
A Logic Based Algorithm for Solving Probabilistic Satis�ability 1

Author(s):
Marcelo Finger

Glauber De Bona

1This work was supported by Fapesp Project LogProb, grant 2008/03995-5, São Paulo, Brazil.

A Logic Based Algorithm for Solving

Probabilistic Satisfiability⋆

Marcelo Finger⋆⋆ and Glauber De Bona

Department of Computer Science (IME-USP)
Institute of Mathematics and Statistics

University of Sao Paulo — Brazil
{mfinger,debona}@ime.usp.br

Abstract. This paper presents a study of the relationship between prob-
abilistic reasoning and deductive reasoning, in propositional format. We
propose an algorithm to solve probabilistic satisfiability (PSAT) based
on the study of its logical properties. Each iteration of the algorithm
generates in polynomial time a classical (non-probabilistic) formula that
is submitted to a SAT-oracle. This strategy is a Turing reduction of
PSAT into SAT. We demonstrate the correctness and termination of the
algorithm.

1 Introduction

Probabilistic satisfiability (PSAT) is a problem that allows for the joint appli-
cation of deductive and probabilistic reasoning; this form of reasoning can be
performed without any a priori assumptions of statistical independence. Such
reasoning capabilities may be very useful in modeling complex systems, where
the statistical interdependence between the components is not known.

PSAT original formulation is credited to George Boole and dates back to
1854 [2]. The problem has since been independently rediscovered several times
(see [9, 10]) until it was introduced to the Computer Science and AI community
by Nilsson [13] and was shown to be an NP-complete problem, even for cases
where the corresponding classical satisfiability is known to be in PTIME [6]. Ini-
tial attempts to implement a solution led to the belief that the problem appeared
to be very hard [14].

The PSAT problem is formulated in terms of a linear algebraic problem of
exponential size. The vast majority, if not all, of algorithms for PSAT solving
in the literature are based on linear programming techniques, such as column
generation and matrix decomposition; see [10] for a good summary. There were
also works covering extensions of PSAT with imprecise probabilities [11], and
the discovery of some tractable fragments of PSAT [1], after which very little
was published on algorithms for PSAT.

⋆ This work was supported by Fapesp Thematic Project 2008/03995-5 (LOGPROB).
⋆⋆ Partially supported by CNPq grant PQ 304607/2007-0.

In the beginning of this century, very efficient solvers that dealt with the
classical (non-probabilistic) satisfiability problem (SAT) became available [12,
7]. The SAT problem is a well studied problem, with known hard and easy in-
stances and a phase-transition complexity distribution [5]. Efficient SAT-solvers
enabled the solution of other NP-complete problems by translating them to a
SAT instance and applying the solvers. Cook’s theorem guarantees that there
exists a polynomial-time translation from any NP-complete problem into SAT.
However, no such translation from PSAT to SAT is found in the literature.

The aim of this paper is to study the logical properties of PSAT so as to
present a Turing reduction of PSAT into SAT. A Turing reduction of PSAT into
SAT is an algorithm to decide PSAT that employs a SAT-oracle [15].

The rest of the paper develops as follows. Section 2 presents the PSAT prob-
lem and proposes an atomic normal form to deal with it. The logical properties
of PSAT are studied via a probabilistic entailment relation in Section 3, which
allows for the presentation of a PSAT solving algorithm. Sections 4 and 5 demon-
strate its correctness and that every step of the algorithm can be performed in
polynomial time. Termination of the algorithm is shown in Section 6. Proofs
have been omitted due to space restrictions.

2 The PSAT Problem

Probabilistic satisfiability consists in determining if the following configuration is
consistent: a finite set of k classical propositional formulas α1, . . . , αk defined on
n logical variables P = {x1, . . . , xn}, restricted by a set of probabilities imposed
on the truth of these formulas, p1, . . . , pk, such that P (αi) = pi, 1 ≤ i ≤ k.

