γ . Obviously ({γ}, Ψ) is also unsatisfiable. It follows
that ¬γ ∈ Ψ |≈ and, clearly, Γ ∪ {¬γ} is classically unsatisfiable. ut

This motivates the study of the probabilistic entailment properties.

4.1 Probabilistic Entailment Properties

We first note an initial relation between |≈ and �:

Lemma 1. If Ψ |≈α and α � β, then Ψ |≈β.

Proof. From Ψ |≈α, we know that p(α) > 0, and α � β yields p(α) ≤ p(β). So
p(β) > 0, and therefore Ψ |≈β. ut

However we note that Ψ |≈α and Ψ |≈β don’t imply Ψ |≈α ∧ β. As coun-
terexample, we take p(α) = p(β) = 0.4 and p(α ∨ β) = 0.8, from where we
obtain p(α ∧ β) = 0 and thus Ψ |6≈α ∧ β. In this counterexample, we made
p(α ∨ β) = p(α) + p(β), but it’s only possible when p(α) + p(β) ≤ 1. This leads
us to the next Lemma.

Because in the atomic normal form the probabilities are assigned to atoms,
and consequently to their negations, it’s useful to define literal, so we can talk
about probabilities overs literals. A literal x is an atom or its negation, and x̄
denotes the negation of x.
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Lemma 2. Let Ψ be an atomic probability assignment such that, for literals y
and z, p(y) + p(z) > 1. Then Ψ |≈ y ∧ z.

Proof. As direct consequence of Kolmogorov’s probability axioms, we know that

p(y) + p(z) = p(y ∨ z) + p(y ∧ z) .

As p(y) + p(z) > 1, and always p(y ∨ z) ≤ 1, we obtain that p(y ∧ z) > 0, and
thus Ψ |≈ y ∧ z. ut

However, as p(y1) + . . .+ p(yk) > 1 doesn’t imply Ψ |≈ y1 ∧ . . . ∧ yk, we look
for a suitable generalization for the Lemma 2.

Let y1, . . . , yk be literals and let j be an integer, with 1 ≤ j ≤ k. We define:

Cj(y1, . . . , yk) =
∨
{yi1 ∧ . . . ∧ yij |1 ≤ i1 < . . . < ij ≤ k} . (4)

For example, C1(y, z, w) = y ∨ z ∨w, C2(y, z, w) = (y ∧ z)∨ (y ∧w)∨ (z ∨w)
and C3(y, z, w) = y ∧ z ∧ w. It is useful to define C0(y1, . . . , yk) = 1, as the
conjunction neutral element. We call formulas in the format (4) a C-formula.

From the commutativity of the logical operators ∧ and ∨, we obtain that
the literals order in (4) is irrelevant. Besides that, let’s look at the following
C-formulas properties, related to the entailment:

Lemma 3. Let y1, . . . , yk be literals and let j, j′, k and k′ be non-negative inte-
gers:

(a) if 0 ≤ j′ < j then Cj(y1, . . . , yk) � Cj
′
(y1, . . . , yk) ;

(b) if k′ > k then Cj(y1, . . . , yk) � Cj(y1, . . . , yk′) .

Proof.

(a) Let Y = {y1, . . . , yk} be a set of literals. Note that the truth assignment
v satisfies Cj(y1, . . . , yk) iff there is a set Y ′ ⊆ Y such that |Y ′| = j and
v(y) = 1, for all y ∈ Y ′. Obviously, if v satisfies Cj(y1, . . . , yk), then, for each
1 ≤ j′ < j, there is a set Y ′′ ⊆ Y ′ ⊆ Y such that |Y ′′| = j′ and v(y) = 1 for
all y ∈ Y ′′. So such truth assignment v must also satisfy Cj

′
(y1, . . . , yk).

(b) When k′ > k, Cj(y1, . . . , yk′) can be written in the format α∨Cj(y1, . . . , yk).
So each truth assignment that satisfies Cj(y1, . . . , yk) also satisfies Cj(y1, . . . , yk′).

ut

Let Y = {y1, . . . , yk} be a set of literals. Another important C-formulas property,
to be used in section 5, is related to adding opposite literals, z, z̄ /∈ Y , in Cj(Y ),
where Cj(Y ) denotes Cj(y1, . . . , yk):

Lemma 4. Let Y be a set of literals, and let z be a literal, such that z, z̄ /∈ Y .
Then Cj(Y ) ≡ Cj+1(Y ∪ {z, z̄}).

