Analytic methods for the logic of proofs !

Author(s):
Marcelo Finger

!This work was supported by Fapesp Project LogProb, grant 2008/03995-5, Sao Paulo, Brazil.

Analytic Methods for the Logic of Proofs

Marcelo Finger

Abstract

The Logic of Proofs (LP) was proposed as Godel’s missed link be-
tween Intuitionistic and S4-proofs, but so far the tableau-based methods
proposed for LP have not explored this closeness with S4 and contain
rules whose analycity is not immediately evident.

We study possible formulations of analytic tableau proof methods for
LP that preserve the subformula property. Two sound and complete
tableau decision methods of increasing degree of analycity are proposed,
KELP and PREKELP. The latter is particularly inspired on S4-proofs.

The crucial role of proof constants in the structure of LP-proofs meth-
ods is analysed. In particular, a method for the abduction of proof con-
stant specifications in strongly analytic PREKELP proofs is presented;
abduction heuristics and the complexity of the method are discussed.

1 Introduction

The Logic of Proofs (LP) was proposed by Artemov [Art95, Art01] as the
“missed link” connecting Intuitionistic Logic to classical proofs, thus filling a
gap left by Godel’s original translation from Intuitionistic Logic into S4 modal
logic. LP is a propositional multi-modal language, in which modalities are proof
terms, also called proof polynomials, such that if ¢ is a proof term and A is a
formula, ¢ : A is an LP-formula with the intended meaning “t is a proof of A”.

In [Fit05], Melvin Fitting proposed a semantics for Artemov’s LP, and pre-
sented a sound and complete tableau inference system based on that semantics.
Fitting’s tableau presentation has a non-analytic rule; however, its correctness
was shown with respect to the analytic, cut-free sequent calculus LPG™~ for
LP [Art01].

As LP is capable of providing insight into proofs due to its explicit handling
of proof terms, it is highly desirable that there exist automated, analytic tableau
procedures for it.

This paper investigates alternative analytic tableau presentations for LP.
This investigation highlights the crucial role played by proof constants in an-
alytic proof construction. Proof constants are a form of atomic proof term,
intended to represent evidence for formulas which are valid; they are dealt with
in the semantics by a constant specification C. In the semantics, one talks about
C-validity, so that constant specifications behave as a semantical parameter.

As a counterpart in terms of LP-proof theory, we introduce the concept of
C-analycity.

We investigate two possible ways to provide an analytic tableau proof system
for LP. Traditional analytic tableaux [Smu68b], as well as Fitting’s method for
LP, are based on cut-free sequent calculus. Our approach, however, is based on
a calculus using analytic cuts, which leads to tableau methods in the style of KE-
tableaux [D’A99]. An advantage of using a KE-based calculus is that it is known
to provide an exponential speedup in proofs for some classical formulas [D’A92].

The first KE-based method, KELP, is a C-analytic tableau method for KE.
In fact, it is a sound and complete decision procedure for C-valid formulas,
whose termination is guaranteed when C is finite. Admittedly, KELP-tableaux
turn out to display very similar behaviour to Fittings L P-tableaux in respect to
analycity. However, it has the quality of bringing to the light that the problem
of computing analytic proofs is not the existence of non-analytic rules, but the
way one deals with proof constants.

We then propose a second KE-based method that employs techniques of
S4-theorem proving, such as prefixed modal tableaux [Fit83] and Single Step
Tableaux for modal logics [Mas00], obtaining the strongly analytic PREKELP
tableau method for LP.

Proofs using PREKELP tableaux perform a new inference step called con-
stant specification abduction, which can either construct a constant specification
in which the given theorem is valid, or it can verify the C-validity of a formula
according to a given constant specification C. The abduction process uses tech-
niques of Type Theory [BDS06] to infer a formula corresponding to a proof
constant. It is shown that PREKELP is sound, complete, strongly analytic and
always terminates.

We study PREKELP-proofs that mirror step-by-step analytic S4-tableau
proofs, and show that there are cases in which this may lead to an exponential
explosion on the size of terms in LP-formulas in the proof. This is considerably
more complex than S4-validity, which is PSPACE-complete [Lad77]. We then
provide an Abduction Heuristics, which avoids this exponential complexity, but
no longer mirrors step-by-step S4-proofs. We then compare these results with
respect to the related works on the literature on the complexity of the LP-
validity decision and related problems.

This paper is organised as follows. The language and semantics of LP are
presented in Section 2. Fitting’s tableau for LP with its non-analytic set of
rules is discussed in Section 3. The two KE-based tableaux for LP and their
properties are presented in Section 4. Related work is discussed in Section 5.
Conclusions and further work are presented in Section 6.

2 The Logic of Proofs LP

2.1 LP Syntax

The language L, p of the logic of LP is defined over a propositional multimodal
language that contains a countable set of propositional symbols P = {p, q,r, ...},
the logic constant L and the connective D. Besides that, there is an infinite
vocabulary of modalities ¢, called proof polynomials or simply proof terms, such
that if A is a formula so is ¢t : A. The set Q of proof polynomials is recursively
defined over a countable set of proof constants {a,b,c,...} and a countable set
of proof variables {z,y,z,...} such that

e proof constants and proof variables are proof polynomials.
e if £ and s are proof polynomials, then ¢-s and t + s are proof polynomials;
e if ¢ is a proof polynomial, so is !t.

It is assumed that the operators - and 4 associate to the left so, for instance,
a-z-y = ((a-z)-y). The operators - and + are neither assumed to be associative
nor commutative. The semantics below clarifies these points.

An atomic LP-formula is either a propositional symbol or L. If A, B are
LP-formulas, so are A D B and ¢ : A, where t is a proof polynomial. As usual,
the other Boolean connectives, A, V, =, may be defined in terms of D and 1, in
a standard way.

The size of a proof term ¢, |¢|, is recursively defined as follows. If ¢ is a proof
constant or variable, |[t| = 1; [t -s| = |t +s| = |t| +|s| + 1; |lt| = |¢| + 1. The
size of a formula A, |A|, is recursively defined as follows. If A € P U {L}, then
|A| =1; |AD B| = |A| + |B|+ 1; |t : A] = |t| +|A|. The notion of a subterm is
the usual.

For each LP-formula there corresponds an S4-modal logic formula obtained
by replacing all proof polynomials modalities ¢ : A with a unary modality CIA.
This is called by Artemov [Art95] the forgetful transformation.

2.2 LP Semantics

Fitting proposed an S4-like semantics for LP formulas. An LP-model structure
is a 4-tuple M = (W, R,&,V), where (W, R) is an S4-frame, that is, W is
a set of states or possible worlds, and R C W x W is a transitive reflexive
binary accessibility relation. The evidence function & : W x Q — 2FPL is
a map that takes states and proof polynomials to sets of formulas subjected
to the restrictions below; the intended meaning of A € £(w,t) is that ¢ is a
‘possible evidence’ for A in the state w'. Finally, the valuation V : P — 2W
takes propositional symbols to sets of states, namely the states in which that
propositional symbol is true. The evidence function £ must respect the following
restrictions:

1t is interesting to notice that Artemov’s view of proof polynomials as representing proofs
has changed into Fitting’s view as possible evidence

1. Application: if A D B € £(w,t) and A € E(w, s) then B € E(w,t-s).
2. Monotonicity: if wiRws then E(wy,t) C E(wa, t).

3. Proof Checker: if A € £(w,t) thent: A € E(w,t).

4. Sum: &(w,t) U&(w,s) C E(w,t + s).

According to the Application restriction, if its conditions are met, then
the term ¢ - s is a possible evidence for B, but nothing is said about s -t being
a possible evidence for B or any other formula; that is, - does not commute;
similarly, + does not commute. Associativity is not forced either.

Given a model structure M = W, R, E,V), the forcing relation is defined
for every w € W and for every formula in Ly, p:

—_

. Mywlkp, forp e P, iff w € V(p).