Formally, consider L the set of all propositional formulas, which may or
may not be in clausal form. A propositional valuation v is initially defined over
propositional variables, v : P → {0, 1} and then is extended, as usual, to all
formulas, v : L → {0, 1}. Consider the set V of 2n propositional valuations
v1, . . . , v2n over the n variables. A probability distribution over propositional val-
uations π : V → [0, 1] is a function that maps every valuation to a value in

the real interval [0, 1] such that
∑2n

i=1 π(vi) = 1. The probability of a formula α
according to distribution π is given by Pπ(α) =

∑

{π(vi)|vi(α) = 1}.
Define a k×2n matrix A = [aij] such that aij = vj(αi). The probabilistic sat-

isfiability problem is to decide if there exists a probability vector π of dimension
2n such that obeys the PSAT restrictions :

Aπ = p
∑

πi = 1 (1)

π ≥ 0

The last two conditions force π to be a probability distribution. The condition
∑

πi = 1 is inserted as the first line of matrix A, that becomes a (k + 1) ×
2n matrix, and p(k+1)×1 is now a vector with p0 = 1. A PSAT instance is a
set Σ = {P (αi) = pi|1 ≤ i ≤ k}, which is satisfiable iff its associated PSAT

restrictions (1) have a solution. If π is a solution to (1) we say that π satisfies
Σ.

An important result of [6] guarantees that a solvable PSAT instance has a
“small” witness.

Proposition 1 ([6]). A PSAT instance Σ = {P (αi) = pi|1 ≤ i ≤ k} has a
solution iff there is a set of k+1 columns of A such that the resulting (k+ 1)×
(k + 1) system has a positive solution.

The solution given by Proposition 1 serves as an NP-certificate for this in-
stance, so PSAT is in NP. Furthermore, as propositional satisfiability (SAT) is
a subproblem obtained when all pi = 1, PSAT is NP-hard. So PSAT is NP-
complete.

It follows from the Cook-Levin Theorem [3] that there must be a polynomial
time reduction from PSAT to SAT. However, finding an efficient such reduction
is neither obvious nor easy at all. But considering the fast advances in the con-
struction of SAT solvers [12], it is a worthwhile task for two reasons. On the
one hand, there is the basis for a general and relatively efficient implementation
of PSAT which may render it useful in practical applications of moderate size,
whose scale may increase with the advances in SAT solving. On the other hand,
there is the understanding one gets from the relationship between probabilities
and logic.

On the latter topic, one must add that the vast majority of PSAT solving
initiatives, as surveyed in [10], concentrated in solutions based on variations of
linear programming. But here we are interested in exploring the same problem
via logical techniques. As PSAT poses no form of a priori probabilistic indepen-
dence assumption, it is actually a form of probabilistic reasoning that is not very
much explored in the literature.

First, some notation. If A is an (k+1)×(k+1) matrix, Aj represents its j-th
column, and if b(k+1)×1 is a column, A[j := b] represents the matrix obtained by
substituting b for Aj ; |A| is A’s determinant.

2.1 The Atomic Normal Form

We say that a PSAT instanceΣ = {P (αi) = pi|1 ≤ i ≤ l} is in the atomic normal
form if it can be partitioned in two sets, (Γ, Ψ), where Γ = {P (αi) = 1|1 ≤ i ≤
m} and Ψ = {P (yi) = pi|yi is an atom and 1 ≤ i ≤ k}, with 0 < pi < 1,
where l = m + k. The partition Γ is the SAT part of the normal form, usually
represented only as a set of propositional formulas and Ψ is the atomic probability
assignment part. An atomic PSAT instance is a PSAT instance in atomic normal
form.

Theorem 1 (Atomic Normal Form). Let Σ = {P (αi) = pi|1 ≤ i ≤ k} be a
PSAT instance. Then there exists an atomic PSAT instance (Γ, Ψ) such that Σ
is a satisfiable iff (Γ, Ψ) is; the atomic instance can be built from Σ in polynomial
time.

The atomic normal form allows us to see a PSAT instance (Γ, Ψ) as an
interaction between a probability problem (represented by Ψ) and a SAT instance
Γ . Solutions to the instance can be seen as solutions to Ψ constrained by the SAT
instance Γ . First, note that Ψ = {P (yi) = pi|1 ≤ i ≤ k} is a PSAT instance such
that the columns of its corresponding matrix YΨ are valuations over y1, . . . , yk.
However, for one solution to this instance to be a solution to the atomic instance
(Γ, Ψ), this solution must be further constrained.

We say that a valuation v over y1, . . . , yk is consistent with a SAT in-
stance Γ over variables y1, . . . , yk, x1, . . . , xn if there is an extension of v over
y1, . . . , yk, x1, . . . , xn such that v(S) = 1 for every S ∈ Γ .

Lemma 1. Let Ψ = {P (yi) = pi|1 ≤ i ≤ k}. An atomic instance (Γ, Ψ) is
satisfiable iff there is a (k+1)×k′-matrix AΨ verifying the PSAT restrictions (1),
k′ ≤ k+1, such that every column of AΨ is a valuation over y1, . . . , yk consistent
with Γ .