Proof. Expanding the formula Cj+1(Y ∪{z, z̄}) and ruling out the conjunctions
that imply z ∧ z̄, we have 2 kinds of conjunctions: the ones where j literals are
in Y and the remaining literal is in {z, z̄}, and those with all literals in Y . Or:
Cj+1(Y ∪{z, z̄}) ≡ z∧Cj(Y )∨ z̄∧Cj(Y )∨Cj+1(Y ) ≡ Cj(Y ), by Lemma 3a. ut
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Before we enunciate the next Theorem, we need the following Lemma, where
Cjk denotes Cj(y1, . . . , yk):

Lemma 5. Let i and k be integers, with 0 ≤ i < k. Then

p(yk+1 ∧ Cik) + p(Ci+1
k ) = p(Ci+1

k+1) + p(yk+1 ∧ Ci+1
k ) .

Proof. Directly from Kolmogorov’s axioms, we have:

p(yk+1 ∧ Cik) + p(Ci+1
k ) = p(yk+1 ∧ Cik ∨ Ci+1

k ) + p(yk+1 ∧ Cik ∧ Ci+1
k ) .

From Lemma 3, we know that Ci+1
k � Cik. Then:

p(yk+1 ∧ Cik ∧ Ci+1
k ) = p(yk+1 ∧ Ci+1

k ) .

From the C-formulas definition, we note that:

yk+1 ∧ Cik ∨ Ci+1
k ≡ Ci+1

k+1 .

Finally, we obtain:

p(yk+1 ∧ Cik) + p(Ci+1
k ) = p(Ci+1

k+1) + p(yk+1 ∧ Ci+1
k ) .

ut

Theorem 3. Let {y1, . . . , yk} be a set of literals. Then:

p(y1) + . . .+ p(yk) = p(C1(y1, . . . , yk)) + . . .+ p(Ck(y1, . . . , yk)) .

Proof. The proof proceeds by induction in k, with Cjk denoting Cj(y1, . . . , yk):
Induction basis: k = 1, p(y1) = C1(y1) trivially.
Induction hypothesis: k = j ≥ 1, p(y1) + . . . + p(yj) = p(C1

j ) + . . . + p(Cjj ).
Induction step: k = j+1; starting from the induction hypothesis, we sum p(yj+1)
to both sides of equality:

p(y1) + . . .+ p(yj) + p(yj+1) = p(C1
j ) + . . .+ p(Cjj ) + p(yj+1) .

As yj+1 is equivalent to yj+1 ∧ C0
j , we apply Lemma 5:

p(C1
j ) + p(yj+1) = p(C1

j+1) + p(yj+1 ∧ C1
j ) .

So we obtain:

p(y1) + . . .+ p(yj+1) = p(C1
j+1) + p(yj+1 ∧ C1

j ) + p(C2
j ) + . . .+ p(Cjj ) .

In an analogous way, we apply Lemma 5 j − 1 times, obtaining:

p(y1) + . . .+ p(yj+1) = p(C1
j+1) + . . .+ p(Cjj+1) + p(yj+1 ∧ Cjj ) .

Noting that yj+1 ∧ Cjj ≡ C
j+1
j+1 , we finally have:

p(y1) + . . .+ p(yj+1) = p(C1(y1, . . . , yj+1)) + . . .+ p(Cj+1(y1, . . . , yj+1)) ,

as desired. ut
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Having presented the C-formulas, and with Theorem 3 in hand, we can enun-
ciate the Theorem that finally generalizes the Lemma 2:

Theorem 4. Let {y1, . . . , yk} be a set of literals, and let Ψ be a probability
assignment to these literals. If

∑k
i=1 p(yi) > j − 1, then Cj(y1, . . . , yk) ∈ Ψ |≈ .

Proof. In one hand, from Theorem 3, we have:

k∑
i=1

p(yi) =
k∑
i=1

p(Ci(y1, . . . , yk)) > j − 1 .

As p(α) ≤ 1 for all formula α,
∑j−1
i=1 p(C

i(y1, . . . , yk)) ≤ j − 1, for any j ≤ k, it
follows that

∑k
i=j p(C

i(y1, . . . , yk)) > 0.
In other hand, from Lemma 3, it follows that Ck(y1, . . . , yk) � . . . � Cj(y1, . . . , yk),

because j ≤ k, and hence:

p(Cj(y1, . . . , yk)) ≥ . . . ≥ p(Ck(y1, . . . , yk)) ;

(k − j + 1)p(Cj(y1, . . . , yk)) ≥
∑k
i=j p(C

i(y1, . . . , yk)) > 0 ;

p(Cj(y1, . . . , yk)) > 0 .