2. Mywlf L.

3. MywlFAD Bif Mywlf Aor M,w I+ B.

4 MywlFt: Aiff A € E(w,t) and, for every w’ € W with wRw’, M, IF A.

Finally, the semantics deals with proof constants through constant specifica-
tions. The idea of a proof constant is to represent an evidence for elementary
truth, which requires no further analysis. A proof constant can serve as evi-
dence for a set (possibly empty) of instances of LP-valid formulas. As a result,
a constant specification is a mapping C from proof constants to sets of formulas.
A proof constant ¢ is for a formula A iff A € C(c). A proof constant can be only
for formulas which are true at every possible world in any model; as is discussed
in detail in Section 4.1, this fact brings an extra burden to LP-theorem proving
for, unlike S4-theorem proving, the validity of an A € C(c¢) has to be “guessed”
in some LP-proof methods. The proof method proposed in Section 4.2 aims at
avoiding such problem.

The elementary truths contained in constant specifications are supposed to
be the instances of the following axioms:

A0 All classical propositional tautologies

Al ¢t:(ADB)D(s:AD(t-s): B)

A2t:ADA

A3 t:ADlt:t: A

A4 t:AD(t+s): A

A5 s: AD(t+s): A

A model M = (W, R,E,V) meets constant specification C if C(c) C E(w,)

for every w € W.

A formula is C-LP walid iff it is true at all possible worlds in any model that
meets constant specification C.

In Fitting’s presentation of LP semantics, it is mentioned that the role of
proof constants is “surprisingly central”. We will see that the same central role
of proof constants is found in the presentation of a tableau system for LP with
the subformula property.

3 Fitting’s Tableau for LP

Fitting’s tableaux for LP (FTLP) manipulate signed formulas of the form T' A
and F' A, where A is an LP-formula. A tableau proof of a formula A starts with
a signed formula F' A, which is expanded into a tree of signed formulas through
a set of expansion rules. Rules are either linear or branching, and a branch in
the tableau is closed if it contains either T" B and F' B for some B, or if it
contains T" L. A tableau is closed if all its branches are closed. A formula A is
provable in FTLP if there is a closed tableau for F' A, represented by Fpprp A.

Fitting’s linear expansion rules are presented in Figure 1. The branching
rules are presented in Figure 2.

FADB
—— (F D) Tt: A Flt:(t: A
T A (T - S)

(F 1)

F(t+s):A F(t+s):A

F + — (F +
Ft:A (2 Fs:A (2)

Figure 1: Linear Expansion Rules

TA>SB F(t-s):B

P N) _— ~ (F)

FA T B Ft:A>DB Fs: A

Figure 2: Branching Expansion Rules

Finally, an FTLP wusing constant specification C has an extra closing rule,
whereby a branch closes if it contains Fc: A where A € C(c).

Proposition 3.1 (FTLP Soundness and Completeness [Fit05]) A formula
A has a tableau proof using constant specification C iff A is C-LP wvalid.

We say that a tableau method has the subformula property if all expanded
formulas are subformulas of some previously occurring formula on the same
branch; proof methods that have the subformula property, in general, allow the
proof to be constructed by analysing only the internal structure of formulas,

and are called analytic. In case of LP, we also consider constituents of proof
polynomials as forming subformulas. In this sense, the inference of F't : A from
F(t+ s) : A respects the subformula property.

The problem with regard to the subformula property lies in the branching
rule (F -). In all linear rules, as well as in rule (F' D), the formulas in the
conclusion occur as a subformula of the premiss. Not so in rule (F' -), whose
premiss is F' (¢ - s) : B but whose conclusions is either F't: A D Bor F s: A.
Clearly, A occurs in both branched conclusions but not in the premiss.

One should mention at this point that another tableau system for LP was
proposed by Renne [Ren04], based not on Fitting’s semantics but on an earlier
semantics for LP by Mkrtychev [Mkr97]. That proposal had a branching rule
BX basically identical to rule (F -), and thus it presents the same problem of
lack of analycity.

Example 3.2 The reason rule (F -) is present in the system is the proof of
the LP version of the modal axiom K, namely t: (A D B) D (s: ADt-s: B),
as shown in the FTLP tableau below:

1.Ft:(ADB)D(S:ADt'SZB) hyp.

2. Tt:(ADDB) (FD)1
3. Fs:ADt-s: B (FD)1
4. Ts: A (FD)3
5. Ft-s: B (FD)3

ST~

6. Ft:(ADB) (F)5 7. Fs:A (F)5
X X

We note, however, that even if rule (F -) has the “potential” for the gen-
eration of proofs without the subformula property, this is not the case in the
proof above, for the formulas generated by the application of rule (F' -) in fact
generated two branches whose formulas were in fact subformulas of the initial
formula. However, the potential for the generation of proofs in which the sub-
formula property fails remains. The example below shows a real failure of the
subformula property.

Example 3.3 Let A D ((A D B) D B) € C(a). We present a tableau for a
small variation of the previous example, ..., t: (A D B) D (s: A D (a-s)-t: B)

1. Ft:(ADB)D(s:AD(a-s)-t:B) hyp.

2. Tt:(ADB) (FDO)1
3. Fs:AD(a-s)-t:B (FD)1
4. Ts: A (FD)3
5. F(a-s)-t:B (F D)3

/ T
6. Fa-s:(ADB)DB) (F)5 9. Ft:(ADB) (F)5
/ \ X
7. Fa:(AD((ADB)DB)) (F)6 8. Fs:A (F)e
Xe X

The leftmost branch closes due to the constant specification A > ((4 D B) D
B) € C(a), which is represented by the closed branch symbol x., as opposed
to the usual branch closure, represented by x. Formulas in nodes 6 and 7 are
clear violations of the subformula property, for formulas ((A D B) D B) and
A D ((A D B) D B) are not subformulas of the original formula. We see that
the presence of proof constants is central, for without them the leftmost branch
would not close.

The problem with non-analytic rule (F' -) is that there is, in principle, an
infinite number of ways in which it is expandable. In fact, from F't-s: B there
are infinitely many formulas A such that the tableau can branch into Ft: A D B
and Fs: A2

In the following we propose two tableau systems that try to avoid such
problematic behaviour.

4 KE Tableaux for LP

KE tableaux allow for the construction of non-analytic proofs,in which the sub-
formula property fails. This is done by having a single branching rule, namely
the Principle of Bivalence, which corresponds to the Cut Rule in sequent calcu-
lus. PB branches over a formula A, creating two branches, one in which T" A
holds, the other in which F' A holds. However, if the use of PB is analytic ~ that
is, restricted to formulas A that are subformulas of some previously occurring
formula — it is guaranteed that the tableau has the subformula property, for all
tableau expansion rules are analytic and preserve this property. Furthermore,
this restriction to analytic PB can be done without loosing completeness.

KE tableaux were proposed by D’Agostino and Mondadori [DM94, D’A92] as
a way of incorporating the cut rule, or possibly some restricted form of it, back
into a tableau calculus. As noted by Smullyan [Smu68a], all the main results
one can prove using cut elimination can be obtained simply by restricting the
use of the cut rule to analytic cuts, namely a cut over a subformula of formulas
of some previously occurring formula. This restriction is usually incorporated
into KE proofs; as all other tableau expansion rules are analytic that is, the
conclusion of the rule is a subformula of the premisses of the rule KE proofs
thus restricted are analytic and have the subformula property. Furthermore,
it is known that analytic KE-tableaux allow for small, polynomial proofs of
some propositional formulas for which Smullyan’s analytic tableaux only have
exponentially large proofs [D’A92].

When one is dealing with LP-formulas, the notion of subformula property
has to be clarified. For instance, we want a definition of LP-subformulas in
which rules (F' +;) and (F +3) are subformula-preserving. Furthermore, we

2Note that the complexity of the proof polynomial decreases, so if one can limit the search
of A to a finite set, the termination of the FTLP method can be established.

parameterise the notion of LP-subformula to include constant specifications C.
In this sense, we define A to be an LP-subformula of B under C if:

(a) A=DB;

(b) B is a boolean combination of By,...,B,,, and A is an LP-subformula of
Bj under C, for some Bj, 1 < j < m;

(¢) A=t: A wheret' is a subterm of ¢t in B and A’ is an LP-subformula of
B under C;

(d) A is a subformula of A’ € C(c), for some proof constant ¢ occurring in B.