By Lemma 1, an atomic PSAT instance (Γ, Ψ) has a solution iff there is a
matrix A satisfying conditions (2) below such that if πj > 0 then a1,j , . . . , ak,j
are Γ -consistent valuations for y1, . . . , yk , 1 ≤ j ≤ k + 1:











1 · · · 1
a1,1 · · · a1,k+1

...
. . .

...
ak,1 · · · ak,k+1











·











π1
π2
...

πk+1











=











1
p1
...
pk











πj ≥ 0, A is non-singular,
ai,j ∈ {0, 1}, 1 ≤ i ≤ k, 1 ≤ j ≤ k + 1

(2)

We will further assume, without loss of generality, that the input probabilities
p1, . . . , pk are in decreasing order.

2.2 Relaxed PSAT

Given an atomic PSAT instance (Γ, Ψ) its associated relaxed PSAT instance is
obtained by ignoring the restriction Γ , namely the instance (∅, Ψ).

Lemma 2. Every relaxed PSAT instance is satisfiable.

The matrix A0 is called the relaxed matrix of order k + 1 and consists of 1’s
on the diagonal and above it, and 0’s below it. We assume we have a function
relaxedMatrixOfOrder(k) that generates it.

The basic idea of the PSAT decision using a SAT-oracle is to start with a
solution for the relaxed instance and try to substitute the columns of A0 that are
not consistent with Γ by others that are. The generation of these columns will be
solutions to auxiliary SAT instances. If some auxiliary instance is unsatisfiable,
so is the PSAT instance.

But before we can explain how the auxiliary SAT instances work, we need to
introduce a few logical and algebraic tools.

3 A Probabilistic Entailment Relation

We propose a probabilistic entailment relation, |≈ , between an atomic probability
assignment Ψ and a formula α, such that Ψ |≈α iff the atomic PSAT instance
({¬α}, Ψ) is (probabilistically) unsatisfiable. The intuition is that Ψ forces the
P (α) > 0; in fact, if ({¬α}, Ψ) is unsatisfiable, this means that P (α) = 0 is
inconsistent with Ψ , but since P (α) ≥ 0 for any formula, it follows that Ψ |≈α

implies P (α) > 0 for any probability distribution that satisfies Ψ .
Probabilistic entailment plays a special role in the study of probabilistic

satisfiability, in the following sense.

Lemma 3. Consider an atomic PSAT instance Σ = (Γ, Ψ). Σ is satisfiable iff
Γ ∪ {α} is classically satisfiable for every α such that Ψ |≈α.

Corollary 1. Σ = (Γ, Ψ) is (probabilistically) unsatisfiable iff there is a γ such
that Ψ |≈ γ and Γ � ¬γ.

Consider a PSAT solution of the form (2) and Γ = Γ (y1, . . . , yk;x1, . . . , xn) =
Γi(y;x). If we want to represent each column Aj = {a1,j , . . . , ak,j} as a set of

variables yj = {yj1, . . . , y
j
k}, we have that Γ (yj ;xj), 1 ≤ j ≤ k + 1, have all

disjoint sets of variables and have all to be jointly satisfiable. If we have a set
of classical conditions C = {α1, . . . , αc} such that Ψ |≈αi, 1 ≤ i ≤ c, no matter
how big the number of conditions c is, all conditions of C have to be satisfied by
one of at most k + 1 valuations, which are columns of the matrix A. Therefore,
αi(y

1;x1)∨ . . . αi(y
k+1;xk+1) must hold for each αi ∈ C. Furthermore, all these

conditions have to be jointly satisfiable, as there are only k+1 valuations allowed
in a solution of the form (2). We have thus proved the following.

Lemma 4. Let C be a set of Ψ -entailed formulas. Then the following set of
formulas must be jointly satisfiable:

{Γ (yj ;xj)|1 ≤ j ≤ k + 1}∪
{α(y1;x1) ∨ . . . ∨ α(yk+1;xk+1)|α ∈ C}

(3)

We assume there is a function satFormulaFromConditionSet(C) that given a
set of Ψ -entailed formulas, generates a formula ϕ of the format (3) to be sent to a
SAT oracle. If ϕ is unsatisfiable, by Corollary 1 the initial PSAT instance is also
unsatisfiable. Otherwise it outputs a valuation v from which we can assemble a
(k+1)× (k+1) matrix B extracting the value v attributes to yj , 1 ≤ j ≤ k+1;
the first line of B is all 1’s. We assume there is a function assembleMatrix (v)
that constructs such matrix.