We conclude that Ψ |≈Cj(y1, . . . , yk), and therefore Cj(y1, . . . , yk) ∈ Ψ |≈ . ut

5 A Conjecture and its Refutation

Let (Γ, Ψ) be a PSAT instance. In one hand, from Theorem 2, if {α} ∪ Γ is
classically unsatisfiable, for a C-formula α ∈ Ψ |≈ , then (Γ, Ψ) is probabilistically
unsatisfiable. In other hand, if each formula α ∈ Ψ |≈ were implied by a formula
Cj(y1, . . . , yk), such that

∑k
i=1 p(yi) > j − 1, the probabilistic unsatisfiability of

(Γ, Ψ) would yield the classical unsatisfiability of {Cj(y1, . . . , yk)} ∪ Γ , for one
C-formula in that condition. Having this in mind, we conjecture the following:

Conjecture 1 If (Γ, Ψ) is an unsatisfiable PSAT instance, then there is a C-
formula Cj(y1, . . . , yk), with

∑k
i=1 p(yi) > j − 1, such that {Cj(y1, . . . , yk)} ∪ Γ

is classically unsatisfiable.

Refutation. Our refutation will be built by presenting a counterexample PSAT
instance. Let’s consider the PSAT instance ∆ = (Γ, Ψ), where Γ is a set with 1
formula, from classical propositional logic, over 4 boolean variables x1, . . . , x4.
To simplify the writing, if α and β are formulas, then αβ denotes α ∧ β, and ᾱ
denotes ¬α:

Γ = {x1x2x3x4 ∨ x1x̄2x̄3x̄4 ∨ x̄1x2x̄3x̄4 ∨ x̄1x̄2x3x̄4 ∨ x1x̄2x3x4} .

And Ψ is the following probability assignment to the boolean variables:

Ψ = {p(x1) = 0.47, p(x2) = 0.40, p(x3) = 0.46 and p(x4) = 0.05} .
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It follows that, from Kolmogorov’s axioms:

p(x̄1) = 0.53, p(x̄2) = 0.60, p(x̄3) = 0.54 and p(x̄4) = 0.95 .

Let vk : {x1, . . . , x4} → {0, 1}, 1 ≤ k ≤ 5, be the only truth assignments
to satisfy Γ , such that v1 satisfies x1x2x3x4, v2 satisfies x1x̄2x̄3x̄4, v3 satisfies
x̄1x2x̄3x̄4, v4 satisfies x̄1x̄2x3x̄4, and v5 satisfies x1x̄2x3x4.

To note the unsatisfiability of ∆ = (Γ, Ψ), we will show a formula α ∈ Ψ |≈ ,
such that {α} ∪Γ is unsatisfiable. As p(x1) + p(x2) + p(x3) = 1.33, by Theorem
3 we have p(C1(x1, x2, x3)) + p(C2(x1, x2, x3)) + p(C3(x1, x2, x3)) = 1.33. With
p(C1(x1, x2, x3)) ≤ 1 and, by Lemma 3a, p(C2(x1, x2, x3)) ≥ p(C3(x1, x2, x3)),
it follows p(C2(x1, x2, x3)) ≥ 0.165. Thus p(x̄4) + p(C2(x1, x2, x3)) > 1 and
p(x̄4∧C2(x1, x2, x3)) > 0. Let α be x̄4∧C2(x1, x2, x3). We note that α ∈ Ψ |≈ and
{α}∪Γ is unsatisfiable. Then, by Theorem 2, ∆ is probabilistically unsatisfiable.

Now we have to exhaustively show that, for each formula Cj(y1, . . . , yk) with∑k
i=1 p(yi) > j − 1, {Cj(y1, . . . , yk)} ∪ Γ is satisfiable. Remembering Lemma

3a, being Y a set of literals, if 0 ≤ j′ < j, then Cj(Y ) � Cj
′
(Y ). For each

set of literals Y = {y1, . . . , yk}, we define jmax(Y ) = d
∑k
i=1 p(yi)e and denote

Cjmax(Y )(Y ) by Cjmax(Y ). So if 0 ≤ j < jmax(Y ), then Cjmax(Y ) � Cj(Y ), and
if jmax(Y ) < j, then

∑k
i=1 p(yi) ≤ j − 1. Thus for each set of literals Y , it’s

enough to verify the satisfiability of {Cjmax(Y )} ∪ Γ .
With 4 variables, we have 8 different literals, that yield 28 = 256 possi-

ble sets of literals to be checked. We easily note that the empty set doesn’t
need to be verified, because

∑
y∈∅ p(y) = 0 = jmax(∅), and C0(Y ) = TRUE

is satisfied by any truth assignment. Considering now sets with one literal,
whose jmax = 1, note that each of the 8 literals is true either in v3, or in
v5, so we don’t need to check theses sets also. Furthermore, if z, z̄ /∈ Y , then
jmax(Y ∪ {z, z̄}) = dp(z) + p(z̄) +