Items (a) and (b) are just the usual definition of subformula. Item (c) is quite
liberal and allows for ¢ : A to be a subformula of s: B when ¢ is a subterm of s
and A is a subformula of B, which makes rules (F' +;) and (F +2) subformula-
preserving; however, it also makes ¢ : A a subformula of (s : (AAB))Vit: C,
which is perhaps not immediately intuitive, but if one looks at its modal version,
this would simply mean that OJA is a subformula of O(A A B) v OC, which is
quite acceptable®. Item (d) makes any subformula occurring in C(c) to be a
subformula of any formula B under C if ¢ occurs in B. In particular, if all
constant specifications have at most a finite number of formulas, the number of
subformulas under C is also finite. In this case, we say that C is finite.

A formula A is a simple LP-subformula of B if it is an LP-subformula of B
under every C. A proof method is C-analytic if every provable formula A has a
proof containing only LP-subformulas of A under C.

We develop next a C-analytic KE tableau calculus for LP, KELP.

4.1 KELP Tableaux

KE tableaux always deal with signed formulas. KELP is an extension of propo-
sitional KE tableau that has in common with FTLP the closing conditions and
the linear expansion rules in Figure 1. As usual, the proof of A starts with
F A as its root node and proceeds by expanding the tableau according to the
expansion rules.

The branching rules are substituted by two sets of rules. First, there are the
two-premissed rules of Figure 3, one for each of the branching rules in FTLP
(Figure 2). Note that the rules in Figure 3 display a symmetry not found in
Figure 2. The rule (T Dk) is the classical two-premissed rule for dealing the D
connective, namely the Modus Ponens rule. Rule (7" : D) is basically the same
Modus Ponens rule that incorporates the labels, and its soundness is derived
immediately from the version of the K axiom for LP. In these two-premissed
rules, the top formula is called the main formula, and the second premiss is
called the auziliary formula in the rule.

Note that both two-premissed rules are analytic. Rule (T" D) is classically
analytic. Figure 5 shows the restrictions on applications of KELPrules. The

3Ttem (c) says that, if ¢ is a term occurring in B and A is any subformula of B or of some
constant specification in the usual sense, then ¢ : A is accepted as an LP-subformula of B.

TADB Tt:ADB
TA (T Dkr) Ts:A (T : D)
TB T (t-s): B

Figure 3: Two-premissed Rules for KELP

proviso of rule (T" : D) guarantees analycity. This proviso also avoids infinite
derivations, as that shown by the following sequence of (T : D)-applications.

Tt:ADA Ts:A Tt-s:A Tt-(t-s):A Tt -(t-(t-s)):A,

Eventually, the application of rule (7" : D) is barred, when the derived formula
T #' : A is such that ¢’ does not occur in the formula at the root of the tableau.

Besides the linear one- and two-premissed rules, KELP contains a single
branching rule, called Principle of Bivalence (PB), which is the translation of
the cut rule of the sequent calculus into a tableau setting. This rule is illustrated
in Figure 4.

< N (PB)
F A T A

Figure 4: The Principle of Bivalence

When the proviso in Figure 5 is observed, rule PB becomes C-analytic. A
KELP proof is C-analytic if every use of PB is C-analytic. We assume that
KELP only allows C-analytic PB.

The tableaux system KELP is thus composed of the unary linear rules in
Figure 1, the binary linear rules in Figure 3, the C-analytic PB branching rule
in Figure 4; the two closing rules of FTLP, contradiction closing (x) and proof
constant closing (X.); and the restrictions of Figure 5.

Rule Proviso
(T': D) | t-s occurs previously on the branch
(PB) A is an LP-subformula of the root of the tableau under C

Figure 5: KELP-rule restrictions

We say that formula Ay is provable in KELP, -, . Ao, if there is a closed
tableau whose root node is F' Ag, in which every internal node is obtained by
applying a KELP expansion rule, and such that every branch is closed.

Theorem 4.1 KELP is sound and complete.

Proof The unary linear rules inherit soundness from FTLP. Rule (T Dkp)
is Modus Ponens, thus sound; rule (7" : D) is sound due to LP’s version of
modal axiom K. And PB is sound in any extension of propositional classical
logic, such as LP. So the system is sound.

To see that this system is complete, we show that every FTLP proof can
be simulated by KELP. As all FTLP linear rules are also KELP rules, it is
enough to show that we can derive the branching rules of the FTLP tableau
system:

F A T A Ts:A

TB G
iAo n
T (t-s)

: B

X

Note that the two-premissed KELP rules were used in this derivation. As
FTLP proves all C-LLP valid formulas, and KELP can simulate those proofs,
KELP can prove all C-LP valid formulas.

Finally, we have to show that the use of PB is C-analytic. In fact, the
derivation of (T Dkp) is always analytic. The KELP derivation of (T : D)
is C-analytic if the original FTLP is. As FTLP is based on analytic, cut-free
sequent calculus by Artemov [Art01], for a provable LP-formula Ag there is
always a C-analytic FTLP proof, which by the method above is transformed
into a C-analytic KELP proof, which finishes the proof. O

Rule (I' Dkpg) can be classically simulated by rule rule (7' D) in analytic
tableaux, but not rule PB, since analytic tableaux are based on a cut-free cal-
culus and PB is the tableau version of the cut rule. Rule (T' : D) cannot be
simulated by rule (F' -), because the two premisses of rule (T : D) do not allow
for the application of rule (F').

The PB rule provides a clear way to introduce constant specifications in
proofs. This is clear in the following example, that presents a KELP proof for
the formula in Example 3.3.

Example 4.2 Consider a KELP proof of t : (ADB) D (s: ADa-s-t: B).

10

. Ft:(ADB)D(s:ADa-s-t:B) hyp

2. Tt:(ADB) (FD)1
3. Ts: A (FD)1x2
4. Fa-s-t:B (FD)1x2

/ \

5. Fa:(AD(AD>B)D>B)) pB 6. Ta:(AD((ADB)DB)) pB

X e 7. Ta-s:((AD>B)>B) (T: D)6,3
8. TTa-s-t:B (T: D) 7,2
X 4,8

The left branch closes at node s because A D ((A D B) D B) € C(a). The
application of PB makes it explicit that the elementary truth carried by proof
constant a is brought into the proof by means of a cut-like introduction. This
introduction violates the subformula property, be it an FTLP or a KELP
tableau.

The branching in the example above was done over a formula in the constant
specification C(a), so the branching was C-analytic, and the proof is C-analytic.
This process can be repeated for any finite number of constant specifications.
The F-side of the branch will immediately close.

It is clear that any C-valid formula is also C’ valid for some finite C’ contained
in C. In fact, if Ag is C-valid, there is a KELP proof of it in which only a finite
number of branches closes due to constant specifications. Let C’ be the union
of such constant specifications. Clearly, A is also C’-valid.

We consider now finite constant specifications C.

Theorem 4.3 KELP tableaur always terminate over finite C.

Proof We first note that, for a fixed size n, and a fixed number of variables
m, there are only finitely many LP-formulas of size up to n.

All non-branching KELP-rules, except (T : D), decrease the complexity of
the formulas, avoiding infinite branches. Two-premissed rule (T' : D) cannot
lead to an infinite loop either, for its proviso puts a bound on the complexity of
formulas it can generate, so it can only be used a finite number of times on a
branch. Finally, the use of C-analytic PB has at most finitely many candidates
for branching. Therefore a C-analytic KELP proof tree has at most finitely
many branches which are all finite. So the tree expansion always terminate. [

By putting together Theorems 4.1 and 4.3, we obtain the main result of this
section.

Corollary 4.4 KELP tableauz are a decision procedure for LP over finite C.

The fact that we deal with C-analytic proofs, instead of simply analytic
proofs for LP, shows the central position played by constant specifications in
the proof theory of LP.