Note that B may not satisfy conditions (2) as, for instance, it may be singular
in the case that all conditions of C are satisfied by a k′ < k+1 columns, so that
v(yk

′′

) = v(yk
′

) for k′′ > k′. So we have to merge the columns of B with those of
A to generate a new matrix satisfying conditions (2). We are now in a position
to present an outline of the PSAT-solver algorithm.

3.1 Algorithm

Based on Lemma 4 we are in a position to present the outline of the algorithm
that decides a PSAT instance employing a number of applications of the SAT
problem, which is presented in Algorithm 3.1.

Algorithm 3.1 PSAT via SAT

Input: An atomic normal form PSAT instance Σ = (Γ, Ψ = {P (yi) = pi|1 ≤ i ≤ k}).
Output: No, if Σ is unsatisfiable. Or a solution matrix A satisfying (2).

1: i := 0
2: A0 := relaxedMatrixOfOrder(k + 1)
3: C0 := ∅ //No initial conditions
4: while Ai is not a solution for (Γ, Ψ) do
5: Ci+1 = Ci ∪ conditionsFromMatrix (Ai)
6: ϕ := satFormulaFromConditionSet(Ci+1)
7: if ϕ is SAT-solvable with valuation v then

8: B := assembleMatrix (v)
9: Ai+1 = merge(Ai, B) //Invariant: Ai+1 satisfies (2)
10: increment i
11: else

12: return No
13: end if

14: end while

15: return Ai

So, the basic idea is to start every iteration with a matrix Ai satisfying (2),
use it to generate a set of Ψ -entailed formulas, generate a formula ϕ from it
and submit it to a SAT-oracle; if ϕ is unsatisfiable, so is the initial instance Σ.
Otherwise, obtain a matrix B satisfying all conditions of ϕ and merge it with
Ai, generating Ai+1 satisfying (2) and check if its a solution. If it is, return Ai+1;
otherwise, repeat this process.

To check for a solution (line 4), we inspect the vector π in the invariant (2).
A solution is found when for all components πj > 0, column A

j
i represents a

Γ -consistent valuation. If πj = 0, we need not enforce Aj
i to be a Γ -consistent

valuation, as any other column can be substituted for it; this represents the case
where a solution for (1) can be found with rank less than k + 1.

To complete the description of Algorithm 3.1, we still have to clarify the
following points:

– Line 5: how to obtain a set of Ψ -entailed formulas from a matrix satisfy-
ing (2).

– Line 9: how to merge a matrix A satisfying (2) with another, generating a
third one that still satisfies (2), keeping the invariant a line 9.

– Line 4: how the loop halts in a finite number of steps.

4 Linear Algebra and Logic

In this section we examine some relations between Linear Algebra and Logic. In
particular, we obtain Ψ -entailed formulas from a matrix satisfying (2).

4.1 Linear restrictions as formulas

A linear restriction over variables x1, . . . , xk is a condition of the form

a1 · x1 + · · · ak · xk op c (4)

where a1, . . . , ak, c ∈ Q and op ∈ {<,≤, >,≥,=, 6=}. If we further restrict the
variables xi such that xi ∈ {0, 1}, 1 ≤ i ≤ k, a linear restriction LR of the
form (4) can be seen as a formula, in the sense that a valuation v such that
v(xi) ∈ {0, 1} satisfies LR if the restriction is verified when we substitute v(xi)
for xi in (4). This view of linear-restrictions-as-formulas was developed in the
area of linear programming [8], and has been used in pseudo-boolean inference
methods [16, 4].

Proposition 2. Every linear restriction LR can be represented by a set of clauses
∆LR such that LR is satisfiable iff ∆LR is; the number of atoms and clauses in
∆ is bound by polynomial in k.

For example, the linear restriction

2x1 − x2 + x3 ≥ 2

when restricted to x1, x2, x3 ∈ {0, 1} can be seen as representing the clausal form
formula x1 ∧ (¬x2 ∨ x3).

Proposition 2 allows us to deal with linear restrictions as a formula, without
worrying about an exponential explosion, as they can be brought to clausal
normal form in polynomial time.