∑
y∈Y p(y)e = jmax(Y ) + 1. So, by Lemma 4,

Cjmax(Y ∪{z, z̄}) ≡ Cjmax(Y ), thus we don’t need to check sets with 2 opposite
literals. The 3 tables below show the 72 remaining possible sets of literals over
{x1, . . . , x4}, organized by the set length. Each row presents a set Y of literals,
the sum of these literals probabilities,

∑
y∈Y p(y), the jmax defined by this set

and the truth assignment that satisfies {Cjmax(Y )} ∪ Γ . Each truth assignment
is represented by the conjunction it is the only one to satisfy.

And so we finish the refutation, with an unsatisfiable PSAT instance, (Γ, Ψ),
where for each formula Cj(Y ), such that

∑
y∈Y p(y) > j − 1, we have shown a

truth assignment that satisfies {Cj(Y )} ∪ Γ . ut

Note that Theorems 3 and 4 also hold for formulas, not only for atoms. The
formula α presented as ”witness” for the unsatisfiability of PSAT instance (Γ, Ψ),
from Conjecture 1 refutation, could be written as a C-formula of formulas: α ≡
¬x4∧C2(x1, x2, x3) ≡ C2(¬x4, C

2(x1, x2, x3)). As p(¬x4)+(C2(x1, x2, x3)) > 1,
by Theorem 4, Ψ |≈C2(¬x4, C

2(x1, x2, x3)), but this C-formula is inconsistent
with Γ , as we have shown.
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Table 1. Sets with 4 literals