11

Both KELP and FTLP methods deal with proof constants in such a way
that one has to “guess” all the manipulations hidden by a proof constant before
they are used in a proof. Furthermore, this constant specification must be finite
and given a priori for the proof procedure to terminate.

In a way, the main insight brought by KELP-tableau is that the problem
of analycity does not derive from the presence of non-analytic (F -), but from
the fact that the closing of a branch with a formula Fa : A for a € C(a) makes
available for consideration any formula in a constant specification, which has
the potential to include any propositional classical theorem.

In the following we aim to create a tableau systems for LP that avoids that
kind of behaviour. For that, we propose to do the following.

1. We want to avoid guessing the hidden associations of proof constants,
letting the proof reveal the elementary validities used in it. For that, the
proof construction process will compute (valid) formulas and associate
them to a constant specification.

This procedure is called the abduction of constant specifications.

If a constant specification C is given as input, and the proof construction
associates a formula A to ¢ such that A & C(c), the proof is rejected.

2. We want to explore the proximity of LP and S4, and adapt S4-proof
methods to LP. Neither FTLP nor KELP explores this path.

The literature contains several proposals of tableaux for modal logics
which employ the semantic idea of possible worlds. In particular, we
base our approach on the ideas of Fitting’s prefixed tableaux [Fit83] and
Massacci’s single step tableaux (SST) [Mas00].

4.2 Prefixed KE Tableaux for LP (preKELP)

Based on prefixed tableau for S4 modal logics, we propose here a tableau method
for LP that employs prefixed formulas. It is also based on the KE method, so
it is called PREKELP-tableaux.

The novelty of this method is the procedure for the abduction of constant
specifications, which makes PREKELP-tableau strongly analytic, in the sense
that if p is a prefix and if F'(p) A or T (p) A are internal nodes in a tableau,
then A is a subformula of the initial formula being proved or it is a formula
computed by the abduction procedure. This abduction procedure is based on
the type inference in Type Theory [Hin97], and explores the relationship between
LP and Intuitionistic Logic, which is related to Type Theory.

In PREKELP, a prefiz p may be either undecorated, p = w, or may be
decorated with a term, p = wlt; both forms are said to be based at w. In any
prefix, w is a non-empty sequence ni.ns....n,, of non-zero natural numbers
representing a possible world, with the intended meaning that w.n is accessible
from w; it is assumed that w.0 = w, and w.0 is used only in connection with a
reflexive element of the accessibility relation.

12

The nodes of a PREKELP-tableau are signed prefixed formulas of the form
T {p) A and F (p) A. The intended meaning of T (w.n|t) A is that A is true at
world w.n and ¢ is evidence for A at w; T (w) A means simply that A is true at
w; similarly, F' (w.n|t) A means that ¢ is not an evidence for A at w or A is false
at w.n, and F' (w) A means simply that A is false at w.

The prefix 1 is the special designation of the initial prefix attributed to the
formula we are trying to falsify. To prove Ag, the tableau starts with prefixed
signed formula F (1) Ao.

The presentation of PREKELP expansion rules employs the discipline of
Massacci’s Single Step Tableaux (SST), and can be found in Figure 6.

F{w)ADB T(w)yAD B
T{NA (FD) TwA (T D) RN (APB)
T(wyAD L F{w)yA> L
Foa) miga)
T(wn|t)AD B T (wlt) A
T (w.n|s) A T D, T\
T{(w.nlt-s)B o) T{w)A Ty
Flwn|t+s)A
F{w)t: A
() F{w.n|t) A (7+)
F{wn|t) A Flwnls) A
T{wyt: A T{wyt: A T(w)t: A
Twana Y Tema YD Teamea @Y

Figure 6: PREKELP-expansion Rules

The two initial lines of Figure 6 present the PREKELP version of linear
and branching rules of classical KE. According to rule application restrictions
in Figure 7, the branching rule PB is restricted to its analytic form, APB, that
is, APB can be applied to prefixed formulas (w|t) A or (w) A, provided that w
has already occurred in the tableau for some formulas, and A is a subformula of
one of them. Rules (F' D) and (7" D) can only be applied to undecorated nodes.
Rules (T=) and (F'—) are derived, but are presented for convenience.

The third line of Figure 6 presents the evidence manipulation rules. The
connective rule (T D) provides evidence propagation via Modus Ponens; rules
(T Dy) and (T D) would be treated by S4 as the same. Rule (T |) describes
that evidence decorations can always be dropped from T-marked formulas.

To deal with modalities, SST employs two types of expansion rules, w-rules
and v-rules, whose PREKELP version are dealt with in the last two lines of
Figure 6. The (7)-expansion rule creates a new world w.n, so that the proviso

13

in Figure 7 states that it must be new to the branch. On the other hand, (7+)
is simply an evidence propagation rule for terms of the form ¢ + s.

The v-expansion rules have to cope with the three basic components of an
S4 system, namely, the K, T and 4-conditions. According to the restrictions
in Figure 7, rules (vK) and (v4) can only be expanded if w.n has been created
earlier on the branch, as a result of some (7)-expansion. We say that w.n is
active on a branch if it occurs in the consequence of a v-rule on that branch.
The last restriction on (v4) in Figure 7 avoids the infinite application of (v4)
and guarantees analycity.

Rule (¢T') makes use of a world of the form w.0 instead of w so as to state
that ¢ is an evidence for A at w.

Rule Proviso

(APB) w and A occur at some formula above, where p € {w,w|t}
(m) w.n is new

(vK), (v4) | w.n is not new

(vd) It occurs above

Figure 7: PREKELP-rule restrictions

Asin KELP, there are three branch closing conditions in PREKELP-tableaux:
the presence of opposite formulas F' (p) A and T (p) A; the presence of T (p) L;
and F (w)c: A where A € C(c). If all branches of a tableau are closed, so is the
tableau.

A formula Ag is PREKELP-provable, Fprrkrrp Ao, if a tableau starting
with F' (1) Ag and expanded according to the rules of Figure 6 and restrictions
of Figure 7, has all branches closed.

For the time being, we relax the restriction of the branching rule (APB)
and allow it to be C-analytic, that is, one allows the branching over formulas
a : A such that A € C(a). The correctness and completeness of this version will
be shown. After that, a new closing condition will be added, and the stricter
restriction on (APB) will be reinstated.

4.3 Soundness, Completeness and Termination of preKELP

First, PREKELP soundness is considered. Let M = (W, R,&,V) be an LP-
model such that W is a set of undecorated prefixes and R is such that wRw.n.
We say that M satisfies a signed formula in the following cases:

Singned Formula | Condition

T(w)A M,wli- A

T (w.n|t) A M,wnl-Aand A € E(w,t)
F{w)A M,wlF A

F(w.n|t) A M,wnlf Aor A E(w,t)

Lemma 4.5 If the premisses of a PREKELP-rule are satisfied by a model M,
so are its conclusions.

14

Proof By inspection all rules in Figures 6. Rules (F D), (T D), (T—), (F—)
and (APB) are classical logic rules, whose correctness is immediate, so details
are omitted.

Consider rule (T D). By hypothesis, M,w.nlF A D B, and M,w.nl- A, so
M, w.n - B. From the hypothesis, it is also the case that A D B € £(w,t) and
A € E(w, s), so by the Application rule of the evidence function, B € &£(w,t).
It follows that the consequence of the rule is satisfied by M.

Consider rule (T |). The result is immediate.

Consider rule (w). By hypothesis, M,w I} t : A. So according to the
semantics, A € £(w,t) or there exists w’ such that wRw' and M,w’ I A.
According to the restrictions in Figure 7, w.n is new, and as wRw.n, make
w’' = w.n, such that M satisfies F' (w.n|t) A.

Consider rule (7+). By hypothesis, A € £(w,t+5) or M,w.n | A. From the
Sum property of evidence functions, it follows that A & £(w,t) and A & E(w, s),
so M satisfies both F' (w.n|t) A and F (w.n|s) A.