4.2 Logical restrictions for column substitution

We now study the logical conditions for substituting columns of a given matrix
that satisfy the invariant condition (2). Given a matrix A satisfying (2), we will
construct a matrix Ck+1×k+1 = [ci,j] of logical conditions.

Recall that Aj represents A’s j-th column, and if b(k+1)×1 is a column, A[j :=
b] represents the matrix obtained by substituting b for Aj .

Let y = [1 y1 . . . yk]
′ be a column of variables. If A satisfies (2), and we

want to substitute its j-th column by b = [1 b1 . . . bk]
′, to keep (2) invariant,

A[j := b] · π = p, then necessarily, |A[j := b]| 6= 0. This condition may be
stated syntactically by the linear-restriction-as-formula |A[j := y]| 6= 0, where
the logical restrictions on y represent the algebraic restrictions on b; in fact, this
restriction is linear for only one column is being substituted by variables. This

may already be expressed as a logical formula. However, more expressivity can
be obtained from Cramer’s Rule, according to which:

πj =
|A[j := y][j := p]|

|A[j := y]|
≥ 0 (5)

Note that A[j := y][j := p] = A[j := p] contains no variables. Let sign(x) =
−1, if x < 0, and +1 otherwise. If |A[j := p]| 6= 0, then πj > 0, so (5) yields

sign(|A[j := p]|) · |A[j := y]| > 0 (6)

which is a linear restriction. In the matrix of logical conditions C we make the
diagonal elements represent these conditions. Let A′ = A[j := p], then

cj,j =

{

sign(|A′|) · |A[j := y]| > 0,if |A′| 6= 0
|A[j := y]| 6= 0, if |A′| = 0

(7)

Note that the cj,j enforce that the column that substitutes Aj , that is non-
singular, will make the resulting matrix also non-singular. The other elements
of matrix C are also obtained using Cramer’s rule. Fix column j and consider a
column i 6= j; we have

πi =
|A[j := y][i := p]|

|A[j := y]|
≥ 0 (8)

As cj,j enforces |A[j := y]| 6= 0. If we further have that |A[j := p]| 6= 0, (6)
and (8) yield that

sign(|A[j := p]|) · |A[j := y][i := p]| ≥ 0,

which is a linear restriction and can be expressed by a formula χi,j . When
|A[j := p]| = 0 we need to consider two cases, namely A[j := y] > 0 and
A[j := y] < 0; as both are linear restrictions that can be expressed as formulas,
let us abbreviate those formulas as ψj and ξj , respectively. Now consider the
following linear conditions, |A[j := y][i := p]| ≥ 0 and |A[j := y][i := p]| ≤ 0 and
let us abbreviate the formulas that encode those conditions as ψi,j and ξi,j ; it is
clear that when ψj holds, we want ψi,j to hold, and when ξj holds we want ξi,j
to hold. In the matrix of logical conditions C we make the non-diagonal elements
represent these conditions. Let A′ = A[j := p] and i 6= j, then

ci,j =

{

χi,j , if |A′| 6= 0
(ψj ∧ ψi,j) ∨ (ξj ∧ ξi,j), if |A

′| = 0
(9)

The elements of the condition matrix C = [ci,j], 1 ≤ i, j ≤ k + 1, are given
by (7) and (9) and are all logical formulas. Each column Cj is constructed
concentrating on its corresponding column Aj and the restrictions on πi, 1 ≤
i ≤ k + 1. The following is a central property of the elements of matrix C.

Lemma 5. Consider a matrix of conditions C = [ci,j] constructed as above
based on a matrix A satisfying (2), A · π = p. If πj > 0 then Ψ |≈ ci,j, 1 ≤ i, j ≤
k + 1.

Lemma 5 states that the elements of the condition matrix C are conditions
of the form needed in line 5 of PSAT-solving Algorithm 3.1. So we define

conditionsFromMatrix (A) = {ci,j ∈ C} ∪ haltingCondition(A) . (10)

where haltingCondition(A) will be developed in Section 6.

5 Merging

Merging consists taking a matrix A satisfying the invariant conditions (2) and
a matrix B whose columns represent Γ -consistent valuations and generating a
new matrix A′ that incorporate “some” of B columns such that A′ satisfies the
invariant conditions (2). The following lemma tells us how to merge a single
column.

Lemma 6. Let A be a matrix satisfying the invariant condition (2) and let
b = [1 b1 · · · bk]

′ be a column such that bi{0, 1}, 1 ≤ i ≤ k. Then there always
exists a column j such that A[j := b] satisfies the invariant conditions (2).