set of literals Y
P

y∈Y p(y) jmax vi set of literals Y
P

y∈Y p(y) jmax vi

{x̄1, x̄2, x̄3, x̄4} 2.62 3 x1x̄2x̄3x̄4 {x̄1, x̄2, x̄3, x4} 1.72 2 x1x̄2x̄3x̄4

{x̄1, x̄2, x3, x̄4} 2.54 3 x̄1x̄2x3x̄4 {x̄1, x̄2, x3, x4} 1.64 2 x̄1x̄2x3x̄4

{x̄1, x2, x̄3, x̄4} 2.42 3 x̄1x2x̄3x̄4 {x̄1, x2, x̄3, x4} 1.52 2 x̄1x2x̄3x̄4

{x̄1, x2, x3, x̄4} 2.34 3 x̄1x2x̄3x̄4 {x̄1, x2, x3, x4} 1.44 2 x1x2x3x4

{x1, x̄2, x̄3, x̄4} 2.56 3 x1x̄2x̄3x̄4 {x1, x̄2, x̄3, x4} 1.66 2 x1x2x3x4

{x1, x̄2, x3, x̄4} 2.48 3 x1x̄2x̄3x̄4 {x1, x̄2, x3, x4} 1.58 2 x1x2x3x4

{x1, x2, x̄3, x̄4} 2.36 3 x1x̄2x̄3x̄4 {x1, x2, x̄3, x4} 1.46 2 x1x2x3x4

{x1, x2, x3, x̄4} 2.28 3 x1x2x3x4 {x1, x2, x3, x4} 1.38 2 x1x2x3x4

Table 2. Sets with 3 literals

set of literals Y
P

y∈Y p(y) jmax vi set of literals Y
P

y∈Y p(y) jmax vi

{x̄1, x̄2, x̄3} 1.67 2 x1x̄2x̄3x̄4 {x̄1, x̄2, x3} 1.59 2 x̄1x̄2x3x̄4

{x̄1, x2, x̄3} 1.47 2 x̄1x2x̄3x̄4 {x̄1, x2, x3} 1.39 2 x̄1x2x̄3x̄4

{x1, x̄2, x̄3} 1.61 2 x1x̄2x̄3x̄4 {x1, x̄2, x3} 1.53 2 x1x̄2x3x4

{x1, x2, x̄3} 1.41 2 x1x̄2x̄3x̄4 {x1, x2, x3} 1.33 2 x1x2x3x4

{x̄1, x̄2, x̄4} 2.08 3 x̄1x̄2x3x̄4 {x̄1, x̄2, x4} 1.18 2 x̄1x̄2x3x̄4

{x̄1, x2, x̄4} 1.88 2 x̄1x2x̄3x̄4 {x̄1, x2, x4} 0.98 1 x1x2x3x4

{x1, x̄2, x̄4} 2.02 3 x1x̄2x̄3x̄4 {x1, x̄2, x4} 1.12 2 x1x2x3x4

{x1, x2, x̄4} 1.82 2 x1x2x3x4 {x1, x2, x4} 0.92 1 x1x2x3x4

{x̄1, x̄3, x̄4} 2.02 3 x̄1x2x̄3x̄4 {x̄1, x̄3, x4} 1.12 2 x̄1x2x̄3x̄4

{x̄1, x3, x̄4} 1.94 2 x̄1x̄2x3x̄4 {x̄1, x3, x4} 1.04 2 x1x2x3x4

{x1, x̄3, x̄4} 1.96 2 x1x̄2x̄3x̄4 {x1, x̄3, x4} 1.06 2 x1x2x3x4

{x1, x3, x̄4} 1.88 2 x1x2x3x4 {x1, x3, x4} 0.98 1 x1x2x3x4

{x̄2, x̄3, x̄4} 2.09 3 x1x̄2x̄3x̄4 {x̄2, x̄3, x4} 1.19 2 x1x̄2x̄3x̄4

{x̄2, x3, x̄4} 2.01 3 x̄1x̄2x3x̄4 {x̄2, x3, x4} 1.11 2 x1x2x3x4

{x2, x̄3, x̄4} 1.89 2 x1x̄2x̄3x̄4 {x2, x̄3, x4} 0.99 1 x1x2x3x4

{x2, x3, x̄4} 1.81 2 x1x2x3x4 {x2, x3, x4} 0.91 1 x1x2x3x4

Table 3. Sets with 2 literals

set of literals Y
P

y∈Y p(y) jmax vi set of literals Y
P

y∈Y p(y) jmax vi

{x̄1, x̄2} 1.13 2 x̄1x̄2x3x̄4 {x̄1, x2} 0.93 1 x1x2x3x4

{x1, x̄2} 1.07 2 x1x̄2x̄3x̄4 {x1, x2} 0.87 1 x1x2x3x4

{x̄1, x̄3} 1.07 2 x̄1x2x̄3x̄4 {x̄1, x3} 0.99 1 x1x2x3x4

{x1, x̄3} 1.01 2 x1x̄2x̄3x̄4 {x1, x3} 0.93 1 x1x2x3x4

{x̄1, x̄4} 1.48 2 x̄1x2x̄3x̄4 {x̄1, x4} 0.58 1 x1x2x3x4

{x1, x̄4} 1.42 2 x1x̄2x̄3x̄4 {x1, x4} 0.52 1 x1x2x3x4

{x̄2, x̄4} 1.55 2 x1x̄2x̄3x̄4 {x̄2, x4} 0.65 1 x1x2x3x4

{x2, x̄4} 1.35 2 x̄1x2x̄3x̄4 {x2, x4} 0.45 1 x1x2x3x4

{x̄2, x̄3} 1.14 2 x1x̄2x̄3x̄4 {x̄2, x3} 1.06 2 x̄1x̄2x3x̄4

{x2, x̄3} 0.94 1 x1x2x3x4 {x2, x3} 0.86 1 x1x2x3x4

{x̄3, x̄4} 1.49 2 x1x̄2x̄3x̄4 {x̄3, x4} 0.59 1 x1x2x3x4

{x3, x̄4} 1.41 2 x̄1x̄2x3x̄4 {x3, x4} 0.51 1 x1x2x3x4
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6 Conclusion

In this paper, we investigated the relation between probabilistic satisfiability
and classical satisfiability. For this, we presented the Atomic Normal Form and
defined a Probabilistic Entailment relation ( |≈ ). We defined C-formulas, which
have shown ubiquity in the probabilistic satisfiability study. Finally, we conjec-
tured the completeness of only looking at C-formulas probabilistically entailed
to decide the satisfiability of a PSAT instance, and we refuted it with a coun-
terexample.

The exponential number of C-formulas to investigate doesn’t allow its ex-
haustive use in a possible polynomial reduction from PSAT to SAT. However,
the founded results seem to be useful on PSAT study, bringing it back to logic.
The Atomic Normal Form might be useful to standardize PSAT instances, in
order to compare numeric outputs from algorithms that solve the problem. The
introduced probabilistic entailment relation enables the presentation of a ”wit-
ness” formula for the unsatisfiability of a PSAT instance, which can be used in
proving probabilistic unsatisfiability, using classical unsatisfiability.

As the efficiency of algorithms that solve PSAT is considerably lower than
those from algorithms for another NP-complete problems (like SAT), we believe
there is a lot of work to be done. A possible approach would be the polynomial
reduction to SAT, using the concepts we presented here together with linear
algebra techniques to explore PSAT, as it can be seen as a linear programming
problem.
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