Consider rule (vK). By hypothesis, M,w IF¢: A, so A € £(w,t) and for
every w’ such that wRw’', M,w’ I A. From the restrictions in Figure 7, w.n
already exists and by construction wRw.n, so M satisfies T (w.n|t) A.

Consider rule (vT'). By hypothesis, M,w IF ¢ : A, so A € E(w,t) and for
every w’ such that wRw', M,w’ IF A. As R is reflexive and w = w.0, it follows
that M, w.0 IF A, so M satisfies T (w.0|t) A.

Consider rule (v4). By hypothesis, M,w IF¢: A, so A € £(w,t) and for every
w’ such that wRw', M,w' IF A. From the Proof Checker property of evidence
functions, t : A € £(w,!t). Furthermore, from the restrictions in Figure 7,
w.n already exists, wRw.n, and by the Monotonicity property, A € £(w.n,t).
Consider any w” such that w.nRw”; from the transitivity of R one obtains
wRwW"”, so M,w" I+ A. From A € £(w.n,t), this yields M,w.n I-t: A and as
t:Ae&(w,lt), M satisfies T (w.n|lt)t : A.

This finishes the proof. O

Define a KE-saturated set of signed formulas © (an analog of Hintikka’s
downward saturated sets) as follows.

e Let a € O, where « is a premiss of a one-premissed rule, i.e. (F D), (),
(m+), (T 1), (vK), (vT) and (v4). Then all the conclusions of this rule
are in ©.

e Let 3 € ©, where 3 is the main formula of a two-premissed rule, (T ?) or
(T Dy); let 31 be the auxiliary formula and » the conclusion. Let 3; be
the opposite of 8. Then 81 € © or f; € ©; if 8,51 € O, then (5 € O.

A KE-saturated set is consistent if it does not contain a pair of opposite
formulas, nor a formula of the form T (w) L, nor F'{(w)a : A, where A € C(a).
A set of formulas has a model if there is M that satisfies every formula in it.

Lemma 4.6 If a branch of a PREKELP tableau has a model, it can be ex-
panded into a consistent KE-saturated set.

15

Proof By Lemma 4.5, every expansion remains satisfied by the model. If
rule APB is applied to saturate the branch, one of the branches is satisfied by
the model, so when a saturated branch is obtained, it is consistent. O

Theorem 4.7 (Soundness) Let C be a constant specification. If the formula
A has a closed PREKELP-tableau validated for C, then A is C-valid.

Proof Assume that A is not C-valid. Then FA is a consistent formula. By
Lemma 4.6 it will be expanded into a consistent KE saturated set, contradicting
the fact that the tableau closes. g

For completeness, the following result is shown.

Lemma 4.8 Fvery consistent KE-saturated set has a model.

Proof Let © be a consistent KE-saturated set. We construct a model M =
(W, R,E,V) in the following way.

Let W be the set of all prefixes occurring in ©. Let R be such that wRgw.n
for every w,w.n € W. Let R be the reflexive-transitive closure of Ry.

Let £ be such that A € £(w,t) iff adding F (w)t : A to © closes it.* We
show that £ respects the restrictions of evidence functions; due to C-analycity,
only terms occurring in © have to be considered.

e Application: Assume B D A € £(w,t) and B € £(w, s). Then © has as
elements (1) T (w)t: B D Aand (2) T (w) s : B. Now add (3) F (w)t-s: A
to © so by (7) on (3), (4) F {(w.n|t-s) A; by (vK) on (1) and (2), derive
(5) T{w.njt) B D A and (6) T (w.n|s) B. From (T D,) on (5) and (6)
obtain T (w.n|t - s) A, which closes with (4). So A € E(w,t - s).

e Monotonicity: Assume A € &(w,t), so (1) T(w)t : A € 6. Add to
O (2) F{wn)t : A so by (m) on (2), (3) F{(w.n. m\t)A By (v4) on
(1), (4) T{w.n|it)t : A and by (T 1), (5) T{w.n)t : A, which yields (6)
T (w.n.m|t) A, closing ©. So A € E(w.n,t).

): 8

e Type Checking: Assume A € &(w,t), so (1) T’ <w> t:Ae©. Add to ©
(2) F(w)lt:t: Asoby (m) on (2), (3) F (w n|lt)t: A. By (v4) on (1), (4)
T (w.n|lt)t: A, closing ©. Sot: Ae &(w,t).

e Sum: Assume A € &(w,t), so (1) T(w)t : A € ©. Add to © (2)
F(w)t+s: Asoby (m)on (2), (3) F (w.n|t + s) A and by (7+) on (3), (4)
F (w.n|t) A. By (vK)on (1), (5) T (w.n|t) A, closing ©. So A € £(w,t+5).

The valuation V is built such that w € V(p) iff T (w)p € ©. As O is consis-
tent, V is well-defined and M is an LP-model. The model M thus constructed
is usually called a canonical model.

By structural induction one shows that M satisfies every signed prefixed
formula in ©. Note that for a formula of the form T (w.n|t) A one only has to
show that M,w.n I A, for the construction of the canonical model guarantees

4This condition has a subtle difference from requiring T (w) A € ©.

16

that A € £(w, t); furthermore, as O is saturated, T (w.n) A. It is also worth not-
ing that formulas of the form F' (w.n|t) A are blocked, that is, no PREKELPrule
applies to it, and they are always satisfied by M; in fact, a formula of the
form F'(w.nlt) A is satisfied by M if A ¢ E(w,t); but the only possible way
that A € £(w,t) is closing © with the addition of F'(w)t : A, in which case
T {(w)t: A € O, which implies that T (w.n|t) A, a contradiction. So A & &(w,t)
and F (w.n|t) A is satisfied by M.

The basic case of the structural induction is given by the definition of V,
the classical cases are all straightforward and omitted. We show only the modal
cases.

Suppose F' (w)t: A € ©. As O is saturated, it follows that F' (w.n|t) A € ©
for some new w.n. By induction, we have that A € £(w,t) or M,w.n I} A which
implies that M, w I t: A. So F(w)t: A is satisfied by M.

Suppose T (w)t : A € ©. Assume there is no w.n € W, then the only
accessible world from w is w itself, so by an application of (vT') one obtains
T{(w.0]t) A € O, so the inductive hypothesis gives us that A € &(w,t) and
M, w Ik A, in which case M satisfies T (w) ¢ : A. Now assume there is w.n € W
and let W/ = {w.m € W] for some m}; clearly, W’ is the set of all w-accessible
worlds in W. By an application of (vK), one obtains T (w.n|t) A € © for each
w.n € W’. By the induction hypothesis, A € £(w,t) and T (w.n|t) A € © for
every w-accessible w.n. So M,w IF A, that is, M satisfies T (w)t : A. This
finishes the proof. O

Theorem 4.9 (Completeness) Let C be a constant specification, such that
A is C-valid. Then A has a closed PREKELP-tableau.

Proof Suppose that A is C-valid, but there is a PREKELP tableau for F' (1) A
with a KE saturated open branch. By Lemma 4.8, there exists a model that
falsifies A, which violates its validity. O

Just note that PREKELP, as defined in this section, is C-analytic. That is,
all formulas in the conclusion of linear expansion rules are subformulas of one
of the premisses; and (APB) is C-analytic.

Finally, a note on termination. It is known that SST tableaux for S4 may
have infinite branches due to the interplay of 7- and v-rules. To make SST-
tableaux into a decision procedure, a bound is imposed on the length of the
prefixes generated.

Fact 4.10 ([Mas00]) There is a bound b on the length of prefizes on a branch
after which either there are mo more modal operators or formulae just repeat
themselves with a longer prefiz. This bound is computed from the initial tableau
formula.

So we can use exactly the same bound, and compute it by transforming
the LP-formula into its S4-correspondent. When this bound is reached and
the tableau is not closed, an application of (7) at w, instead of generating a
new prefix, would reflexively re-generate w, so as to create a countermodel as
described by the result above.

So PREKELP is also a decision procedure for LP.