The proof of Lemma 6 gives a procedure to merge a single column b with
a given matrix A preserving invariant condition (2). Consider matrix B =
[b1 . . . bk+1] as a sequence of columns. We define the merge(A,B), used in line 9
in Algorithm 3.1, as the successive merging of each column bi. As each merging
step, by Lemma 6, preserves the invariant condition (2), so does the output of
merge(A,B).

As noted above, the substituted column always exists in the merge process,
but to ensure termination we assume that the merge procedure always chooses
to substitute a column that is not Γ -consistent, if one is available.

6 Termination

To guarantee termination the halting formula will force at least one Γ -inconsistent
formula to be substituted at each iteration of Algorithm 3.1.

Let A be a {0, 1}-matrix satisfying invariant conditions (2), and let C = [ci,j]
be its corresponding condition matrix as in Section 4.2. Then any column y

substituting Aj has to satisfy all the conditions in column Cj ; let di,j(y) be
defined as

di,j(y) = ci,j(y) ∧ cj,j(y) .

As cj,j makes |A[j := y]| 6= 0, di,j(y) guarantees that A[j := y] is non-singular.
Considering the merging method of Section 5, if after ℓ substitutions every di,j ,
1 ≤ i ≤ k + 1, was satisfying by a substituting column, then column j has been

substituted in the merging process. The halting formula guarantees that j is a
Γ -inconsistent column of A.

Suppose there are ℓ − 1 Γ -consistent columns in A, and consider the set
S = {j|Aj is a Γ -inconsistent columns with πj > 0}. Then the halting condition
is

haltingCondition(A) =
∨

j∈S

k+1
∧

i=1

di,j(y
1) ∨ . . . ∨ di,j(y

ℓ) . (11)

Theorem 2. Algorithm 3.1 terminates.

7 Conclusions and future work

We have presented an algorithm that decides PSAT using a SAT-oracle, a the-
oretical work with potential practical applications.

Future work contemplates an implementation of a PSAT solver based on
the algorithm presented here, which will employ an existing SAT-solver (such
as zchaff [12]) as an implementation of the SAT oracle. We plan to make this
PSAT-solver available as open-source software.

References

1. Kim Andersen and Daniele Pretolani. Easy cases of probabilistic satisfiability.
Annals of Mathematics in Artificial Intelligence, 33(1):69–91, 2001.

2. George Boole. An Investigation on the Laws of Thought. Macmillan, London, 1854.
3. S. A. Cook. The complexity of theorem-proving procedures. In Third Annual ACM

Symposium on Theory of Computing (STOC), pages 151–158. ACM, 1971.
4. Heidi E. Dixon and Matthew L. Ginsberg. Inference methods for a pseudo-boolean

satisfiability solver. In AAAI/IAAI, pages 635–640, 2002.
5. I. P. Gent and T. Walsh. The SAT phase transition. In ECAI94 – Proceedings of

the Eleventh European Conference on Artificial Intelligence, pages 105–109, 1994.
6. George Georgakopoulos, Dimitris Kavvadias, and Christos H. Papadimitriou.

Probabilistic satisfiability. Journal of Complexity, 4(1):1–11, 1988.
7. E. Goldberg and Y. Novikov. Berkmin: A Fast and Robust SAT Solver. In Design

Automation and Test in Europe (DATE2002), pages 142–149, 2002.
8. R. Gomory. An algorithm for integer solutions to linear programs. In Recent

Advances in Mathematical Programming, pages 69–302. McGraw-Hill, 1963.
9. T. Hailperin. Prob. logic. N. D. Journal of Formal Logic, 25(3):198–212, 1984.

10. P. Hansen and B. Jaumard. Probabilistic satisability. Technical Report, Les
Cahiers du GERAD G-96-31, École Polytechique de Montréal, 1996.

11. P. Hansen et al.Probabilistic satisfiability with imprecise probabilities. In 1st Int.
Symposium on Imprecise Probabilities and Their Applications, pp. 165–174, 1999.

12. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th
Design Automation Conference (DAC’01), pages 530–535, 2001.

13. Nils Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71–87, 1986.
14. N. Nilsson. Probabilistic logic revisited. Artificial Intelligence, 59(1–2):39–42, 1993.
15. Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
16. Joost P. Warners. A linear-time transformation of linear inequalities into conjunc-

tive normal form. Inf. Process. Lett., 68(2):63–69, 1998.