17

4.4 Abductive Closing in preKELP

A new closing condition is added to PREKELP tableaux. The abductive closing
condition accepts a weakened closing pair, represented by X,pq, namely

Flwn|t)A Tl{wn|t') A

This form of closing has to be validated, which may occur in two distinct
contexts:

e If a constant specification C is provided, validation consists of adding to
the branch some formulas of the form Ta : A for A € C, so as to close the
branch.

e If no constant specification is given a priori, one may compute (abduce) a
constant specification so as to close the branch.

We call it the validation/abduction of the abductive branch closing. Of course,
we do not want to actually introduce the constant specification formulas into the
tableau, as that would simply be the previous method, licensed by a C-analytic
application of (APB) over a : A. A method for performing validation/abduction
without the insertion of formulas of the form a : A is described below.

The reason to introduce abductive closing condition is that the tableau be-
comes strongly analytic, that is, all nodes of the tableau are subformulas of its
initial formula or are formulas computed during the proof. The rule (APB) is
then constrained to be applicable only to formulas that are subformulas of the
initial formula Ag.

Note that abductive closing only makes sense if some proof constant occurs
in the term ¢ in F' (w.n|t) A; otherwise, due to analycity, the addition of formulas
of the form a : A would not validate the closing.

Note also that not all forms of terms ¢ have to be taken in consideration.
For ¢t = t' 4+ &', the formula F (w.n|t' + s’) A is a (7+)-premiss, which yields
F(wn|t'y A and F (w.n|s’) A, which can be used instead as the F-side of the
abductive closing. For ¢t =!s, only formulas of the form !s : s : A have to be
taken into account, so one of the closing formulas is of the form F (w.n|!s) s : A;
by inspection, we see that such a formula must have been derived from premiss
F{w)!ls:s: A, which, by an application of (APB) over s: A, yields F (w)s: A
(this inference corresponds to rule (F!) in FTLP). By a (m)-expansion one gets
F {w.n|s) A, which can be used instead as the F-side of the closing.

For this reason, we deal only with abductive closing when ¢ in F' (w.n|t) A is
of the form ¢y - t5---t,, n > 2. Instead of adding formulas of the form a : A to
the tableau, one can perform type checking inference, which is based on Basic
Simple Type Theory [Hin97], to verify if ¢ is typable. In this case, the term ¢’
in T (w.n|t’) A has to be built from the terms ¢; and -, for the type inference
to be allowed. For example, if type(t) = A D B and type(s) = A, then the
expression t - s is typable and receives type B, but the term s - ¢ is not typable;
if no type is attributed to ¢, neither ¢ - s nor s -t is typable. According to this
procedure, t is only typable if each t; in t is either a variable or a constant and,

18

as mentioned, at least one such ¢; must be a constant. If the formats of ¢ or ¢’
are not as described, abductive closing is not applicable.

4.4.1 Branch Closure Validation via Type Checking

The basic idea of branch closure validation is the following. At the creation of a
prefix (w.n|t) by a m-expansion, a type (ie, an LP-formula) is attributed to term
t. Suppose t =t -- -1, is a product of terms. During subsequent v-expansions,
a type is attributed to each non-constant component ¢;; the type of a constant a
is Aif A € C(a). The closure is validated if every term ¢ associated to an active
prefix is typable in the sense of Type Theory. Otherwise the closure is rejected.

Type attribution by 7 and v-rules is shown in Figure 8, according to the
presentation of m- and r-expansions in Figure 6.

Rule FExpression Type attribution

(7) t type(t) = A

(m+) t type(t) = A

s type(s) = A

(vK) x type(xz) = A

(vT) x type(xz) = A
(v4) lz type(lz) =z : A

Figure 8: Type attribution by m- and v-rules
Branch closure validation follows the procedure below.

1. Every time a prefix (w.n|t) is created by a m-rule, a type is attributed to
t.

2. Every time a prefix (w.n|t’) is activated by a v-rule, a type is attributed
to .

3. At branch closure, every term defined at 1 has its type checked according
to the types attributed in 2 for the same w.n.

Let ¢t = t1---t, be a product term created in 1. There are a few notable
points. First, if all component expressions ¢; have a type, type checking is
decidable. Second, if some component ¢; that is not a proof constant is not
attributed a type, then the expression is not typable. Third, if ¢; occurs n times
in ¢, there must be n attributions of type(¢;), then the typing of ¢ must be
checked as if each ¢; is a distinct expression; this is due to the fact that in LP a
term is allowed to serve as evidence to more than one fact; if there are less that
n attributions of type(t;), t is not typable.

If n =1, ¢, is either a variable or a constant. In both cases, it is immediately
typable with its creation type A. In case t; = a, we verify that A € C(a) to

19

validate its type. However, if the constant specification is not given, we can
construct it, by forcing A € C(a).

This is the basis of the abduction of constant specifications. We note that
the same applies if the type of a proof constant is computed at steps 1 and 2
above.

4.4.2 Abduction of Constant Specifications

Assume no constant specification is given, such that the abductive closing was
employed over F (w.n|t) A and T {(w.n|t’) A. Let t =ty ---t,, n > 1. The goal of
the abductive procedure is to attribute a type to every proof constant occurring
in ¢ such that, according to the type attributions of Figure 8, the following
tableau closes employing only (T D):

T (1) type(t1),..., T (1) type(tn), F (1) type(?)

The idea is to deal with - as function application, which is in fact the be-
haviour of - in LP, so that the problem above becomes equivalent to inferring
the type of a A-calculus term Atq,. .., ¢, (t).

Let aq,...,a; be proof constants for which the method above computed a
type. The abduction of a constant specification is the creation of C such that
type(a;) € C(a;), 1 <i< k.

Theorem 4.11 (Correctness of Abduction) LetC be a constant specifica-
tion constructed as above for a branch closed with abductive closing. Then it is
possible to close the branch with the usual closing condition.

Proof A proof is constructed that shows that the branch closes. Initially the
branch contains F' (w.n|t) A, such that ¢ = ¢, - - - ¢, so type(t) = A. The branch
also contains, for each non-constant term ¢; a node T (w.n|t;) type(t;). For all
constant terms t; = a; that the type inference algorithm produced type(a;) €
C(ay), apply (APB) at w over a; : type(a;); the F-side closes immediately, so
the branch now contains T (w) a; : type(a;) which yields T (w.n|a;) type(a;). It
follows that the branch contains T (w.n|t;) type(t;) for every ¢;, 1 <i < n.
Recall that the tableau with T (1) type(t;), 1 <1i < n, and F (1) A closes. As
this is a basic simple deduction, only (7' D) is applicable. At the current branch,
each (T D) application is replaced by (T' D), so as to produce T (wty - - - tp) A,
which closes the branch. g

The procedures of abduction and verification is unified, so that the types of
all constant specification are computed. If C is given, the typing is verified if
type(a) € C. If no C is given a priori, a constant specification is constructed by
making type(a) € C(a). Note that this abduction process always guarantees a
finite constant specification.

In accordance with the semantic of proof terms, the abducted formula type(a)
has to be LP-valid, possibly with a PREKELP-tableau with root F' type(a). If
this is not the case, the validation must be rejected.

A simplified way to compute branch abduction occurs when there is only
one constant a at the head of ¢, that is, t = a -1 - - - ¢,. In this case, type(a) =

20

type(t1) D (... (type(tn) D type(t))...). This situation is very frequent in
practice and guarantees that type(a) is provable.

Theorem 4.12 Lett = a-ty - t,. Then abducted formula type(a) is PREKELP-
provable.

Proof As the original tableau closes, a branch containing
F (w,t)type(t), T (w,t1) type(t1), ..., T {w, t,) type(t,)
closes, which clearly implies that a branch containing

Ftype(t), Ttype(t), ..., Ttype(t,)

also closes. But that is a tableau for type(a), which is therefore PREKELP-
provable. O

Next some examples of PREKELP tableaux are presented.

4.4.3 Examples and the Abduction Heuristics

Example 4.13 We revisit once more Example 3.3, namely the proof of ¢ :
(ADB)D(s: ADa-s-t: B), this time using PREKELP-expansion rules and
abductive closure.

1. F{1)t:(ADB)D(s:ADa-s-t:B)

2. T(1)t:(A>B) (F>)in1l

3. F(l)s ADa s-t:B (F>)in1l

4. T(1)s (F>)in3

5. F(l)a s - t B (FD)in 3

6. F(llla-s-t)B (r) in 5 [type(a - s-t) = B]
7. T(l1|t)ADB (vK) in 2 [type(t) = A D B]
8. T(l 1ls) A (vK) in 4 [type(s) = A]

9. T(1.1|t-s)B (T D) in 7,8

10. Xabda abductive closure 6,9

The abductive closure is applied to close the tableau. Line 6 assigns type(a-s-t);
lines 7 and 8 assigns type(t) and type(s), respectively.

The abduction procedure computes type(a) = A D ((A D B) D B). So the
proof is validated by making A > ((4A D B) D B) € C(a), as was known from
Examples 3.3 and 4.2.

Next, we show two examples in which no validation is required, the tableau
either closes or not. It also shows that the presence of the proof constant is
crucial for a formula to become LP-valid.

Example 4.14 Consider the two tableaux below, the left one corresponding
tot: (A DB)DI(s:ADt-s: B) and the right one corresponding to

21

t:(ADB)D

(s:ADs-t:B)

1. T()t:(A> B) 1.
2. T(1)s:A 2.
3. F(l)t-s:B 3.
4. F(1.1]t-s)B (m) in 3 4.
5. TA1HADB (vK)in1 5.
6. T(llls)A (v) in 2 6.
7. T(l.1l|t-s)B (T D) in 6,5 7.
X

Tt: (A D B)

Ts: A

Fs-t:B

F(l.1|s-t)B (m) in 3
T(11t)ADB (vK)inl
T(l.1l|s)A (vK) in 2
T(1.1]t-s)B (T Dw) in 6,5

We see that the left tableau closed with the conflict condition, no abduction is
needed. The right tableau does not close; abductive closure is not applicable,
as no proof constant is found in the decoration of the prefix in F'(1.1|s-t) B.

Both formulas at the root of the tableaux yield the same S4-theorem if proof
polynomials are replaced with [; but only one of them is LP-valid.

One interesting consequence of this process is that once an abduction step
yields A € C(a) on a branch, the formula T'a : A becomes available to all other
branches as a consequence of the closure condition on F'(w)a : A for A € C(a).
This motivates the creation of an Abduction Heuristics.

Abduction Heuristics. Consider a branch containing the signed

prefixed formula F (w.n|

a.tl‘..

tn) A. Expand this branch to a

point where every t¢; has been assigned a type. Then apply (APB)

and branch over T (w.nlt; ---

tn) A and F (w.n|ty---

tn) A. The T-

side closes immediately with an abduction closure, producing C €
C(a). The formula T {(w) a : C becomes available for F-side (and the

rest of the tableau).

The Abduction Heuristics is used in the following example.

Example 4.15 Consider the the LP-translation of S4 theorem OA > O(OAV

OB)asz:ADale:

(z:ADL)Dy:B).

1. F(l)(a: ADa‘m ((zx:AD1L)Dy:B)
2. Tz (FD)in1
3. F{l)a ((:U:ADJ_)Dy:B) (FD)in1
4. F(11|a'r)(z ADL)Dy:B («)in3
5. T<1 1|'.Z‘>$ A (v4) in 2
/ \
T{11)lzy((z:ADL)Dy:B) apB 7. F(l1l|lz)((z:AD L) Dy:B)
8 T(N)a:(x:AD(z:ADL)Dy:B)))
X abd 46 9. T(11la)z:AD((zx:ADL)Dy:B))
z:AD((x:ADL)Dy:B) 10. T (1.1]alz) (x : AD L) Dy: B)
€ C(a) 11. x

The Abduction Heuristics is applied after line 5. The formula z : A D ((x
AD 1) Dy: B) € C(a) was computed on the T-side and then applied on the

F-side, which closed normally.

22

APB
abduction

(vK)
in 8

6,10

This heuristic strategy actually cheats on analycity. However, the main
claim for analycity (in terms of proof construction) is that non-analytic proofs
rely on “guessing”, which cannot be automated. This criticism does not apply
to this strategy, as the abduction step is totally algorithmic. The proof search
method only employs its own “resources”, in the form of subformulas or of some
other derived/abduced/learned formulas, which result from the analysis and
inspection of the proof itself. In the sense that only subformulas and internally
computed formulas are used, strong analycity is observed.

Another possible criticism to the use of the Abduction Heuristics is that
PREKELP-proofs applying it no longer correspond directly to SST proofs. How-
ever, as will be shown next, the Abduction Heuristics may reduce considerably
the complexity of a proof.

4.4.4 Strong Analycity and Complexity

Theorem 4.16 PREKELP tableaux with constant specification abduction is
strongly analytic.
Proof Just note that all PREKELP linear and branching inferences are
strongly analytic. If the result of constant specification abduction is used in
the proof, it remains strongly analytic. Note that, in this case, the closing X,
is never used. g
Let the size of a signed formula T/F (w,t) A be |t| + |A|. A PREKELP
expansion can lead to terms of exponential size terms even in a single branch
tableau, as shown by the following result.

Lemma 4.17 There is an LP-valid formula A which has PREKELP-tableau

V1A
nodes of size at least \/|A| A if no Abduction Heuristics is applied.
Proof Consider a formula A=z: 490 Da1 D Day Da-To Ty : Ap,
where a1 = A; D ... D A; D Ai1. So |[A] = Q(n?). The expansion of F (1) A
—_———

n times
leads, with no branching, to the following formulas:

F(llla-zg--zn) Ay
T<1.1‘$1>A0 D...D Ay D A

T{11lzp)Ap-1D...D2 4,12 A,

By n successive applications of (T D,,) one obtains T (1.1|¢1) Ay, such that
xo occurs n times in #;. Next, by n successive applications of (T D) one
obtains T (1.1|t2) As, such that x¢ occurs n? times in to. Inductively, one obtains
T (1.1]t,) Ap, such that z¢ occurs n™ times in wy,, which closes the tableau. This

last node is of size Q(\/|A|" lAl).
O

23

There are several interesting points to note in the proof above. First, as
only linear rules have been applied, this is in fact the LP-proof associated to
the minimal S4-proof of the corresponding S4-formula. And this LP-proof is in
EXPSPACE.

Second, the abduction process computes a formula that is of size linear with
the initial formula. So the size of the constant specification is not exponential.

Third, we can apply the Abduction Heuristics before the first application
of (T D), computing exactly the same formula. This formula then becomes
available and in a linear number of applications of (T D), the tableau closes.

This actually shows that LP-proofs that correspond directly to S4-proofs
may be deal with exponential terms, but some PREKELP-only manipulation
may restore the size correspondence.

Finally, if we are constructing a PREKELPtableau for an invalid formula,
say, one obtained by replacing A, by B, the saturation of a branch will lead
to an exponential term in exactly the same way as in Lemma 4.17. So the
PREKELP-decision problem is in EXPSPACE.

5 Related Work

The aim of this section is to position the results obtained in the previous section
in the context of recent work described in the literature. In particular, there
seems to be a few clarifications in need due to apparent contradiction between
the EXPSPACE complexity for abduction and some recent complexity results
in the literature, namely:

e A complexity upper bound for the decision problem for LP in the class
I8 in the polynomial hierarchy, obtained by Kuznets [Kuz00]. This is
considered a much better complexity bound in respect to logic S4, which
is known to be PSPACE-complete [Lad77].

e An NP-complete decision procedure proposed by Krupski [Kru06] for a
fragment of LP, known as the Reflected Logic of Proofs; this fragment
has the same expressive power as LP itself.

e A result by Brezhenv and Kuznets, in which a relation between LP theo-
rems can be computed from S4 proofs in polynomial time [BK06].

To understand how all these results fit in, one has to recall the definition of
the realization of an S4-formula A into an LP-formula A", that is, to substitute
proof polynomials for all occurrences of [0 in A, which yields A”. A central
result for this discussion is the following.

Fact 5.1 (Realization Theorem) The modal formula A is S4-provable iff
A" is LP-provable for some realization r.

This result was originally proved by Artemov [Art95, Art01] with two dis-
tinct algorithms, both of which, however, generated a realization A" whose

24

LP-derivation was exponential with the size of the S4-derivation of A. This
result was greatly improved by Brezhnev and Kuznets [BKO06], by presenting a
realization algorithm in which the size of the LP-derivation of A", and of every
term occurring in it, is polynomial on the size of the S4-derivation of A. How-
ever, the authors of [BKO6] note that, since S4-decision is PSPACE-complete,
it may be the case that the S4-derivation of A is exponential, in which case the
LP-derivation of A", or some LP-formula in it (including A" itself), may be
exponential with respect to |Al; this is consistent with Lemma 4.17.

For recent analyses on the structure of realizations, see [Fit07, Fit08].

With respect to the TI5 upper bound for LP-derivability in [Kuz00], note
that the exponential lower bound of Lemma 4.17 only applies to constant spec-
ification abduction using strongly analytic PREKELP-tableaux. In fact, the
construction of PREKELP-proofs with constant specification abduction can be
seen as an intermediate problem between deciding an LP-formula and comput-
ing the realization of an S4-formula. In terms of complexity, that is where it
lies.

The exponential lower bound of Lemma 4.17 cannot be applied to the general
LP-decision problem, which is a different problem, even if it is a related one.
In the derivation presented in Lemma 4.17, there are two possibilities of closing
the tableau without any abduction. In both cases, no contradiction is obtained
in relation to the II5 upper bound for LP-derivability.

First, if we substitute the exponentially sized term computed in the deriva-
tion for a - zg---a, in the input, the PREKELP-tableau closes without any
abduction and the size of the input itself becomes exponential with respect to
the size of the corresponding S4-formula. However, the size of the LLP-derivation
and the sizes of all formulas in it are polynomial with respect to the size of the
input LP-formula. Second, note that the constant specification computed by
abduction in Lemma 4.17 is not exponential. If the beginning of the derivation
branches over it, following the construction of Theorem 4.11, the tableau closes
without generating any exponential terms and without any abduction.

The conclusion is that the price for not having a priori knowledge of the
constant specification is the potential of an exponential explosion on the sizes
of terms in an analytic derivation.

Finally, we note that in [Kuz00] formulas are stored as direct acyclic graphs,
and employs algorithms that manipulate this data structure to avoid the com-
binatorial explosion. Analogously, the particular exponential term computed in
Lemma 4.17 can be encoded in polynomial space. In fact, let z o'y =z -y
and x o'*l y = x . (x o' y); then the exponential term w, is represented as
xg o™ xy0™...0o" z,, where o™ associates to the left. So the exponentiality of a
derivation may depend on how one computes the size of terms.

6 Conclusion and Further Work

In this paper we presented two analytic tableau methods for the Logic of Proofs.
Instead of basing them on a cut-free calculus, the methods presented were based

25

on a calculus with analytic cuts and extend the KE tableau method. We have
shown that both C-analytic (KELP) and strongly analytic (PREKELP) meth-
ods for LP exist. The analysis of the KELP method showed that to solve the
problem of LP-analycity, one should focus on the role of proof constants in
an LP-proof; apart from that, KELP has very similar properties to Fitting’s
tableau method.

The PREKELP-tableau method performs constant specification abduction.
Furthermore, it tries to mirror on a step-by-step analytic S4-SST proofs. We
have shown that in such cases it is possible that the PREKELP-proof may
suffer an exponential explosion on the size of terms. The Abduction Heuristics
helps avoid this exponential growth, but eliminates the strong relation with S4-
proofs. It is worth noting that such heuristics relies on the use of analytic cuts.
Analycity is preserved by the use of the Abduction Heuristics, but that requires
one to accept analycity in the sense that a proof has to be constructed on its
own “resources”.

Future work includes the use of a modification of PREKELP to compute
realizations. With regards to complexity, it would be interesting to see if some
modification of LP can lead to less complex decision procedures in which the
proof polynomials actually guide the process, instead of needing extra abduction
processing.

One may also investigate if constant specification abduction can be per-
formed in a method based on cut-free proofs. A different strategy than that of
the Abduction Heuristics proposed here would be necessary.

Acknowledgements

The author would like to thank an anonymous referee for very detailed comments
which helped a lot to improve the quality of the paper. The author would also
like to thank Renata Wassermann, who helped checking grammar and content
of an earlier version of the paper.

References

[Art95] Sergei Artemov. Operational modal logic. Technical Report MSI
95-29, Cornell University, December 1995.

[Art01] Sergei Artemov. Explicit provability and constructive semantics. Bul-
letin of Symbolic Logic, 7(1):1 36, 2001.

[BDS06] Henk Barendregt, Wil Dekkers, and Richard Statman. Typed
lambda calculus, volume I. Preliminary Version, 2006. Available
at ftp://ftp.cs.ru.nl/pub/CompMath.Found/.

[BK0O6] Vladimir Brezhnev and Roman Kuznets. Making knowledge explicit:
How hard it is. Theor. Comput. Sci., 357(1-3):23-34, 2006.

26

[D’A92]

[D’A99]

[DM94]

[Fit83]

[Fit05]

[Fit07]

[Fit08]

[Hin97]

[Kru06]

[Kuz00]

[Lad77]

[Mas00]

[Mkr97]

Marcello D’Agostino. Are tableaux an improvement on truth-tables?
— Cut-free proofs and bivalence. Journal of Logic, Language and
Information, 1:235-252, 1992.

Marcello D’Agostino. Tableau methods for classical propositional
logic. In Marcello D’Agostino, Dov Gabbay, Rainer Haehnle, and
Joachim Posegga, editors, Handbook of Tableau Methods, pages 45—
124. Kluwer, 1999.

Marcello D’Agostino and Marco Mondadori. The taming of the cut.
Classical refutations with analytic cut. Journal of Logic and Compu-
tation, 4(285-319), 1994.

Melvin Fitting. Proof Methods for Modal and Intuitionistic Logic.
Reidel, 1983.

Melvin Fitting. The logic of proofs, semantically. Annals of Pure and
Applied Logic, 132:1-25, 2005.

Melvin Fitting. Realizations and LP. In Logical Foundations of Com-
puter Science, (LFCS 2007), New York, NY, volume 4514 of Lecture
Notes in Computer Science, pages 212-223. Springer, 2007.

Melvin Fitting. S4LP and local realizability. In Third International
Computer Science Symposium in Russia (CSR 2008), volume 5010 of
Lecture Notes in Computer Science, pages 168—179. Springer, 2008.

J. Roger Hindley. Basic simple type theory. Cambridge University
Press, New York, NY, USA, 1997.

Nikolai V. Krupski. On the complexity of the reflected logic of proofs.
Theor. Comput. Sci., 357(1-3):136 142, 2006.

Roman Kuznets. On the complexity of explicit modal logics. In Peter
Clote and Helmut Schwichtenberg, editors, Computer Science Logic
(CSL), volume 1862 of Lecture Notes in Computer Science, pages
371-383. Springer, 2000.

Richard E. Ladner. The computational complexity of provability in
systems of modal propositional logic. SIAM J. Comput., 6(3):467—
480, 1977.

Fabio Massacci. Single step tableaux for modal logics: Methodol-
ogy, computations, algorithms. Journal of Automated Reasoning,
24(3):319 364, 2000.

A. Mkrtychev. Models for the logic of proofs. In 4th International
Symposium on Logical Foundations of Computer Science, volume
1234 of LNCS, pages 266-275. Springer, 1997.

27

[Ren04] Bryan Renne. Tableaux for the logic of proofs. Technical Report
TR-2004001, CUNY Graduate Center PhD Program in Computer
Science, 2004.

[Smu68a] Raymond M. Smullyan. Analytic Cut. Journal of Symbolic Logic,
33:560-564, 1968.

[Smu68b] Raymond M. Smullyan. First-Order Logic. Springer-Verlag, 1968.

28

